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The Global Color-symmetry Model of QCD is exiended to deal with a background
electromagnetic field and the associated conserved current is identified for composite §gq
pion modes of the model. Although the analysis is limited to tree level in the bilocal
fields that bosonize the model, the identified photon-pion vertex produces the charge
form factor associated with ladder Bethe-Salpeter pion amplitudes. A Ward-Takahashi
identity for this vertex is derived in terms of the effective inverse propagator for the
equivalent local pion field and the intrinsic ladder Bethe-Salpeter amplitudes. This
identity i3 then used to illustrate gauge invariance by showing that identical vertex
information is produced from the gauge change of the free action once proper account
is taken of the gauge transformation properties of the bilocal pion fields. Comments are
made on the location of the vector dominance mechanism in this treatment.



I. INTRODUCTION

The planned experimental program at the Continuous FElectron Beam Ac-
celerator Facility (CEBAF) will subject the electromagnetic (EM) structure of
hadrons and nuclei to detailed scrutiny. Effective field theory descriptions of in-

The NJL model has been developed into a very efficient and accessible repre-
sentation of hadron dynamics that is believed to capture the important elements
of low energy QCD phenomena.[7} In the GCM model a somewhat more funda-

) mental stance is altempted in that quark color currents interact via a phenomeno-
logical gluon two-point function which can be modeled to incorporate confinement

teracting hadrons usually incorporate the intrinsic nonlocality through empirical
form factors to simulate the underlying degrees of freedom that are not treated ex- -

plicitly. The EM current for such a model is complicated by the fact that the form
factors can induce additional contributions over and above the canonical current’
appropriate to point particles. Without a description of the composite hadrons

in terms of the constituent charged field degrees of freedom, the EM current is '

not uniquely defined. Gauge invariance and current conservation as implemented
through Ward-Takahashi identities provide only a partial constraint. The pion
exchange current between nucleons has received the most attention in this regard.
Prescriptions based on minimal substitution into momentum variables, including
those of form factors, have been developed[1] to impose such partial constraints.

An ideal perspective on this problem would be provided if the composite
hadron fields and their interactions could be modeled in a manageable form in
terms of the point fields of QCD. The hadronic EM current could then, in princi-
ple, be directly related to the bare quark current. Some progress has been made
in recent years lowards the hadronization[2, 3} of simplified models of QCD based
on a four-fermion interaction. However, for complex hadronic systems such as
nucleons interacting through pion exchange, these methods are far from yielding
a transparent and realistic quark basis for the associated EM current. A much
simpler situation where a hadronic EM current can be generated from the quark
level is provided by the meson sector produced from bosonization of four-quark
interaction models of the Nambu-Jona-Lasinio (NJL) type.[4] With the usual
contact form of the interaciion, the composite ¢¢ meson modes at the mean field
or tree level are point objects. To conduct a more realistic investigation of the
relation between the EM currents at the quark and hadronic level, we employ the
finite range generalization known as the Global Color-symmetry Model (GCM).[5]
The feature of the GCM that is of interest here, is that the resuliing fields for §q
mesons have finile extent. The purpose of this paper is to develop the conserved
EM current of the extended pions in terms of the quark EM current and to show
how gauge invariance at the level of effective localized pion fields is realized in
the presence of the intrinsic nonlocalities. It is known that Ward-Takahashi iden-
lities are not limited to point particles.[6] Here we develop several explicit forms
of a Ward-Takahashi identity for the photon-pion coupling, and also discuss the
role of gauge transformation properties of the extended pion fields in maintaining
gauge invariance of the action.
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and asymptotic freedom aspects of QCD. The desirable features of hidden chiral
symmetry and dynamical quark mass generation are present, but only a global
color symmetry is implemented. The required bilocal field bosonization meth-
ods have been developed, and a thorough analysis of the pseudoscalar octet of
Nalﬁbh—'Goldstonq bosons has reproduced many elements of effective chiral meson
actions, including anomalous terms and current algebra results.[8] The dynamical
self-energy amplitudes and related vertices introduce nonlocalities that provide

g mgf_.u;raill.cbhvergence to the quark loop integrals that govern meson dynamics.

A parameterization of the effective gluon propagator has been developed that
produces satisfactory results for meson masses, coupling constants and decays.[9]
We have recently explored a generalization that retains valence guarks to pro-
duce a chiral quark-meson baryon model at the mean field level.[10] This model
takes advantage of the fact that chiral symmetry and the axial Ward identity[11]
force a single function to describe both the quark scalar self-energy amplitude
and the distributed vertex for coupling of quarks to the ¢ and 7 mesons. With
an absolutely confining property embodied in the quark self-energy amplitudes,
a numerical solution[12] in the absence of the pion gives sensible results for many
nucleon properties. This work, with one free parameter, demonstrates the physi-
cal operation and sensible outcome of a nucleon model where the lack of a vacuum
quark mass-shell cooperates with a scalar bilocal quark condensale induced by
nearby valence quarks to produce a constituent mass-shell. The EM coupling to
this nucleon model is under investigation, and will be reported elsewhere.

For the pion charge form factor, the NJL model in mean field theory produces
a behavior that is only qualitatively correct[13] over the time-like and space-like
regions spanned by data. The formulation of the pion charge form factor within
the GCM is of interest in its own right because several dynamical features arise
that are beyond the capability of the contact NJL interaction. The Bethe-Salpeter
pion amplitudes at the mean field level will not be constants and an extra length
scale that contributes to the pion charge radius will enter this way. The quark
self-energy will be a dynamical quantity rather than a constant constituent mass,
and the associated photon vertex with the dressed quarks will acquire a quark
momentum dependence. These aspects are dynamically linked because in the
chiral limit the Dirac scalar component of the quark self-energy coincides with
the pion Bethe-Salpeter amplitude. Finally, the finite range nature of the GCM



can accommodate confinement and spurious threshold effects from the quark
loops should be absent.

In Section II the bosonization of the GCM in the presence of an external
EM field is outlined and involves path integral techniques that implement the
change of field variables from quarks to bilocal bose fields. The gauge invariance
of the original action is maintained to produce a gauge invariant EM coupling
to the composite pions. Effective local fields to describe pion propagation are
defined through the localization procedure of Cahill.[2] This results in a factorized
representation for the bilocal fields with a well-defined internal structure factor
that becomes the ladder Bethe-Salpeter amplitude on the mass-shell. At this
stage the effective local pion fields appear ifi a nonlocal action in which the EM
current and charge form factor involve the hadronic form factor of the pion.

In Section IIl we analyze the gauge invariance of the description. Ward-
Takahashi identities are derived for the photon-pion vertex in terms of the relevant
inverse propagators for the bilocal pion fields and also for the effective local pion
fields. In the latter case, the role of the intrinsic hadronic amplitudes for the pion
are displayed. The explicit gauge invariance of the action with first-order photon
coupling is analyzed in terms of the transformation properties of the extended
4q pion fields. From this point of view, the nonlocality of the EM coupling to
extended pions is shown to generate the longitudinal component of the four-point
vertex associated with pion electro-production on dressed quarks. The role and
location of the vector dominance mechanism in this approach is discussed briefly
in Section I'V. A summary is made in Section V.

1. GLOBAL COLOR-SYMMETRY MODEL

A. Bosonization in a Background Electromagnetic Field

We briefly outline the steps necessary to bosonize the partition function of
the GCM in the presence of a background EM field through the use of bilocal
auxiliary fields. The techniques are a straightforward generalization of those
previously applied[5, 8] to the GCM in the absence of a background field and we
point out the new elements that arise here. Although our treatment deals with
two quark flavors, for which the charge operator is @ = 1(r3 + 1), the formalism
is easily generalized in that respect. The action for the GCM with a background
EM field can be written in Euclidean metric as

S[Qi q, Av] = /dqquy{ 'i(I) [(T O+ m-— iTVQAu(I))a(x - y)] Q(y)
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+ %jﬂ(x)D(I - y)j.i‘(y)}, (1)

where m is a small current quark mass, A, describes an external EM field, and
ii(z) = tj(x)zg-‘y,,q(x) is the quark current. This action is invariant under the
gauge transformation '

g(z) = ¢'(z) = e"‘:"’(”q{r), _
§(z) = §'(z) = §(z)e 79,
Au(z) = A(2) = Au(z) + 0,0(z). (2)

The phenomenological gluon two-point function Dz — y) is a parameter func-
tion of the GCM and an explicit form that fits low energy meson dynamics is
available.[9] The details are not important for the present analysis. The stan-
dard bosonization technique[8, 14] can be applied in the presence of the external
EM field to expose bilocal §g fields and their electromagnetic interactions. The
current-current interaction is Fierz-reordered through the identity

();—dwlr)ij (;—ﬂwlr) o (A%), (A%),;, (3)

where the quantities A® are given by
1 H i 1 1 4 i
A =_(1p,iys, —=7p, == ~=1p, —=7 ®(—1 ,—)i“),
2("’""'\/2"’ \/57"75)@(«5'"\/5) 33
(4)

which we write as A® = LK F5C*. The product of currents in (1) becornes

Iy (W) = ~T* =z, ¥} (3, 2), (®)

where J?(z,y) = §(z)A%g(y) and we use a summation convention for repeated
indices. 'The gauge invariance of the current-current interaction is preserved
by Fierz reordering. The flavor sum on the right hand side of (5) splits into
multiplets whose members mix under gauge transformations. In general, fields
corresponding to a complete multiplet must be retained for manifest gauge in-
variance. An example is the pair of charged pions and we shall eventually limit
our considerations to this case.



Field variables that eventnally take up the role of boson odes of --the
model are introduced through multiplication of the partition function, Z [4,] =
N [ D§Dge=58:91, by unity in the form

_ B (z,y)B%(y, z)
1=N / Ds%zp{— j d“xd“ym}. (6)

With a shift of integration variables B?(z,y} — B*(x,y) + ¢°D(z — y}J* (v, 7),
the current-current term ), J#(z,y)J#(y, x) is eliminated from the action in
favor of a Yukawa coupling term §Bg and a quadratic term in B. The partition
function is then given by Z[A,]= N [ D§DqDBe~513.9.8] where the new action
is

2°D(z —- y)

x ¢
S{3,9.B,A,] = jd"xd"y{ﬁ(a:)g_'(z,y)q(y) + M}. )

and the inverse quark propagator is
67z, = (1-0: 4 m—iQu A (2) Sz —») + A*B*z,9). ()

The boson fields B%(x,y) have the same EM gauge transformation properties as
the bilocal currents J#{y, z), and the bosonized action {7) is gauge invariant. In
particular, under a gauge transformation it is evident that

[A°B*(z,y)} = &9 [APB (z,y)] 7). )
The transformation law can thus be writien
B*(z,y) = Qaplz,y)B(z,9), (10)

where the transformation matrix 2,5 is given by
Qap(z,3) = try [V P10 (11)

if the flavor basis has the orthonormal property tr)[F®F#] = 8,5. These trans-
formation properties reflect the fact that the bilocal fields are constructed from
charged constituents. In the local limit where B*(z,y) — 6(z ~ y)b*(z), un-
charged meson fields that couple to quarks via flavor matrices 1 and 73 be-
come gauge invariant, while the standard gauge transformations operate for local
charged fields. For bilocal fields of finite extent, even the uncharged fields will mix
and transform under a gauge change. We shall confine our atlention to charged
pion modes where the gange transformation properties signal an electromagnetic

coupling to both the propagation coordinate R = (z +y)/2 and the substructure
coordinate r = z — y. Later we shall relate this to the fact that the electromag-
nelic current for the composite pion field is the usual point form times the charge
form factor.

Since the quark fields now occur only quadratically in (7), the bosonization is

-5[B*,A.]

completed by Grassmann integration to give Z[A,] = N [ DBe where

the gauge invariant boson action is

- B?(z,y)B%(y, z)
$ — 1 ¢ ] ]
5[8%, A =~Tring™" [B*, A] + jd"zd“y D=y (12)
The classical field configurations 83 are defined by 6—585; = 0 and this produces
B¢(z,3) = 9°D(= — y)ir [A*Go(z, )] , (13)

where the associated propagator Go depends self-consistently on Bg . In particular,
6l = (1 0+ m-iQnA @)z~ +3=y, (19

where Y{(z,y) = A“’Bg’ (x,y) represents the quark self-energy to the present level
of treatment and satisfies

T(z,y) = %g”ﬂ(z —= ¥ Golz, ¥}y (15)

This is obtained from (13) by reversing the Fierz reordering and carrying out the
color sum to produce the 3 factor. Because of the background electromagnetic
field, the quark propagator and self-energy are not translationally invariant. In
the limit A, — 0, £ and Gy can be chosen to depend only on z — y and (15)
becomes the ladder Schwinger-Dyson equation with a bare vertex. We use the
notation Go(z — y) = Go(x, ¥)|a, =0, and the momentum representation will be
denoted by G;'(q) = iy - 9A(¢*) + m + B(g?). Only the first-order dependence
of Gy ! upon A, is of interest and this will generate the EM vertex with dressed
quarks. '

The action may be expanded about the classical minimizing configuration to
obtain

S[B*.A)=5 [Bg,A,] +5 [B“‘,A.,] , (16)

where B% = B% — B are the new field variables for the propagating modes and
the corresponding action is



AR R S ) PP /4 1 B (z, y)B*(y, )
S[B,A.,]_Trn); : (GOAB) + dxdym.

(17)

Although only color singlet components are present in the classical configura-
tions BY, the fluctuation fields of the GCM have color singlet. and octet com-
ponents. There are indications that a proper role for the color octet sector is
realized through a transformation that introduces diquark fields for a description
of baryons.[2] The electromagnetic current is to be identified from

__85[B* 4, 88 [é"’.Ap]
MO |, T e |
v A,=0

The second equality in (18) expresses the fact that the saddle point action does
not contribute to the current. The functional dependence of 5 [B,, A,} upon A,

that enters implicitly through By [A,] makes no contribution since 368% = 0. The

explicit A, dependence that enters through the bare coupling term of Gy ! pro-
duces a current —tr (Go(x, z)Q’y,,) which vanishes due to symmetric integration.
The saddle point action can contribute to higher order in A, beginning with a
vacuum polarization insertion for the photon propagator. We here ignore such
phenomena since we seek only the current to which a background electromagnetic
field couples. The saddle point action at A, = 0 is a constant and is absorbed
into the normalization of the partition function which now is

Z[A,.] = N/DB'e—§[S‘]+fd‘;-J.,{:)A.,(:).p.,__' (19)

where J, is the current for the bosonized action S[8).
Our considerations are restricted to pion modes and we adjust the normaliza-
tion of the fields so that

A*B* (z,y) = iy 7 - #(z, y) (20)
=l'75f(1ﬂ'a(-",',y), (21)

where o is a summation index that takes the values a = (0, +, ) correspond-
ing to a spherical isospin basis. This basis is convenient because it diagonalizes
the quark charge operator Q We choose fy = 1, fir=(n+ it2)/v/2 so that
tre(flfs) = 20ap. The corresponding field components x, are defined simni-
larly. If the flavor basis js hermitian, the bilocal fields are hermitian, that is,

[B#(x, v)] Y= B®(y,z). In terms of the basis we have chosen, the corresponding
property is [my (r; R))" = x_(—r; R) and [mo(r; R)}" = no(~r; ) wherer =z —y
and R = (z 4+ y)/2. We use these coordinates lo describe internal dynamics
and propagation respeclively. In the momentum representation that we shall
use, (g, P) are conjugate to (r, R}, and we have [r,(q; P)]* = n_(g;—P) and
[mo(g; P)|" = mo(q; —P).

The free action is the quadratic term of (17) in the absence of the EM field.
With the above definitions it can be written as

S =3 [P 0n@ A P ), (22)

where the composite pion inverse propagalor is

AU G P) = 8(" — )tr [Go(a-)is fuGolgsYirs 1) + 3 [ A X007
4y o o 9 (21)4 gZD(r)

(23)

with tr denoting a trace over spin, flavor and color. Here 9+ = ¢+ P/2 and
9- = ¢ — P/2 where P is the total momentum of the meson field and ¢ is the
internal momentum associated with the ggq substructure. The first term of the
inverse propagator (23) is a quark loop and the second term is a bare mass.

B. Localization

The bilocal fields represent a combination of internal dynamics and propaga-
tion dynamics that is difficult to deal with at the same time. A useful approach
is to use the free action to define free meson modes in terms of which the bilocal
fields may be expanded. This amounts to a determination of internal form fac-
tors for the composite mesons leaving an associated local field degree of freedom
that describes propagation only. We are following here the localization procedure
developed by Cahiil[2). The natural description of free meson modes is through
eigenfunctions defined by

j d'9A7'(¢',4; P)la(g; P) = M(PY)Ta(d'; P), (24)

where A,(P?) is the eigenvalue for the nth mode. The operator is hermitian and
the eigenvalues are real. When the total momentuim is such that the eigenvalue
vanishes, (24) becomes a free equation of motion, and the corresponding T,
are the internal form factors for the freely propagating mesons. The condition
A(P? = —M2) = 0 thus defines the mass-shell and also suggests that An(P?)

9



provides the appropriate basis for a composile generalization of the elementary
inverse propagator P2 4+ MZ2. This is the sense in which one has achieved a
localization of the problem. The eigenfunctions 'y, form a complete orthogonal
sel in terms of which the bilocal fields may be expanded as

Talg; P) = Y Tn(a; P)man(P), (25)

where T4 o(P) are the local effective field variables defined by projection.

We shall truncate the expansion to a single term corresponding to the lowest
mass my. At P2 = —m? the on-mass-shell equation [ d*qA~'(¢',¢; P)T{(q; P) =
0 can be shown, with the help of (23), to be the ladder Bethe-Salpeter equation
for the pionic g bount i -i [5] In the chiral (my = 0) limit this coincides
with the ladder Schwinger-Dyson equation for the Dirac scalar component of the
quark self-energy, that is, I'(g;0) ox B(gq%). We choose to normalize the pion-gq
amplitudes so that they are dimensionless and have the chiral limit F(g;0) —
B(¢®)/f«. The scale factor fy is determined as described below. For just the
ground state modes, Lhe free action can be written

N 1
Soln] = Eza:/mpw;(P)A-'(Pz)wﬂ(P), (26)
where A~ ! is the efleclive inverse propagator defined by
AP =MPY) [ 40 (@i PTG P)
- ] & T (3 P)A™N, ¢ P)T(g; P, (27)

Since the eigenvalue becomes zero on the mass-shell, we have A '{1’?) =
(P? + m2)Z(P?). The scale factor f7! present in each vertex I'(q; P) is de-
termined so that Z is unity on the mass-shell and thus the fields 7,(P) are
physically normalized. To first order in the current quark mass, the PCAC result
f2m? = —m < qq > is reproduced by such an analysis.[9, 8]

The localization procedure does not ignore meson substructure but rather
produces a dynamically equilvalent formulation in terms of local field variables.
The hadronic form factors T'(g; P) then enter into the coupling of the effective
local pion fields to other fields. We use this simple but well-defined structure to
explore the role of hadronic form factors in a gauge invariant EM coupling. It
should be emphasized that the meson fields at this level are bare or tree-level
fields in the sense that quantum dressing effects from the cubic and higher order
couplings among bilocal boson fields have not been applied. Nevertheless there

10

is significant dynamical content in these bare fields as evidenced by the ladder
Bethe-Salpeter structure of the internal form factors. Such dynamics can provide
a realistic modeling of the pion charge form factor.{15] However the dynamical
relations between the photon-quark vertex, the quark self-energy dressing and
the Bethe-Salpeter amplitudes that implement gauge invariance are not easily
identified without a unified development.

C. The Pion Electromagnetic Vertex
The pion electromagnelic current is

65, [, A)

W=~ T4,0

, (28)
A, =0

where the quadratic pion term of the action (17) is to be used. The electro-
magnetic field occurs only in the quark propagator G, and for the quark-photon
vertex that arises, we use the definitions

2 6g(;1 (p! k)
6‘AV(Q) AL=0

=sp— k- @ar, (25E50). (29)

F.(p k; Q)= (27)

It is then straightforward to obtain the current in the form
1 Q Q
v = a2 - WP+ Ay P; o — al
1(@) = G 200 [ PP+ PAPIQR(P-3), ()

where the integration over the internal §g degree of freedom has been carried out
to form the photon-pion vertex as

Q

Q Qp_
4

'I.

Q

Q= [ $ipe Du@aora-5iP-3) 6

The quantity A, (P, ¢; Q) is the photon vertex for bilocal pion fields and is given
by the quark loop expression

A(PgQ)=tr {GO(‘I—)i‘YsGO(% + %)Fu(h; Q)Golgs — %)5‘75} '

(32)

11



where g, = q+ % and g_ = ¢g— %. The photon-pion vertex arrived at here at tree
level is the impulse approximation with ladder Bethe-Salpeter amplitudes and is
illustrated in Fig. 1. The charge factors appearing in (30} are derived from the
charge operator according to

Q-ubap = %trf [facjf,;] . (33)

Only the terms involving Q, and Q_ will survive and these are the charges
of the u and d quarks respectively. There are several symmelties obtainable
from (32) that are useful. The property A, (—P,—¢;Q) = ~A.(P, ¢; Q) follows
from charge conjugation, and when this i¢ combined with a 75 transformation,
the property A, (P, .-Q) = Au(p,q;Q) results. The immediate consequence
for the photon-pion vertex is Av(PiQ) = -A(-P;Q) = Ay (P;—Q). Thus the
@ = @ term of the pion current (30) vanishes because the integrand is odd in
P. This is the familiar result that the electromagnetic field does not couple
in first order to a sell-conjugate meson. We obtain this here for composites
because the eigenfunction expansion for the internal structure has been truncated
at the ground state level. Were internally excited meson modes to be included,
transition currents connecting different internal modes would arise.

Figure 1: The EM current or vertex for the composite pions of the GCM
at tree level. The momenta labels illustrate Eqgs.(30), (31) and (32) of the
text, which contain both ¢ and ¢ contributions. The dynamically dressed
quark propagators, the dressed photon-quark vertex and the pion §q amphi-
tudes are defined with a consistent ladder structure that maintains gauge
invariance.
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For the remaining charged fields in (30) we use the standard notation 7(P) =
T+(P) = 72 (—P). With use of the symmelry property that A,(P;Q) is odd
under reversal of P, the quark and antiquark terms may be combined to express
the current in the standard form

— - . Q ) Q
Q) = 25 [apr e Darnr- D) (34)

where q,- = Q_ — Q, is the 7~ charge. The field #(P) describes a 7~ particle
incoming with momentum P or a x+ particle outgoing with nomentum — P, The
previously mentioned momentum symmetries allow the vertex to to be written
A(P,Q)=2P,F, + 2Q,P-QH, where both F, and H, are invariant functions
of the three variables (P2, Q2, (P - @)?). For on-mass-shell initial and final pions,
we have (P + 9)2 = (P — 932 = —m? or equivalently P? 4 %1 = —m? and
F- @ =0. In that case the surviving vertex 2P, F(Q?) is purely transverse and
F.(Q?%) is the charge form factor compatible with ladder Bethe-Salpeter pions.
The on-mass-shell current is always conserved so long as the vertex is calculated
from (31) and (32) in such a way ag to preserve the important symmetry that
Au(P;Q)is odd in P and even in Q. In particular this will follow, if the relation
(29) between the photon-quark vertex I’y and the quark propagator is maintained.

The point meson limit is obtained by use of the @ = 0 value of the vertex and
it can be verified that on the mass shell Av(P,Q=0) = 2P, and so Fe(0)=1.
Details are given in the Appendix. Thus on the mass-shell, the composite current
contains the point current as a factor, and can be written

JV(Q) = JU(Q)FI(QQ)r (35)
where the point current in position space is the standard resuli
Ju(R) = —ige— [7"(R)D,7(R) — 5(R)d, x"(R)]. (36)

III. GAUGE INVARIANCE

The action that has been developed to first-order in the field A, and to second-
order in the localized pion field r(P) is

5‘2[7r,/l]:/d"Pfr'(P)A‘](Pz)w(P)

(g:)z /d"(P,Q)vr'(P+ g)Au(P;Q)AV(Q)F(P— %- (37)

13



The explicit gauge invariance can be exhibited through the development of a
Ward-Takahashi identity. This should relate the longitudinal vertex to the free
inverse propagator so that the gauge change induced in the free action cancels
the first order gauge change of the current term.

A. Ward-Takahashi Identities

At the photon-quark level, the vertex defined by (29) satisfies the integral
equation

4 %

;@) = —in — 367 [ oz Da ~ b1 (+ 5 ) Pulli Q)Gatk -

(38)

This is easily obtained from the definitions (14) and (15) for the vacuum quark
propagator and self-energy respectively. The Ward-Takahashi identity satisfied

by this vertex is
6i' (- 2)-cx' (14 %) (59)

Since the photon vertex with bilocal pion fields is given by (32) in termsof 'y, a
Ward-Takahashi identity for photon-pion coupling is readily obtained in the form

af.,. 9 | Q af. @ Q.
l(q +EIQ+E|P+)—A l(q "‘Z:q_—q_$P—))

QTl.(9:Q) =

QAP Q)o(d—q) = A

(40}

where Py = P+ 3 Qand P.=P- g are pion total momenta and A~(¢', ¢; P)
is the inverse propagat.or for blloca.l pion fields given in (23). For localized pion
ficlds, the relevant vertex is the expectation value of A, (P, ¢; @) with respect to
the internal pion form factors according to (31). The resulting Ward-Takahashi
identity is

~

QA(PQ)= /d‘(q’,Q)}“(q’;PH

x [A" (q’.q+ %;P+) -A7! (q' - %,q; P-)] I'(g; P-Y41)

This result can be brought closer to a form involving the difference of effective
inverse propagators for localized fields by recognizing that the form factors in
(11) are eigenfunctions of the propagators thercin. With use of (24), the identity
(41) becomes
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QAP;Q) = (NP - AP [ dr @+ Sipona = i),

(42)

The right hand side of this Ward-Takahashi identity should be contrasted with the
purely local result A~ l(Pz) A~1(P?) appropriate to elementary fields. In the
present case, the effective inverse propagator A~ for the localized factor x(P) of
the bilocal pion field contains field substructure information, namely the pion-g¢
vertices as shown in (27). Half of the momentum transfer from the photon is
taken up by the internal structure of the pion and the final factor in (42} reflects
this. If the Bethe-Salpeter amplitudes I'(g; P) are everywhere replaced by their
on-mass-shell limits, the result can be wriiten as

QA(P;Q) = {a (P - A7 (PN [+ Dia- D @)

This corresponds to the form expected for a point pion supplemented by a sub-
structure form factor. In (43), I is normalized so that fd“ql""(q)l‘(q) =1, and
the final factor in (43) is a dimensionless probability amplitude for momentum
transfer 9 to be taken up by the pion internal wave function. Further use of
the on- mass -shell limit, shows that the difference of inverse propagators in (43)
becomes 2P - and the standard point limit of the vertex at () = (} is apparent.
For  # 0, only the longitudinal veriex is accessible this way, and the pion charge
form factor cannot be isolated by considerations of gauge invariance alone. It is
clear that the on-mass-shell longitudinal vertex contains only the dynamics of
the Bethe-Salpeter amplitudes and does not contain the effects of vector-meson
dominance or possible threshold effects associated with the quark loop.

B. Gauge Transformation of the Free Action

The explicit gauge invariance of the-action (37} can now be demonstrated.
Under the infinitesimal <h.i ., #4,(z) = 8,8(z), or equivalently, §4,(Q) =
iQ,9(Q), the change in the J - A term of the action can be related to free prop-
agation quantities by using the Ward-Takahashi identity (42) for @, A,(P; Q).
If, in turn, the gauge change in the free action is computed from éx(R) =
ige-0(R)x(R), ot equivalently 6x(P)} = iq,- [d'KO(P — K)m(K), there will
be no cancellation. The resolution of this problem is that the effective inverse
propagator A™! has field content that also transforms under a gauge transfor-
mation. The bilocal fields have been faclorized as w(g; P) = [(q; P)x(P) with
the internal amplitudes forming part of the inverse propagator for the field x(P).

15



The gauge transformation properties of the bilocal pion field are not simply those
of n(P).

The gauge change induced in the internal factor of the field can be deduced
from the relations (10) and (11). For the charged pions, the complex field x(z, y)
does not mix with any other field under the gauge transforination, and we have

w(z,y)' = ¥z, y)n(z,v), (44)
where
Az, y) = i Q-8(z) ~iQ18(y)
= e~ *(My(r. p). (45)

Here @4 and Q_ are quark charges, and the second equality has identified the
phase factor containing the pion charge ¢,- = Q_ ~ Q4 that is appropriate for
a local field. The remaining factor w(r; R) implements the extra gauge change
that occurs because of the nonlocality and is

w(r; R) = ' 9-10(=)-0(R) ,—iQ.[e(s)-8(R)] (46)

The local limit is w(0; ft) = 1. The first order gauge change in the bilocal pion
field is

§n(r, R) = {iQ-ﬂ(r) - iQ+9(y)}W(r; R)
= {ia-00R) + iQ- [0(2) — 0(R) - iQ.. 0(y) — OR) Y (r; R). (47)

In a momentum representation, and with the original pion field factorized into the
internal §g amplitude and the localized field, the first relation from (47) becomes

-1

éx(q; P)= )

(48)

An alternative expression in which the purely local result is isolated as a separate
term can be obtained from (48) through Taylor expansions in the first argument of
the amplitudes I' about the value ¢. The result is the momentum representation
of the second of the relations (47), and is

61(6; P) = oo [ 0'Q {igu-0Q)1 (5 P — @) + SA(QW, (a3 P,Q)} (P - Q).
(2m)
(49)
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Here the new quantity introduced in the second term is
Wo(a: P, Q) = —[Q+di(9,Q) + Q-di (9, - Q)] T(g; P - Q), (50)

where

L f', .92 @
dU(Ql Q) - {5'/.0 d’?“-’ 4 D?} aq» . (51)
All powers of derivatives with respect to the relative §— ¢ momentum g have been
collected into W, together with the accompanying powers of the photon momen-.
tum Q except for one factor of @, which is used to identify §4,(Q) = iQ, 8(Q).
In position space, these developments are equivalent to Taylor expansions of 8(zx)
and #(y) about #(R) in (47).

P
1=3

r
q+ 7
Figure 2: The four-point vertex for the electro-absorption of a composite
pion on a quark. The longitudinal amplitude W, (g; P, Q) for this process
is involved in the EM gauge transformation of the §¢ pion field because of
the spatially extended nature. 'The corresponding four-point vertex has a

Ward-Takahashi identity given by Eq.(58).

The amplitude W, enters only because the pion has size in that the form
factor I'(¢; P) supports derivatives with respect to the internal momentum g It
is a necessary consequence of gauge transformations on the quark-antiquark field
content and modifies the internal §¢ vertex of the pion to accommodate coupling
to the (longitudinal) A, field generated by a gauge change. The corresponding
physical process is electro-absorption of a pion on a quark as illustrated in Fig.
2. Only @, W, (g; P,Q) contributes to the field change (49) and thus only the
longitudinal component of the four-point electro-absorption vertex enters the
present discussion of gauge invariance. Thal information is more conveniently
represented in (48).

Under an infinilesimal gauge transformation, the free action changes by
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$8als1 = [ d'PAP P+ £(P)), " (52)
where
§(Py = [ diax (a; Proeta; P) (53)
Use of (48) for 67 produces

1Py = 2 [ Qo (PP - @) [ dar e+ §i P0G~ TP - Q)

(54)

In obtaining this form, the two terms in (48) weighted by quark charges have
been combined into a single term weighted by ¢,- = Q_ — Q4 through a shift of
the integration variable ¢ and by use of the property that F(y; P)isevening. In
combination with the f*(P) contribution, the change in the free action becomes

5:0r] = G55z [ 4P, (POIQIV (P (), (55)

where P+:P+%and P_:P—%,and

v(psQ) = (NP -} [ L= Fip). 60

The property that T'(g; P) is even in P (and hence is real) has been used. The
quantity V{P; Q) is exactly @, A, (P; Q) due to the Ward-Takahaghi identity (42).
The generated change in the free action can therefore be written

il = 57 [P, (POAP QP AQHP)

= [ #01.@84.4Q), (57)

where we have constructed §4,(Q) = iQ.8(Q).

Thus the gauge change in the total action Sy{x]—J - A is zero and gauge invari-
ance to first order is explicit. The implication of this analysis is that if the gauge
transformation properties of the internal §g¢ structure factor of the bilocal pion
field were ignored, then (56) for V(P; Q) would become AW P - ATY(PH £
Q,A,(P;Q). This becomes the point limit on the mass-shell and gauge invariance
for composite pions cannot be maintained. Although the free action for compos-
ite pions can be written in the effective local form [d'Px*(P)A™'(P?)n(P), it

18

is not possible to gauge this action by minimal substitution and also accommo-
date the distributed charge form factor for composite pions. 1t is necessary to
recognize the substructure field content of A~!(P?) and develop the additional
response to a gauge change that this introduces.

We note that the equivalence between the two expressions (48) and (49) for
the gauge change of the composite pion field implies a Ward-Takahashi identity
for the electro-absorption vertex. If we denote the gg vertex of the pion in fla-
vor channels a = (+,—) by ['*(¢; P) = ivs fIT(g; P), then the Ward-Takahashi
identity satisfied by the corresponding four-point vertex ['{(g; P, Q) is obtainable
from (48) and (49) in the form

Q

QI PQ) = Qg - TP - @)~ T°(a+ 33 P~ Q)0 [A, 1 P- Q)]

(58)

This is one of the manifestations of gauge invariant photon coupling to composite
pions.

1V. VECTOR-MESON DOMINANCE

Although we have limited our considerations to electromagnetic coupling to
pions, the technique can be extended to treat other meson components of the
fluctuation fields B# that appear in the action (17). Of particular importance
for electromagnetic couplings are the neutral vector mesons (p and w in the
present two flavor model) that implement the successful vector dominance con-
cept. Consider the neutral vector meson intermediate state contributions to the
photon-pion vertex. The usual dynamical signature for vector dominance is the
emergence of the current-field identity in which the hadronic electromagnetic cur-
rent is equivalent to a linear combination of neutral vector meson fields. That
is, a bilinear combination of the photon and vector mesons should appear in
the action. An illustration of this is fdund in the NJL model where an exact
current-field identity holds.{16] However, the lowest order occurrence of vector
meson modes in the action S[B%, A,] of (17) is quadratic. The formulation we
have pursued does not immediately yield a term that is bilinear in A4, and B¢
Nevertheless it would be incorrect to simply add a vector dominance mechanism
to the photon-pion vertex yielded by the present formalism.

The vector dominance mechanism is already included in the dynamical con-
tent of the photon-quark vertex T',(g; @) defined by the inhomogeneous integral
equation (38). There are intermediate §q ladder states of vector character that
generate a propagalor pole whenever the photon momentum Q is such that the
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homogeneous version of the equation has a solution. An illustration is provided
in Fig. 3. In the vicinity of a §¢ resonance we have

9 (0:Q)
[ (@)~ Tt M2 (59)
where 2,(g¢; Q) is the residue at the pole, and satisfies the equation
4 d*k : Q Q
@, (q; - -k =1, (k: .
(:Q)= 39 Y D(q — k)7,Go (k+ z)n (£, Q)G (k 2)-,,,,
’ (60)

for Q* = —MZ. This is the ladder Bethe-Salpeter equation for a vector d¢ bound
state. The tree-level isoscalar and isovector mesons are degenerate and the flavor

structure is implemented simply by the quark charge operator Q which mulliplies
both I, and Q,..

Q
]
_1‘}’\’
- +
Q
q+-g—

{(a)

/

(b)

Flgure 3: (a) The ladder structure of the dressed photon-quark vertex given
in Eq.(38). (b) The vector ¢ intermediate state propagator pole that is
generated for Q% ~ —M2.
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This is the finite range counterpart of the observation previously made in the

context of the contact NJL model where explicit calculation [13] exhibits the p

meson peak. The resulting pion charge form factor[17] has the correcl qualita-
tive behavior with a vector dominance peak generated by the @ dependence of

L(g; Q).

V. SUMMARY '

The composite pion modes of the finite range four-fermion GCM model have
been used to study several issues that arise in relation to % hadronic EM cur-
rent and its basis at the quark level. A Ward-Takahashi identity is obtained in
explicit form because the model allows a propagator for the composite pion to
be identified. When the dynamics is cast into the form of a nonlocal action for
effective local pion fields, the role of the hadronic §g form factors in maintaining
the gauge invariance of the EM coupling is developed. The effective inverse prop-
agator for the localized fields contains the substructure information and thereby
has a gauge transformation property generated by the extended nature of the
bilocal field content. This needs to be included along with the standard gauge
transformation of effective local pion fields in order for the gauge change in the
free pion action to be exactly cancelled by that of the EM current term via the
Ward-Takahashi identity.

The modification to the pionic §q veriex due Lo a gauge change can be viewed
as the longitudinal component of a pion-quark electro-absortion vertex. The
involvment of this modified vertex in the EM coupling to Bethe-Salpeter model
pions has been observed before.[15] Here, however, there is no need to supplement
the sum of one-body currents of the impulse approximation by an additional
term[15] based on this modified vertex to achieve gauge invariance. The sum of
one-body currents is automatically gauge invariant here because the necessary
dynamical relations among the elements of the triangle diagram are generated
from gauge invariance at the bare quark level. Explicit knowiledge of such a four-
point vertex would be needed to treat electromagnetic coupling to interactions
between bilocal gg fields rather than just the kinetic term. In particular, the
contributions to the EM current from previously derived(5, 9] couplings such
as prm and wpr conld be addressed with extensions of the present approach.
In a linear sigma model format of the GCM where an extended §q scalar is
included, the same mechanism will generale a photon-sigma-quark vertex. A
gauge invariant EM coupling to the chiral quark-meson model baryon{12] of the
GCM will not be possible without explicit inclusion of such a mechanism.

The pion charge form factor at mean field level within the GCM includes



several physical phenomena that are not addressed by the contact NJL model.
The dressed quark-photon vertex I',(¢; Q) and the guark self-energy depend on
the loop momentum and a characteristic length scale should be near the pion
size. The pion Bethe-Salpeter amplitudes also depend on the loop momentum
here and operate on the same length scale. Whether these elements can combine
with the vector dominance singularity to produce the pion charge radius remains
to be seen. The GCM can be used to introduce a dynamical quark self-energy
that is confining through the absence of a pole in the propagator for real P2
This removes a threshold singularity that can influence the charge radius just as
strongly as the vector meson pole.

It has recently been argued[18] that even with confined quarks, the charge
form factor at low momenta can be influenced by a threshold singularity related
to an effectively free behavior of quarks. This would be driven by the bound
state wavefunction character of the pion §g amplitudes with a scale set by the
effective binding energy of the pion. This emphasizes the need for field theory
models that accomodate pion size.
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APPENDIX: NORMALIZATION

The normalization of the pion-photon vertex is such that A, (P;Q = 0)=2P,
on the mass shell. We outline a verification of this. From (31), we require

AL(P;0) = j d*qT* (¢; PYA(P, ¢: 0)F(g; P), (A1)

where A, (P, ¢;0), the pyoton vertex with bilocal pion fields, is seen from (32)
to involve the quark-photon vertex T,(g4;0). This in turn is determined by
the integral equation (38), which in this limit is equivalent to the Ward identity
I.(g;0)= -—%GEI(Q). Thi4 enables the soft photon limit of the quark loop
to be expressed as the momentum derivative of the inverse propagator for the
bilocal pions. After use of the symmetry property that A,(P;0)is odd in P, it
is straightforward to obtain

AP0 = [ @ r (s P) [a%a-‘(q',q;m] M P).  (A2)
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The internal momentum integrations produce A~1(P?), the inverse propagator
for the localized pion fields, and we obtain

a
apP,
Here the second term has been simplified through introduction of the eigen-

value ) associated with T and A~? according to (24). In the on-mass-shell limit
A(—m2) = 0, and the first term produces 2F, since A~Y(PY) = (P? + m2)Z(P?).

AP 0) =

AP - NP [ @ @PNE ). (49
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