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Abstract

In this paper we give explicit formulae in momentum and coordinate space for the three-
nucleon potentials due to p and » meson exchange, derived from off-mass-shell meson-nucleon
scattering amplitudes which are constrained by the symmetries of QCD and by the experimental
data. Those potentials have already been applied to nuclear matter calculations. Here we display
additional terms which appear to be the most important for nuclear structure. The potentials
are decomposed in a way that separates the contributions of different physical mechanisms
involved in the meson-nucleon amplitudes. The same type of decomposition is presented for the
+ — x TM force: the A isobar, the chiral symmetry breaking and the nucleon pair terms are
isolated.
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1 Introduction

Three-nucleon potentials based on 7 and p meson exchange have been derived from different under-
lying approaches. The recent papers which include p exchange (1, 2, 3, 4] tend to extend to the rho
meson Whichever approach had been already used for the two pion exchange potential considered
earlier (because of its longer range). The early history of the T — = three-nucleon potential was
categorized in this way and summarized in [5]. Those potentials built upon the excitation of the
nucleon into a A isobar were the first and contain the least physical input. These A mediated
potentials have recently been extended to include p exchange in Refs. (1] and {4]. Soon after the
first A mediated 7 — 7 potential was constructed, it was realized that chiral symmetry (breaking)
must be inclr ‘=d in the potential. That is, the theoretical 7N amplitudes must satisfy well-defined
chiral (so ca.  “soft pion™) limits [6]. One way to accomplish this begins with the use of (effective)
Lagrangians with pions, nucleons, deltas etc. which satisfy approximate chiral symmetry (7, 8, 9].
This approach has recently been extended to include p mesons, so that the assumed Lagrangians
must also obey gauge invariance [2]. This approach has built in the correct symmetries but the
couplings must be estimated and, furthermore, the results have not really been tested against the
pion-nucleon data [10].

Alternatively, the approach used in the Tucson-Melbourne (TM) family of forces is based upon
applying the Ward identities of current algebra to axial-vector nucleon scattering. The Ward iden-
tities are saturated with nucleon and A(1230) poles. Then employing PCAC (partial conservation
of the axial-vector current), one can derive expressions for the on-mass-shell pion-nucleon scatter-
ing amplitudes which map out satisfactorily the empirical coefficients of the Héhler subthreshold
crossing symmetric expansion based on dispersion relations {11]. The off-mass-shell extrapolation
(needed for the exchange of virtual, spacelike pions in a nuclear force diagram) of the most im-
portant amplitude F* can be written in a form which depends on measured on-shell amplitudes
only. This rewriting of the amplitude to bury all reference to models of the A exploits a convenient
correspondence between the structure of the terms corresponding to spontaneously broken chiral
symmetry and the structure of the model A term. However, both the field theoretic (12] and dis-
persion theoretic [13] A contributions to £+ result in an equally excellent description of the data
[14], so the early emphasis on maximum model independence can perhaps be relaxed. This will be
done in the present paper.

Extending this current algebra-PCAC program to the Compton-like processes [13] v, + N —
A, + N, where v, is a vector photon and A, is an axial-vector current, provides, through vector
dominance, a solid basis for modeling a p ~ = exchange three-nucleon force. Again the amplitude



is obtained via Ward identities but this time exploiting in addition the gauge condition on the
off-shell electroproduction amplitude. Unfortunately, there is no empirical subthreshold expansion
of the invariant amplitudes of pion photo- and electroproduction. Instead, the amplitudes are
tested against the soft pion theorems and (on-shell) against multipoles at threshold or slightly
above threshold. The amplitude which forms the basis of the TM p — 7 force meets these tests [13],
including the challenge of the recently measured neutral pion photoproduction [16].

The so-called Tucson-Melbourne (TM) family of three-nucleon forces, in the particular case of
p — 7 and p — p exchange, has never been displayed in a form suitable for applications in general
nuclear systems (in particular, we have in mind few-nucleon systems). In the work of Ref. {3] those
potentials were applied to nuclear matter where certain approximations could be carried out. As a
result, Ref. [3] failed to provide a simultaneously complete and convenient explicit form of the TM
p— 7 and p — p forces, ready for immediate use in any calculation, as we propose to present in this
paper.

Nevertheless, the nuclear matter calculation of Ref. [3| was indicative of the role of the p meson
in screening the r exchange effect. The same effect had already been seen in the nuclear matter
calculation of Ref. [1] where a three-nucleon force constructed only from ¥ N — NA transition
potentials was used.

Furthermore, calculations of the triton bound state with inclusion of the TM 2r exchange
potential yield over-binding and strong dependence on the 7 ¥ ¥V form factor regulator mass [17, 18].
This reflects the presence in the 7 — 7 TM force of a term (usually denoted in the published literature
as the “c” term [3]) in part due to chiral symmetry breaking and responsible for the rapid variation
of the lower-order terms in the v — N amplitude, as demanded by the soft pion theorems. It appears
then natural to extend the calculations on the three-nucleon system to the inclusion of the TM
p — 7 and p — p forces hoping to cancel part of the r — 7 force effect, in a similar fashion to what
happens in the two-nucleon interactions. Moreover, since the leading terms of the expansions of
the the p¥ — 7N and pN¥N — pN amplitudes do not have to build in a drastic variation in the
low energy region, they do not have such short range singularities. In this spirit, the Sendai group
included a p - 7 force in a triton calculation [19] which, however, due to lack of a consistent body
of information in the literature, mixes several terms and parameter prescriptions of more than one
origin.

Another motivation to have p — 7 and p — p forces derived from the same principles used in the
construction of the TM 7 — x force is to have available a more complete two-meson-exchange three-
nucleon interaction, which is needed to draw conclusions about the role played by the deita-isobar
in the force. Only after introducing the consistent full family of forces in the hamiltonian, does



it become legitimate to make comparisons with the Hannover (two-body NN — NA transition
potential) approach and judge how much effect-comes from true A-isobar propagation. A first
study of this question, restricted however to the use of the TM = — r force, appeared most recently
in the literature [20]. Another one is in preparation where the p—® and p— p TM force input is
needed [21, 22]. In the context of these recent developments in few-body calculations, the present
paper supplies the necessary information to address the one-decade unsolved problem of comparing
and constrasting the Hannover with the Tucson-Melbourne approaches.

Finally, and aiming beyond the triton bound state problem, the stage of nowadays powerful
calculations allows the information of this paper to be applied to 1) the present concentrated effort
on experimental searches for direct evidence of three-nucleon forces in the three-nucleon continuum
guided by the three nucleon-scattering calculations of the Bochum group [23]; and 2) the a particle
wavefunction calculation [24], under the strong indications from existing calculations [25, 26, 27, 28]
that the three-nucleon force effects, when fully considered, will be relevant in bringing the binding
energy closer to its experimental value.

2 The m — = Potentials

In this section we carry out the program of splitting the = — 7 force into the contributions relative
to the different physical processes underlying the *N amplitude. Historically the current algebra
amplitudes were given in a form which emphasized their model independent character. That was
achieved by not disentangling explicitely the A contribution from the chiral symmetry breaking
terms. Such an attitude was justified by allowing a more direct relation to empirical quantities,
where that separation could not be seen. The process of undoing this way of displaying the force
is implicit in the set of initial papers [5, 29]. Here we merely summarize the procedure by showing
the main steps.

The m — 7 force was derived from a non-relativistic reduction of the Feynman diagram of Fig.
1. We begin by defining the T-matrix for the three-nucleon process depicted in Fig. 1in terms of
the S-matrix:

S;,’-Jﬁ: —(27r)4i5“)(zpf“ZPi)NfNinh (1)

where Ny = [[;(1/2E;)!/*(2m)™//? (the index j labelling all the particles in the final state and ng
being the number of fermions) and N; (defined similarly) are the normalization factors necessary to
make Ty; the covariant T-matrix. Then the matrix elements of the momentum space three-nucleon



Figure 1: Diagram for the r — r force
potential W are given by the non-relativistic reduction of the three body § ~ 1:

< 1;11;'2.1;'3|5 - l{p1p2P3 >NR= —i(27)é(plo — P’zo - P’so — P10 — P20 — P3o) < 1;'1};'2173|W[ 19203 >
(2)
so that

< P By BIW IR, Bs B3 >= (20)°6%(5) + By + B — B — 3 = 13) < P ol ol TNRIF TS > . (3)

We note that this choice for the normalization corresponds to the use of Dirac spinors normalized
as 2z = | and to momentum eigenstates such that < gy >= (27)%6(F - P). Most momentum
space three-body codes normalize the momentum space eigenstates to the Dirac delta function
without the factor of (2r)3; this point is discussed rather extensively in Ref. [29]. Our choice
of convention does not affect the coordinate space formulae as it is (correctly) absorbed into the
Fourier transform, such that < 1"‘]1:' >= §(F = r'), The full three-nucleon potential W is the sum of
three cyclic terms W;, W,, and W3 where W3 has particle 3 in the middle (active nucleon) as in
Figure 1. The other two terms are obtained by cyclic permutation of the indices of the incoming
nucleons.

Now we turn our attention to the intermediate state depicted as a blob in Fig.1. It is described
by the (two-body) N scattering amplitude m/(q)+ N (p) — 7'(¢') N (p) written in terms of invariant
amplitudes F and B which have the the most general isospin decomposition:

TV = —a(p, ") {¥(F* - f—;u.m +ieH (P - f—;u,ﬂ)}u(p,s) (4)



To proceed, one removes the nucleon pole from the four off-shell crossing symmetric invariants
F%(uv,t,q%, ¢%) and B%(y,t,¢?, 7'?). Given the four background = N amplitudes (obtained after the
nucleon pole is removed) F%(v,¢,¢% ¢'?) and B¥(v,1, ¢*, %), where v = (¢ + ¢) - {p + p')/(4m),
t = (g — ¢')°, one performs an expansion in the pion four momenta g, ¢’. In this expansion, after
terms of the order of (u/m)? (1 and m stand for the pion and the nucleon mass respectively) or
higher are dropped, only the (-channel) isospin even non-spin flip £+ and the isospin odd spin-flip
B~ amplitudes survive [5, 29]. We will concentrate then on those two. The non-spin flip even
current algebra amplitude is:

Fr(nt,¢,q%) = f(v,t,6%, ¢%) w5 + C*(n, 1, 6% ¢?) (3)

™

where o is the pion-nucleon ¢ term and f, & 93 MeV. The double divergence ¢’ - M+ -q/ f2 of the
background axial vector amplitude denoted by C+ contains the higher order A isobar contribution.
This amplitude is given by [13, 3]

29" % vaa(q - q)
+ )

9“3 (M + m)

= o UM - m)(M +m)+ (¢ + ¢ (2M + m)
= ¢ e2M -m+ (P + N M +m)Y)], (6)

where ¢* = 1.82u~! is the TAN coupling, M = 8.825u the A mass, m = 6.726u the nucleon mass,
va = (M-m?-¢-q)/2m,a(q q) = (B3~ O(M+m)*~¢ ql+(5* ¢ Q) M+m) Er— (3 +¢"q)]
with Ex = (M — m® + i%)/2M the center of mass energy of the pion at the A resonance. Here we
have taken 3 = 1/2(¢* + ¢’*) which reduces to #? when both pions are on mass shell.

In general, C* must have the simple form |13, 3]

C+(V7 t: qz, qI‘Z) = C'IV2 + c2q - q’ + O(q4) . (7)

On the other hand, the assumed form of the function £,
+¢”
2

i

2
Ft g, g% = (1~ gy & —1)+B(%— 1) (8)

(adapted {5, 14] for #N scattering from the SU(3) generalization of the Weinberg low energy
expansion for 7x scattering [30]) is such that I+ does satisfy the soft pion theorems

F*(0,0,0,0) = - (9)

g
f_-? ’



Fr0,4%,0,p4%) = FF(0,4%,42,0)= 0, (10)

where C'* vanishes identically, and (with the aid of Eq. (7)) the constraint at the (on-shell and
measurable) Cheng-Dashen point:

- o
FH0,2p%, 6%, p%) = — + O(¢%). (11)

In contrast to meson-meson scattering, 5 in (8) is not determined by soft-meson theorems (be-
cause the nucleon four momenta cannot be taken soft) and is to be extracted from experiment. The
most recent data analysis from the Karlsruhe group (11] makes this extraction slightly dependent
on t: § varies from 0.46 (for ¢t = 0) t0 0.52 (for ¢t = p?). This situation is different from the situation
of older data (5, 13, 31] which was consistent with an almost constant 3 value of 0.4 in the same
range of ¢.

Neglecting the v? and ¢y terms in (5) because they are of the order of (u/m)? or higher, the
F* amplitude can be expanded in the three-vector pion momenta § and ¢’ as follows:

- el o 28 I . -2
F*(0,t,¢%¢"%) = -——+(FF—Cz)q-q’— @+ (12)

f A ptf n
The last equation explicitly exhibits the separation between the (higher order in §2) A contri-
bution — contained in the c; term alone — and the remaining chiral symmetry breaking terms. In
ref. [5] and subsequent discussions of the TM 7 — 1 force, the ¢; and 3 constants in the coefficient
of the §- ¢ term were eliminated in favor of the on-shell {measurable) quantity F*(0, u2, 42, u?)
F+(0,#’,#2,u2)=(1—ﬁ)%+9§i (13)
According to Eq. (12), the A term alone does not bring a structure in momentum space different
from the chiral symmetry breaking term in §-¢’. To isolate the A contribution one simply evaluates
the constant ¢z, which, from (7} (and taking both pions on-mass-shell), can be done by evaluating
the derivative of (6) with respect to ¢ ¢', at t = 2u% (g-¢ = 0) and v = 0. The result is
cz = —1.34u7>. This coefficient coincides with twice C* evaluated at ¢t = u? (g ¢’ = u?/2) and
v = ( and compares well with the value —1.38u71, obtained for the total contribution from C+ at
t=0 (¢-¢ = p?) and v = 0. The two last comparisons give an idea of the negligible importance
of the O(g*) terms in Eq. (7).
From the 7N amplitude in conjunction with the 7NN vertices and pion propagators, one con-
structs the three body Tiwg, which according to Eq. (3) defines the three-body force represented
in Fig. 1 (5, 29)].



The constant ¢; contributes then to the averall coefficient “b” that has been used in nuclear
calculations (b = b, + by; by = e3)

2. 0 =
= ———2'—+02 = _F(_?_F+(0’u2,”2,u2)) (14}

The value b = -2.58u72, obtained from early experimental results [31] F(0, 42, p?, p?) = —0.16u"!
and o/ f% = 1.13u~! implies a chiral symmetry breaking coefficient b, = b — ¢; = =1.044~3. If the
updated set of Karlsruhe data is taken instead, Fr(0,4% 42, 4?) = -0.284" and o/ f} = 1.03u"1
then b = -2.624~7 and consequently 6, = ~1,084~3. The comparison between the numbers b,

*

and b, exhibits that the A terms do not dominate the amplitude and any description which does
not obey chiral symmetry breaking [32] is insufficient.

The isolation of the A from the broken chiral symimetry terms being complete, we have to turn
to the backward-propagating nucleon Born term that is added to the background amplitude, to
generate the three-body force. That term is calculated by subtracting the forward time-ordered
propagating nucleon term from the covariant nucleon poles. Such a subtraction was done in refs.
[5, 29]. Dropping again terms that are of the order of (u/m)?, the backward-propagating nucleon
term FF (“Z-graph”) is )

g

- -2
F+=Z;;l—3(qz+q’) (15)

where g is the pseudo-scalar *NN coupling constant. Since F' '+ shows the same momentum depen-
dence as the third term in Eq. (12), the constant c; = —g*/4m® = —0.154~3 contributes, together
with the coefficient of the last term of Eg. (12), to the overall constant “c” (¢ = ¢y + ¢,) that

multiplies the §2 + q'-"'2 term, in the definition of the TM 7 — = three-body force: .

a2

c 7. o

TR T T F;NN(O)}-'—Z (16)
T L

We note that the term proportional to Flyn(0) did not appear before in Eq. (12). This term
nevertheless is inserted in ¢ because both the backward propagating part of the nucleon pole F %
and the A couple with the pion with a (assumed the same) form factor Fpyn{g?) which is defined
as g(¢*) = gFenn(g?). The chiral breaking o term is a c-number [14] and has no intrinsic ¢*
dependence (although it is multiplied by f(v,t, ¢, ¢'?)). It is convenient, if not necessary, however,
since part of the amplitude is due to F+ and C*, to multiply the final amplitude by form factors,
dependent upon ¢? and ¢’*. Consequently, the constant term (¢/fx*, labeled “a” in the literature)
attains a spurious momentum dependence from the form factors. The term proportional to F/ y ,(0)
in Eq. (16) is inserted to correct for this spurious momentum dependence to the orders in ¢ and
¢”? kept in the amplitude.



The value ¢ = ¢, + ¢, = 1.042 that has been used before changes slightly to ¢ = 0.91;-3,
with the new determination of o/f%. From these numbers one concludes that in the non-spin-
flip amplitude amplitude the chiral Symmetry breaking term dominates the backward-propagating
nucleon term.

The spin-flip current algebra amplitude 8- is simpler to decompose into the physical contribu-
tions. This amplitude is [13, 5]

- 1 g2 .
- 2 .12 — _ - 2 2 -
B (Uatsq 4 )—(F‘[V(t)‘f"sz(t) 2}}2 2m2+D (V:t!qilq )' (17)

where the function D~ contains the higher order A contribution and is given in references [3, 13, 29].
After the non-relativistic reduction of the 7N T matrix is done, in the process of doing the u/m
expansion to derive the three-body-force, we note that 5~ is multiplied by [¢, ¢'] which is already
of second order in u/m, so we need only keep the first term in the expansion of (17). Therefore,
the electromagnetic isovector form factors are approximated by a comstant value

) |
Fiv + Fy = 1.+3.7o+0(%) (18)

and only the constant term (Do = 4.87u~2) in the expansion of D~ is kept. Taking into account
the multiplicative factor —1 /2m from Eq. (4), the A contributes with a coeficient da = Dy/2m =
~0.36~3. The remaijning contribution, due to the two first terms of Eq. (17),is dy = ~-0.2445,
The sum dy = d., +dy = ~0.60u~3 defines the d4 parameter that one encounters in the published
equations for the force.

Finally the B3 contribution from the backward pPropagating nucleon pole ( “Z-graph”) is given
to zeroth order [5] by

2 2
- g H
Bz =52+0(=) - (19)

Traditionally then these disparate contributions have been added into a total “g¢” coefficient, d =
dy+d,, where d, has already been defined and d; = —-B7 /2m singles out the pair term contribution,
The constant d, has the same value as the pair term coefficient d, = ¢, = ~0.15u"3 of the F+
amplitude. The total “d” term coefficient becomes d = d., + dp + d, = ~-0.75473. Again the
numbers indicate that the Pairing term is small relative to the background amplitude and although
the A is importaat, it is only half of the “d” coefficient.

Now that we have undone the usual representation of the Tucson-Melbourne 7 ~ 7 three-body
force, let us close by recalling the form of the amplitude 7N — =N,

T=Tz+AT+q¢ M-.q, (20)

9



which best expresses the degree of model dependence of the amplitudes, Here Ty stands for the
“Z-graph” contribution, Tz = Ty — Trppg, where Ty is the covariant Born term and Trpg is the
forward propagating (positive energy) nucleon term. The model independent AT is added to the
full Born term Tg so that to leading order Tp+ AT satisfies the low energy theorems (Ward identity
constraints) exemplified by (9) and (10), and ¢’ - M - ¢ is a background term for which (isobar)
models are necessary. The grouping of the isobar contributions into AT + ¢’ - M - ¢ in Eq.( 20)
enforces the largest degree of model independence of the off-shell amplitude. This is because to
lowest order (all) isobar contributions are included in AT, and ¢’ - M - ¢ is constructed to give
contributions only in higher order terms. These general statements apply equally to the p— = and
the p — p amplitudes discussed later on.

What is unique about the »N F*amplitude is that the background term ¢’ - M - q of Eq. (7)
has just the right structure to combine nicely with the momentum dependence (8) of AT so that
the entire off-shell amplitude can be obtained directly from data without a specific reference to
the A contributions to either AT or to ¢' - M - ¢. This point, while giving us greater confidence
in the three-body force derivation, has lead to considerable frustratior among those interested in
three-nucleon forces. Hence the deconstruction above which is summarized in the following table.

Tz AT ¢ -Mp-q Total

pa 0  +1.03 0 +1.03
b 0 -1.08 -1.54 -2.62
pdc -0.15 +1.06 0 +0.91
p3d -0.15  -0.24 -0.36 -0.75

Tabie 1: Expansion coefficients of the #N amplitude used in the 7 — v force. Units of charged pion
masses. Tz is the "Z-graph” contribution, AT is the model independent part needed to satisfy the
low energy theorems, ¢’ - M - ¢ is the background term for which (isobar) models are necessary.

The table organizes vertically the coefficients according to the type of momentum and spin-
isospin structure which ultimately they multiply. Within each row, the decomposition acording
to (20), is provided. The model independent terms labeled AT in the table arise from current
algebra but are of two different types. In the first three rows (labeled a,b,c) they contain the
pion-nucleon sigma term, an axial current-axijal charge commutator which is a measure of chirai
symmetry breaking. The last row (labeled d and originated by B~) contains a AT which is also
a current-current commutator. However in this case the algebra is closed by the electromagnetic

form factor of the nucleon and has nothing to do with chiral symmetry breaking. As we shail see

10



in subsequent sections, the chiral symmetry breaking contributions to the AT of the p¥ — 7 ¥
amplitute are quite small and, of course, absent altogether in the pN — pN amplitude obtained
via vector dominance from YN — 4y N. ’

The specific momentum and spin-isospin structure of the final three-nucleon force is provided
in momentum space in Ref. [29] and coordinate space in Ref. [33], and will not be repeated here.
The strength constants of the 2 exchange three-body force are given in units of the charged pion
mass (139.6 MeV). The potentials, however, use an isospin formalism instead of charge states so
it would seem natural to employ the SU(2) average pion mass (2m, + + m0)/3 = 138 MeV in the
propagators and form factors.

11



Figure 2: Diagrams for the = — p force

3 The p — n Potentials

The working definition of the p — r three-nucleon potential is, as in the 7 — = case, Eq. (3) written
in section 2. The three-body transition matrix Twg pictured in figure 2 contains now two different
meson propagators together with the 7NN and the pNN vertices from the external nucleonic lines
of the diagram, in conjunction with the pN — 7N intermediate amplitude.

The amplitude is modeled through vector dominance from the amplitude YN — 7NV which is
obtained by the method of Ward identities [15]. Those identities are (single and double) divergence
conditions that determine the terms of the amplitude that are constant or linear in the exchanged
momentum. Of the several spin-isospin components of the p — 7 three nucleon potential only a
few appear to be numerically significant. They correspond to the leading terms of the low energy
expansion of p.¥ — 7N truncated to terms of second order, as was the = — r force, in powers of
the exchanged three-momenta between the nucleons. The (t-channel) isotopic spin decomposition
of the amplitude is the same as that of the #N amplitude of Eq. (4) because the p is an isotriplet
as well as the pion. Again, the expansion can be rearranged into the form of Eq. (20) for an
optimal display of its degree of model independence. The isospin even model-independent terms
TF + AT* nearly cancel to leading order because AT+ goes to the soft pion (¢ — 0) p analog
Fubini- Furlan-Rosetti limit of pion photoproduction (15, 16]. The total model independent term
in the k — 0, ¢ — 0 limit takes on the form 1 — mga(0)/(frg) which is of the order of few percent
(Goldberger-Treiman discrepancy(34]). This cancellation is lessened away from the expansion point
at zero, but then the model-dependent {(and A dominated) background term ¢’ - 3 - ¢ appears to

12



totally dominate the p¥ — 7N amplitude. Therefore, in the isospin even amplitude, only the
A-contributicn, obtained in a dispersive sense, is developed into a p — 7 potential in this paper.
The situation is just the opposite for the model independent terms T; + AT~ of the isospin odd
amplitude. Here the low energy theorem of pion-photoproduction is due to Kroll and Ruderman
and is simply the “Z-graph” T7 in psendoscalar coupling [15]. This leading order (constant) term
from the the p-analog Kroll- Ruderman theorem as ¢ — 0,k — 0 should then form the basis of
an important part of the p — 7 potential. It must be supplemented, however, by the largest p —
potential terms arising from the A-dominated isospin odd background. Potentjal terms other than
the above from AT#, including the chiral symmetry breaking terms, appear to be much smaller
than these just mentioned and will be neglected in the following (for details see Ref. (3]).

We now pick out the terms with one p and one 7 from Figure 2a which are believed to dom-
inate the expansion and write them in detail. Those terms correspond to the “Z-graph” and the
seemingly largest terms from the A isobar. The contribution from Figure 2b follows from 2a with
the substitutions 1 « 2 and k£ ~ —¢ where & is the three-momentum of the rho and § the three-
momentum of the pion. (In what follows the notation is slightly different from that of ref. [3] but

closer to existing codes and practices).

3.1 “Kroll-Ruderman” p — r potential

The analogue of the Kroll-Ruderman term of pion-photoproduction forms the basis of a specific
local contribution to the overall p — 7 exchange three-body potential that presents a first order
dependence on the exchanged mesons momentum & and g. It is consequently a contribution that
is expected to compete strongly with the delta-isobar terms that are quadratic in the momentum.

This contribution comes from the t-channel isospin odd term in the pN — N amplitude. When
the pseudoscalar coupling for the r NV V vertex is assumed, this term is the backward-propagating
aucleon Born term. In a form that evidences sequentially from left to right the role of the four

vertices involved in the diagram, we can write for its momentum space representation
7 73 5Pl + 7 + 7 - 5 ~ 13 — 1)
< pi, WL QBANA ;.3 > = +(2r) —l 2038
pll P&?P‘:’Jl per( )IP'I!PZ p3 ( ) (Q.Z+y2)(k2 +m§)
i 7] X 73001 X k- 03ds - §

2
9o ( Fuo(k?) + Ky Fapl(K?)) Frp(K?) g2 Fyn(a?) (21)

16m3

From this form it is evident that the coupling of the p meson to the inner “blob” is proportional
to Fi,(k?), in accordance with the low energy theorem of Kroll and Ruderman. Also, to obtain

13



Eq. (21) we kept the distinction between the Dirac and the Pauli couplings of the p meson to the
outer nucleon, which appears as the sum Fi (k%) + &, Fy,(k*). Subsequently, we retain in all
equations one form-factor Fj,(k?) for the Dirac coupling of the rho to the nucleon and another
form-factor F,,(k%) for the Pauli coupling. The latter is multiplied by the on-mass-shell K, which
is taken to have the Hohler and Peitarinen value 6.6{35]. Separate form factors are not usual in
nuclear physics, where it is common to take the same form for both the charge and the magnetic
momentum form factors. Qur choice has the advantage of being general and flexible to any type of
(independent) behavior of the two form factors that experiment may eventually reveal. The price
we have to pay is the introduction of a new parameter relative to Fo ().

The coupling of the pion to the nucleon is described by a form-factor Fenn. Other form factors
are introduced as needed. All form factors are normalized to unity at the meson on-mass-shell
momentum. As for the structure, o3 - § is the non-relativistic coupling of the = to one of the outer
nucleon lines, while ] x k comes from the p coupling to the other external nucleon.

In coordinate space the “Kroll-Ruderman” potential becomes

< IWLBAIR, L > = 6% - £1)6%(z) - £3)8%(7, — £3)
- m - . - - -
Er-)‘;Tﬁer?g g5 71 T3 x {1 x Vy-63)6% - V,
((Zppo(T13) + %, Zppp(713)) Zu(223) (22)

where £; = &; - ¢ and V! = Vi, = 8/0zl, = I%Jg'[d/dz‘?" (7 = 1,2,3 specifies a given cartesian
componeat and i = 1,2 a given nucleon).

The . neralized form factor H(§?) in each dimensionless coordinate space function Z,(z;;) is
typically aduct of monopole form factors: one for the vertex to the outer nucleon and a second is
included i.. e coupling of the meson to the “blob” of figure 2. The coordinate space “propagator”

has the generic form

dq Hap(d?) | :
Zagu(z) = f(zw)a—_g—_{_-;— i (23)

where

A2 ‘“#ZA%_
Y] —

(24)

For the exchanged pion Hop(q?) = F2yn(q?) so that A, = Ag and the a, 8 indices are suppressed.
The p propagator with subseript “DDp” also indicates A, = Ag with values from the Dirac coupling
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( Fy,(k?))% and the transformation 4 — m, but the subscript “PDp” indicates A, # Ag with values
arising from the product of Fy,(k*)and Fy,(k*)and p — m,.
With these form factors and carrying out the indicated derivatives, the “Kroll-Ruderman”

potential becomes

e e L —pm
< Tf?’rglwpﬂ‘(‘?'A)]Th F2,T3 > £

T ian? 950 (@ - ) - 7)8°(ah - )
1'T2 XT'3( 1)( 5;13.0-"3)07'2_523
(X{pp(@13) + Ao X{pp(213)) X (220) (25)

where X (z) = Z'(z). Explicitly for Ay = Ag = A

Xi(z) = - [G(#z)- —G(Az) - (%——1) -“"’] (26)

and for Ay # Ag

2 2 2 /A2 2
Xlosl2) = {(m)-(%ﬁ) (j\‘z A,)G(Aam(f‘f) (A;’ iz)a(xaz)] (27)
where r L
[4
Gz)= = (1 + ;) . (28)

Note that the generic X;(z) = Z/(z) has dimensions of mass and the spin operators are coupled
with unit radial vectors. Then the overall constant has units of MeV and the magnitude is 28.72
MeV. It should be clear that for rho exchange the generic X{(z) is written as ¢ — m,. This finishes
the explicit display of the “Kroll-Ruderman” term. It is expected to be the most important of the
model-independent parts of the rho-pi potential.

3.2 pr Potential with A intermediate state
3.2.1 Isospin even amplitude

Of the eight spin functions the potential decomposes into, the terms proportional to 1 + «, are
believed to be the largest because x, has the value 6.6 on the rho-mass-shell. Those terms which
are (t-channel) isospin even are generated from the spin functions 41 - §o2 - § and 47 - ko - §. They
take the momentum space form (see Eq. 2.19a of ref. [3].):

383 (P, + P + P — Bi — B2 — P3)

<-y-1-w+ 34 ",",">= 2r
P1s Pas PAIW A (34)|P1, P2, 3 —-(27) ("‘2+p2)(k2+m2)




77 (k- kot 365§k goi ko - )
H

48?99( Fln(kz) + Ky FZa(k )) GE/[pI'_-’pNA(kZ,)

m 5M - M 2 - 2

M ‘M-_mgFarNN(q )(mg Frr.'VA(q )) (29)
where M is the mass of the Delta and m is the nucleon mass. The two terms can be combined
as () x &) - (§ x k) - § which manifests the pNN coupling to “outer” nucleon 1 and the #NN
coupling to “outer” nucleon 2. On the other hand, we note that the second term of Eq. 29 has the
same structure (o7 - kg3 - ¢k - ¢ ) as the “b” term of the 27 exchange potential.

In coordinate space the potential becomes

<, UWEABANR, s > = 83(2} - 51)6%(z), - £3)8%(<], - 3)
_.u'mp SM — - -
(@r P48 Mm99 31 = GMﬂ(mg )
- 13{Vi - Vil - Vads - Vi — Vi - Vad V163 - Vo

((ZpGo(213) + Ko ZPG,(%13)) ZNnan(223) (30)

where subscripts “DGp” refer to the generalized form factor arising from the product of Fj,(k?)and
the pAN form factor Fona(k?), “PGp” to the analogous product F3,(k%) F,nya(k?),and “VAy”
to Fean(q®) Fena(g?)
The second denva.twes of Eq. (30) are most conveniently carried out with the aid of the following
basic identity
%6;2(z) = %[5-'1'1"2(3) + (382 ~ 6;5) Xo(2)] (31)

(2 = &} |z:]) where X3(z) = Z"(2)~1/22/(z), and Yo(z) = Z”(z)+2/zZ’(a:). Explicitly they are

X3(z) = [F(p:c) - A—F(A ) - -é-Az(A— - 1)G(Az) J
_ e A%ete 14 2 oAz
Yiz) = [ praily by vl ——A:c( i Il - — e ] (32)
Because B
F(z) = i—(l + g + —3-) (33)

for the seldom needed A, = Ag = A we can make the identifications X3(z) = p*T(z) and Y} (z) =
p2Y (z) familiar from the Argonne-Urbana two nucleon force expressions (33]. In the present case,
however, A, # Ag for each propagator and we must employ the longer forms
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A A2 _ 2 A3 A% -2
=y |Flug) - B(La TB yprp gy o De 28T H
2a,£3($ M [ (,UZ) “3 (Ag _ A’%) ( ﬁ-l'-') + “3 (1\‘:2, _ A% )F(Aﬁ‘r) )
Y (z) = ul e™s fl__ AZ - )e'Aﬁ"' _f_\; A = p? g=hes (34)
B\ HT u3 A2 A% Agz pd AL - Aﬁ Agz

Before displaying the final potential in r-space let us introduce the “tilde” notation for the
combination 1 + s, which appears so often. For example, the p propagator in (30} which has two
form factors in the pV ¥V coupling and only one in the pAN, takes on the compact form

ZNnGo(2) = ZDGo(T) + Ko ZpGa(3). (35)
Since differentiation is a linear operator we can write, for example, .
X3(2) = Xinelz) = Xipale) + Ko X2pg(2). (36)

to shorten the following equations.
Using Eq. (31) the first term of Eq. (30) (from 47 - §o3 - gk - £ ) becomes

<Ly WL GBANL AT >, = 8 - )8 - 5)8(E - 5)
—-um, SM -
(411')248Mm4gg" M- GMﬂ(mg

Y29(113)YE“(323)

7 - Al —
S12(£23)

T3

Y/ (213) X5 (223)) (37)

The second term of Eq. (30) has the same structure (43 - ko5 - @ - § ) as the “b” term of the 2
exchange potential and is

<L WLABANA, AR >, = 833 - £1)6%(e, — 43)8%(2), - £3)
+um, 5M —

(411')248Mm4g M- GM"(mg )

il G - AV (z1a) ¥ (e

+ 512(813) X5(213) Y5 (z23) + S12(223) ¥ (213) XE(213)
+{901 - £1307 - E33f13 - £23 — S12(313) - S12(Z23)

— 61 3) Xf(213) X$(223)) (38)
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The sum of these two terms agrees with the corresponding equation (2.23) of [3]. Identification
of Eq. (38) with the coordinate space “b” term as given in ref. {33] can be made by remembering
that S513(&13) = 307 - £136% - £13 — 67 - 6 and noting that (Y;(z)—X3(z)]/3 = Z'(z)/z. The overall
coordinate space constant (including the powers of meson masses in the definitions of X 5 (z) and
Y}*(z)) for both terms (37) and (38) is 524.28 MeV. This number is huge because the p¥ A coupling
constant Gjy is (rather artifically) defined on the p mass shell but is in reality obtained from the
experimental G;ﬁ,,,.!(k2 = 0) = 14.7. That is G3z,(k? = 0) = G}y, Fona(k? = 0). Solving for Gig
one finds Gy, = Gy, (k% = 0)—:——:- where A = 5.8 and m, = 5.6u. The product G Fonalk?)
is employed in the subthreshold regxon for space-like momentum transfer, where it is much smaller.

3.2.2 TIsospin odd amplitude

Those largest terms v :h are (t-channel) isospin odd multiply the spin functions of Eqs. (2.13f) and
(2.23g) in Ref. [3]: ..*Ks = i} x k- G303 - T and m*K; = id1 X k- §oy - ko - . The particular
combination containing the delta-nucleon mass difference takes the form miks — §- km*Ks =
iy X k - §as - ko - -F-q- kwl x k- 0307 - §. This can be rewritten as id} x k - (03 x §) x k]ag §to
show the spin structure connected with the several vertices most clearly, or finally as —i(d5-§'x kd7 -

ks - § = 07 X % - ORE §). The third form is convenient for the coordinate space manipulations
and has appeared before from non-relativistic transition potential derivations (1, 4]. We will quote
the momentum space potential with the last form of the spin functions

e )36(pa+pa+pa R
(@ + )R + m3)
i[a"aucf'x kdy ko - §— a1 xa3-q'(§)2a'"2-tj]
5595 Fio(k?) + %, Foolk)) Gig, Fova(R?)

Eng:gF"NN(? )(m g*Fenalq?)) (39)

< D Ph By Wia (BA)|5, B2, 15 >

One can readily see that the first term has the same spin structure &3 - § X k4 - ko -4 as the
“d” term of the 2x exchange potential. In coordinate space the isospin odd potential becomes

< Tls T'za "3] WA(BA)IT.I.’ r3, T3> = 53(1‘{ - -73-1)63(13 - 22 ‘53(1’3 - 73)

um M+m
(47',)296;47”499 °M — GMp(mg )11 T2 X T
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(53 V2 x V161 - Vi3 - V; = 6 X 63 - V¥, - V5 - O]
((ZDGo(213) + K9 ZpGo(213)) ZN au(T23) (40)

After the derivatives are carried out, the first term of Eq. (40), analogous to the “d” term of
the 27 exchange potential, takes the form:

ST miWLABANR, B> = 82 - 7)), - £)6%(zh — 13)
Hm, M+m

= -
(47)296 MmA 97 3f — 7 CMoA™I7)
7172 X 13{(F3 - £33 X E13)(d7] - £13)(Fs - F3)
X§(z13) X2 (z23)
_ . L. I
+(1 + £13)(63 + £13 X 03)5;-’({(113)3('{‘(1‘23)
- - — ~ - l T
+{(d7 - £23)(03 - %23 X 0'1)%"('19(313)){5‘(123)
- - - 1l = 1
H{02 01 X G3) ~—X{(213) — X (223)] (41)
£13 23

The second term of Eq. (40) does not have a counterpart in the 2r exchange potential but
instead takes the simple form:

<L WoABAIR B>, = 8(2) - £)8%() - £2)6%(z} ~ £3)
P 2
pm, M+m

(@7)296 Mm99 31 = OMs(M9")
M -T2 X 73[+(07 - 223)(F3 - 6} X 223)Y{ (213) X (723)

o -y 1 =
+(Gz'aaxcﬁ)z—z;Ygﬂ(Iza)Xf(Iza)] . _ (42)

The overall numerical constant in both (41) and (42) is 109 NfeV, about a factor of five smaller
than that of the isospin even term ( for this reason this term was not included in the nuclear matter
calculation of ref. [3]; in a trinucleon calculation however it may turn out to be meaningful). A
model three-nucleon potential derived from the transition potential approach would have an exact
ratio of 4:1 for the isospin even versus isospin odd contributions.

One local term proportional to i[d1 x k- dyop - q'r]E -k remains from the expansion of the covariant
expression for the amplitude with an intermediate A. The overall numerical constant is about a
factor of ten smaller than that of (41) and (42) so we will not consider it further. It requires a third
derivative of Z or first derivative of Y2 in coordinate space anyway, which eventually suppresses it
further.
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The total rho-pi contribution is obtained from WPT(34) by first adding the contribution from
WPT(3B) = (WP"(3A} : 1 ~ 2) and then taking cyclic permutations of three “active” nucleons .
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Figure 3: Diagram for the p — p force

4 The p — p Potentials

The definition of Eq. (3) is once more the starting point. The three-body Twg for the Feynman
diagram of figure 3 involves the pN — pN amplitude, together with two p meson propagators and
pNN vertices.

The calculation of the latter amplitude is obtained by generalizing the Thirring theorem for
Compton scattering to the case of p mesons, through the current-field identity, under the assumption
of vector dominance. The longitudinal character of the p has however to be considered as well as
the fact that it carries isospin. To do that one proceeds as did Bég [36] in his analysis of Compton
scattering of isovector photons. The dominant term in the background (free of the nucleon pole
term) Bég amplitude arises from the t channel p pole (3p coupling) and from a direct ppNN
contact (seagull) term. Those contributions constitute the AT part of Eq. (20). The A term,
contributing to the quadratic terms in the momenta, cannot be fixed by amy divergence condition
and is introduced, explicitely separated from the remaining amplitude, in a model dependent way.
The following subsections will turn to the detailed form of all these components of the pN amplitude
of different (physical) origin.

4.1 Model-independent potentials from low-energy theorems

The apparent dominant terms in the model-independent parts of this potential are odd in the t-
channel isospin. The term displayed below results from the coupling of transverse (T) p-mesons
to the low-energy amplitude constructed by Bég and has been labeled the “Bég” potential in the
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previous nuclear matter calculations. Similarly to the Kroll-Ruderman term, the “Bég” term is
linear in each of the meson momentum, and it turns out to be important when comparing to the
A isobar contributions. In momentum space it takes the form

P+t - —5)

<P P PAWTrlFL B2, B3 > = +(27) . . ER
(k% + m2)(k'2 + m2)
5y % B) - (G x ) x & Fav(0)
[(F1 x k) - (G2 x ¥) x da] FL,(0)(1 + F1.0) )
4
'——g 's
siaa( Frolk?) + kp Foo(R?) ) Fio(k?) + &, Fpy(k2))

(43)

where For(0) = xy = 3 7 is the isovector anomalous moment of the nucleon. While the term
independent of Foy in F7,(0)(1 + ?%L(Lo—l) arises from the backward-propagating nucleon pole term
(or pair term), the term in Fyy(0) represents a direct ppNN contact (seagull) term in the underlying
pN — pN amplitude. In principal the second term should be distinguished by a form factor of
a different character (F,((k — ¥)?) than the previous terms of the pr potential. In practice,
this component of the pp potential has so far been calculated in the approximation of no form
factors on the “active” nucleon and therefore includes only the pNN form factor at the external
nucleons. This approximation is similar to the approximation made in the “d” term of the 2x
force. In that case, only the coﬁsta.nt term of the current commutator expansion Ry(t)+ Fv(t) =
Fiv(0) + Fav(0) + O(¢?) = 1 + 3.70 was retained (see Eq. (18)).

In coordinate space the “Bég” potential has a slightly different form from the previous ones
displayed, because the propagator Z of Eq. has only a single monopole in the H function of Eq.
(24) and (as in the “Kroll-Ruderman” term) only the first derivative is needed. With the definitions

, o
21 = X\(2) = —p [G(uz) - 2—2(3(1\3)} ; (44)

where the added subscript 1 is meant to remind about the single formfactor, the coordinate space
potential becomes

< WA, AR > = (D - 7)6%(F, - 5)8%d, - 5)
m2 ng(O)
(471')264 3 pFlp(O)(1+ ( ))

17 X 13(01 X V1) (62 x V3) x 73

2y (213) Z1m (233) (43)
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or

2
<A AWEA AR > = i gtrL o) + 20,
(47)264m3~P" 1° F7,(0)

83(2) — £1)6%(<), - 43)8%(g} — 3)

7 -T2 X T3(01 X £13) - (6% X $23) X 03

Xﬁ(zm)xfl(’:?:’-) (46)

4.2 pp Potential with A intermediate state

There are two local potentials which correspond to the coupling of transverse p-mesons to the A
pole. We introduce the notation

A& — o G
M= 2m(M +m) ~Me

for the low-momentum transfer pAN vertex. The two local terms correspond to t-channel isospin

(47)

even and odd amplitudes. We take them up in turn.

4.2.1 Isospin even amplitude

The form of the term generated by this amplitude agrees with the form arising from a transition
potential construction and reads in momentum space

(2, + Ph + Py — i = D2 — §3)
(k2 + m2)(k'2 + m2)
T2 ((o’lxﬁ)xf)-((fzxg)x"?)

. - o e 5
<P'1aP'z,Pf's|W;a.lPhP2a?3> = ""(2"')3

212
9oAie
BTy Fielk®) + 5 Fap(k3)) Forva (k)
( Fio(K?) + 5, Fap(K?) ) Fona(k?) (48)
which, after Fourier transform becomes
< WA, R > = 8(e) - 61)6%(zh - £3)63(7) - )

2 232
m, IoA -

T@rRsM-m) T
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[ (1 X V1) x V1) - ((d x V3) x V3)]
(ZDGa(%13) + Ky ZpG,(713))(ZDG,(223) + KoZpPGo(T23)){49)

Carrying out the derivatives one obtains the final form of the matrix element in r-space

<A AWRIR ARG > = 8@ - 7)8F - 2)6°E - 7)
LI TR
(47)2 18(M - m) 9
([4 71 - 2YS (213) ¥ (223) ~ 2 S1a(#13) X (213)VF (223)
=2 813(223)Y{ (213) X5(223)] + [9813 - £2301 - i1307 &3

= 512(213) — Si2(223) — 01 - ) XS (213) X5 (223)]).  (50)

4.2.2 Isospin odd amplitude

There is a relative factor of ~1/4 between isospin odd and isospin even in this case. This is precisely
the relative factor obtained from a transition potential approach. The reason why the TM force
ends up with the same factor lies in the fact that the k. C - k' contributions to the pN — pN

amplitude were modeled by A-poles in the s- and u-channels.

S CHt+h+Rh-R-p-R)
<pL P BAIW AR, > = (e LT TP
Py, pa, P4l oalP1: D2, 3 (2r) (k2+m§)(k'2+m3)

iﬁ-‘r}xr‘é Fs-[ (G x B) x B) x (3 x ©) x &)

—93’}?‘-‘-_( Fio(k?) + 5, Fop(k?))E,wa(k?)
18(M-m) " P i eNa

( FLo(K?) + 8, Fyp(K?))Fona(k?) (51)

In coordinate space the equation becomes:

<A AW B> = 8 - )8, - 5)6( - )
+m? a2 1
(47)? 18(M ~ m) 4
Fa- [ ({1 x V1) x V1) x ((d3 x V) x V)]

1 T2 X T3

(ZDGo(713) + K2 ZPGo(T13) ZDGo(223) + Ko ZPG,y(723))(52)
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We note that the expansion of the vector products in the previous equation leads to four terms.
one of which is identical to the *d” term of the 7 — 7 force.

After carrying out the derivatives we find finally:

< WAL R > = 6%(d) - 21)6%(d) - £2)6%( — 53)
tmy @A 1.
(Ar):18(M —m)a ' "
(63 - 03 x 01)¥F (213) Y (223)
—(0'3 101 X £23)(d7 - 523?29(313)X§(323)
X{(z23)
Ia3
—(d3 - 213 x 62)(F1 * £13) X 5(213)Y (223)

~(d1 - 02 x 63)¥{ (z13)

.. X! -
—(0'3 o X 02)—"1—(-&?)'?’;(323)]
T13 . :
—[(d3 - Z23 X &13)(d1 - £13)0(F2 « £23) X5(213) X5 (2 23)
- . . AN =
~(d1 - 213)(F2 - &13 x Ua)E;X:f(le)Xf(l‘zs)
N ¢4 ;
—(02 + £23)(d] - 03 X Izs)*‘iti)xg(xza)
X{(z12) Xf(xzs)]
I3 T3

(% - 61 X 73) (33)

where the four last terms correspond to the “d” term analog piece of the matrix element.

5 Recommended choice of pérameters

The set of numerical values for the coupling constants and the monopole form-factor regulator
masses are compiled in Table II. The monopole formfactors are defined in Eqs. (23) and (24).
This set differs from table A2 of ref. [3] only in the value for the rNA coupling constant, which
should be g* = 1.82u~1, instead of the larger value of that table. Quly this value is consistent with
the #NA coupling constant implicit in the 27 exchange three-body force (see Appendix A of Ref.
[5]) and with the value obtained by the Karlsruhe group [11] from N scattering analysis. They
used a fixed-t dispersion relation for the invariant amplitudes in order to determine the parameters
of an “effective pole” which simulates A-exchange at energies near and below threshold. The
coupling constant so determined corresponds to the dimensionless coupling f* (f*?/4r = 0.26)
used by Martzolff et al [1], and differs from the Hannover group choice f*?/4r = 0.35 for their

25



for the =

g 13.4

g* 1.8 u—t

Axnn 5.8 u

Axna 58 u
for the p

9o 3.3

Gum," 191.1

Ann (Dirac) 12 4
Ap,vn (Pauli) T4 u
ApNA 5-8 ﬂ

Table 2: Couplings labeled by a generic g and cut-off masses labeled by A. See Ref. 3 for complete
definitions.

transition potential [37]. The latter value is derived from the A-width, using the interaction term
of the Lagrangian and “should not be used in application of pole term formulas near or below
threshold” [38]. This latter value is 40% higher and therefore emphasizes the effects of the forward
propagating isobar in the transition potential picture compared to the covariant isobar contribution
to 7N scattering.

The decision for the prescribed values of the remaining parameters was justified in ref. [3].
Briefly, we recall here that,

¢ the coupling constants concerning the r come from low energy ™ — N scattering = .ra. The
value of g = 13.4 has been challenged in recent years by partial wave analyses of :.ucleon-
nucleon scattering [39]. Much discussion has ensued on this still unsettled point. .

o the cut-off value for the # N A form factor is taken to be the same as NN, which is suggested
by data from neutrino-nucleon scattering (p+ v — At 4+ u-),

e for the p meson, the choices made on the parameters were determined through vector meson
dominance models (which ties the needed hadronic pAN coupling to the YAN vertex) that
are believed to be valid for processes involving low four-momentum transfer. We foilow the
experimental analyses of the AN vertex and use a monopole form factor with cutoff mass
AyNa = 5.8y to approximate this vertex. As for the PNN vertex, it has two couplings:
a direct Dirac coupl  and the Pauli coupling to th» anomalous magnetic moment of the
nucleon. In the Tucs. elbourne prescription, the tio of the Pauli to Dirac coupling is
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allowed to vary with the four-momentum of the p. This choice appears to accommodate
reasonably both the vector dominance value of sy (k2 = 0) = 3.7 and the on-mass-shell value
of k,(k* = m,*) = 6.6 [35]. The two cutoff masses ADirac = 12u and Apgy; = 7.4p are
then determined from nucleon electromagnetic form factor data. Somewhat later, a group led
by Gari {40] made a detailed fit to the electromagnetic form factors of the nucleon with the
ansatz suggested already in {3] and came to a similar conclusion as [3]. What was not noticed
by the authors of [3] and presumably of [40] was that the k2 dependence of the Dirac and
Pauli rho form factors away from the rho mass shell were also shown and even parameterized
for spacelike momentum transfer by Hohler and Pietarinen in [35]. Indeed, the ratio of Pauli
to Dirac coupling from the latter analysis does not vary much with %2 and is 6.0 at &% = 0
[41]. It turns out that this form factor result for the pNN vertex is quite compatible with the
data for the electromagnetic isovector nucleon form factors [42].

We next discuss the most varied aspect of the TM force: the fact that each user feels free to
substitute his or her own choice for the recommended cut-off value of the monopole TN N form
factor. Its recommended value (A = 5.8z ~ 810 MeV) is inspired by the 5% Goldberger-Treiman
discrepancy which is consistent with a 3% decrease in the * N V form factor from ?=m.ltog?=0
{34]. The present understanding of the variation of the other quantities in the Goldberger-Treiman
relation from the chiral limit to the chirally broken “real world”, imply an “error bar” of £200 MeV
for the A determination. This makes our choice in good agreement with the OPEP tail in many
contemporary NN potentials: A ~ 980 MeV for Argonne V14 (43], A = 800 MeV in the present day
evolution of the Bonn OBEP potentials [44], and A = 800 MeV for both r and p in the Bochum
potential [4]. The 7NN form factor A & 1300 MeV of the full Bonn potential [45] has always been
inconsistent with evidence other than partial wave analysis of the NN system [34]; this difficulty is
expected to be overcome if additional diagrams with correlated p — 1 exchange is included into the
full model [46]. On the other hand, the cutoff mass Ap = 965 MeV in the exponential form factor
of Nijmegen potentials [47] corresponds to A = v2Aq & 1365 MeV for a monopole form factor [39],
rather like that of the full Bonn potential.

We should note that the current controversy over the value of the on-shell TNN coupling
g affects the cutoff mass determination from the Goldberger-Treiman discrepancy Agr = 1 -
mga(0)/( frg) = 0.05; a smaller coupling constant implies a smaller discrepancy and a larger cutoff
mass. But other analyses which isolate one-pion exchange via a Regge analysis of the charge ex-
change data do/dt|,, minus do/d?|s, also find a 3% decrease in the 7N NV form factor from 7 = m,*
to ¢* = 0 [34), indicating a certain robustness in the recommended value of the cutoff mass.

The recent consensus on a low mass cutoff for pion exchange highlights the point aiready
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emphasized by the Hokkaido group (25 and, in the modern context, by the Sao Paulo group [48].
The contact terms (those proportional to a coordinate-space é-function and its derivatives) are
spread out with increasing importance as A becomes smailler and the size of the nucleon grows. The
dominant attitude so far was to consider that these contact terms, bringing the nucleon structure
signature, should not be included in potential models. In contrast, the low cutoff mass of the TNN
and pNN form factors of the Bochum NN potential, means that a!l mesons more massive than the
p are subsumed into contact terms. This reformulation of the traditional OBEP can still yield a
satisfactory description of the NN data, although a x? analysis is needed for a definite judgment.
The nice feature of the Bochum NN potential is that the small two-pion exchange term is highly
suppressed, cut down by four powers of a rapidly varying cutoff function and partially replaced b
the contact terms. Weinberg obtains similar contact terms in his NN potential from a presumes
four-fermion interaction [9].

We finish this section by returning to the subject of the pNN formfactor. We have developed
the formulas in momentum and coordinate space for two separate Dirac and Pauli formfactors of
the monopole type. Clearly it is easy to specialize these general formulas to a single formfactor
and then the choice of parameters is between the vector dominance value of ky(k? = 0) = 3.7
expected for a narrow resonance and the on-mass-shell value of x,(k* = m,?) = 6.6 obtained from
a dispersive analysis of 7N scattering. From our current understanding of the the pNN vertex, a
better but more difficult to implement form factor might be those (Dirac and Pauli) of Eq. 4.3 in
[35] which goes into a monopole for high k2 but has a more complicated structure at small &% near
0. We suggest that future users of three-body forces might concentrate on the pNN vertex rather
than on the NN vertex, where the forrr “actor of the Tucson-Melbourne three-nucleon potentials
is not only determined by particle and . leon-nucleon data but, in addition, is rather consistent
with most of the realistic two-nucleon po:entials.

6 Numerical Results

It is well-known that calculations with many recent “realistic” two-nucleon potentials {Argonne V14,
Nijmegen potential or the folded diagram version of the full Bonn potential) produce underbinding
of the the trinucleon bound state {49]. However, the same interactions, when taken in conjunction
with the TM two-pion exchange three-body force, provide too much binding. There are overlapping
and retarded pion exchange graphs not discussed in this paper which yield non-local terms (8]. These
have not been numerically evaluated v *. but are expected to be less important than the (already
small) nucleon-antinucleon pair term: 1e 2r-TM potential and henceforth expected not to alter
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the binding defect problem.

To test the idea that the three-nucleon potentials of the two-meson exchange structure extended
to include p-exchange act against the overbinding effect of the 2x-TM potential, we estimated
perturbative contributions to the binding energy of the triton from the extended TM force described
in detail in the previous sections.

The calculation was done using a wavefunction in the coordinate-space obtained by solving the
Faddeev equations with the Malftiet-Tjon I-{II potential [50]. We present the results in Table ITI.
where the individual contributions from the different physical processes considered in the force are
singled out. The contributions from the = — r force are slightly different from preliminary results
presented before [49] because in this paper we use the expansion coefficients of Table L [51] We
stress that the wavefunction used is “semi-realistic” at most (no NN p or d waves are included in
the Malfliet-Tjon I-III potential). The past history of results obtained with the = — force showed
us already that any calculation with less than 18 three-body channels has to be considered with
caution. The numbers given here were produced merely in the spirit of having a quick and hopefully
qualitative information on the importance of the p exchange in the three-nucleon force. A much
more sophisticated calculation, which is out of the scope of this paper whose aim is restricted to
provide the force to be used, will be reported {21, 22] soon.

From table III we conclude first that the p exchange does indeed modify the effect of the
7 — 7 force and that the effect goes in the (expected) direction of less binding. Since it has been
fashionable to take the derived strengths of a nuclear force seriously, but to coansider the meson-
nucleon form factor cutoffs as adjustable parameters, we show in the columns labeied “Martzolff”
a set of calculations which keep the strength constants of the Tucson-Melbourne three-body force
but use the much heavier cutoff masses from Ref. [1] (we had to convert however their monopole
parameterization of the product of two vertices to our dipole convention to find A, = 10.6z and
A, = 13.4p for all couplings to N's or A's). We note then that although the contributions of the
T — T are, as is well known, strongly cutoff dependent, the inclusion of the 7-p force supresses, at
least in this triton model, much of that cutoff dependence. Finally, the results obtained for the TM
force show a satisfying pattern of decreasing effect with increased mass of the exchanged meson.
The same pattern does not exist in the pointlike nucleons (large cutoff masses) calculation of the
rightmost columns. In any event, the addition of three-body forces due to p exchange, especially
the p — 7 exchange force, does indeed counter the too strong attraction of the -7 and seems to
stabilize the total effect under variations in form factors. We await future tests of these tentative
conclusions with some eagerness.
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Exchanged mesons  Tucson-Melbourne form factors “Martzolff” form factors
T, AT ¢ -Mp-q Total T, AT ¢ -Mp.q Total

T -1
T+ 0.055 -0.409 0.090 -0.264 0.011 -0.363 -0.257  -0.609
T- -0.032  -0.052 -0.077 -0.161 -0.043 -0.070 -0.105  -0.218
Total 0.023 -0.461 0.013 -0.425 -0.032 -0.433 -0.362  -0.827
p—-T
T+ -0.022 -0.022 0.261  0.261
T- 0.215 0.090 0.090 0.342 0.340  0.340
Total 0.215 0.068 0.283 0.342 0.601 0.943
p—p
T+ -0.005 -0.005 -0.101 -0.101
T- 0.001  0.002 -0.007 -0.004 0.005 0.019 -0.247 -0.223
Total 0.001  0.002 -0.012 -0.009 0.005 0.019 -0.348  -0.324
TOTAL -0.151 -0.208

Table 3: The three-body force contributions (in MeV) to the triton binding energy. The contribu-
tions are arranged according to Eq. (20). Distinction between the isospin even and odd contribu-
tions is also shown. The calculation was made perturbatively with a (three-channel) Malfliet-Tjon
I-1TT model wave function.
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