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We derive nonstrange baryon-baryon scattering amplitudes in the nonrelativistic
quark model using the “quark Born diagram™ formalism. This approach describes the
scattering as a single interaction, here the one-gluon-exchange (OGE) spin-spin term
followed by constituent interchange, with external nonrelativistic baryon wavefunc-
tions attached to the scattering diagrams to incorporate higher-twist wavefunction
effects. The short-range repulsive core in the NN interaction has previously been
attributed to this spin-spin interaction in the literature; we find that these pertur-
bative constituent-interchange diagrams do indeed predict repulsive interactions in
all IS channels of the nucleon-nucleon svstem, and we compare our results for the



equivalent short-range potentials to the core potentials found by other authors using
nonperturbative methods. We also apply our perturbative techniques to the NA
and AA systems: Some AA channels are found to have attractive core potentials
and may accommodate “molecular” bound states near threshold. Finally we use our
Born formalism to calculate the NN differential cross section, which we compare with
experimental results for unpolarised proton-proton elastic scattering. We find that
several familiar features of the experimental differential cross section are reproduced
by our Born-order result.
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L. INTRODUCTION

The nucleon-nucleon interaction exhibits a strongly repulsive short-distance core
and a longer-ranged but much weaker attraction. Although there has been evidence of
the general features of this interaction for over fifty years {1), the physical mechanisms
proposed as the origin of the interaction have changed as our understanding of the
strong interaction has progressed. In 1935 Yukawa [2] suggested that the finite-ranged
nuclear attraction was due to the exchange of a massive, strongly-interacting meson,
by analogy with electron sharing as the origin of chemical forces. This hypothetical
meson was identified with the pion after its discovery, and as the lightest hadron
it certainly contributes the longest-ranged component of the nucleon-nucleon strong
force. The repulsive short-range core of the nucleon-nucleon interaction was similarly
attributed to the exchange of heavier mesons such as the w after their discovery.
These meson-exchange modeis have been elaborated considerably since these original
suggestions, and the most accurate phenomenological descriptions of the nucleon-
nucleon interaction at present are meson exchange models [3], with parameters such
as meson-nucleon couplings fitted to experiment.

A literal attribution of the short-range repulsive core to vector meson exchange,
as opposed to a phenomenological parametrization, of course involves a non sequitur
[4,5]: Since the nucleons have radii of = 0.8 f{m, and the range of the vector-exchange
force is 1/m, =~ 0.2 fm, one would have to superimpose the nucleon wavefunctions
to reach the appropriate internucleon separations. The picture of distinct nucleons
exchanging a physical w meson at such a smalil separation is clearly a fiction, and
a realistic description of the short-range core interaction requires s treatment of the
quark wavefurctions of the interacting nucleons and a Hamiltonian which involves
quark and gluon degrees of freedom.

Since the development of QCD as the theory of the strong interaction there have
been many studies of the NN interaction in terms of quarks and gluons. Most have
employed the nonrelativistic quark potential model, although some early work used
the MIT bag model [6]. Many studies of this and other multiquark systems were
fundamentally flawed due to an inadequate treatment of the color degree of freedom,
or due to assumptions that imposed confinement on the entire multiquark system; a
discussion of these problems is given by Isgur [4]. It now appears that a pairwise \- )\
color interaction {7-9] together with a sufficiently general spatial wavefunction that
allows dissociation into color singlets provides a sufficiently realistic description of
color forces in-a multiquark system. The NN references summarised here all assume
the A . A form, and it has also become standard to employ a quadratic or linear con-
finement potential. Finally, the spin-spin hyperfine term is incorporated in all these
references, as it apparently makes a dominant contribution to the NN core interac-
tion. Several groups have included other terms from the Breit-Fermi interaction such
as the hyperfine-tensor and spin-orbit interactions.

Attempts o describe the NN interaction using quark potential models date from
the work of Liberman in 1977 [10], who calculated the adiabatic response of the six



quark system to variations in the interbaryon coordinate. The resulting effective
potential had a repulsive core with a weak intermediate-range attraction. Liberman
concluded that the repulsive core was predominantly due to a combination of the
Pauli principle and the contact hyperfine term. The same conclusion was reached by
Neudatchin and collaborators [11], also within the adiabatic approximation. Harvey
[12] continued this adiabatic approach in a generalized calculation of the effective NN
potential; he noted that SU(4) spin-isospin symmetry required that NN, AA, and
“hidden color " {ggq)s®(qqq)s states be included in the calculation. On incorporating
these states, he found that the repulsive core was strongly suppressed. [t is now widely
believed that the absence of the repulsive core in improved calculations is an artifact
of the adiabatic approximation [13, 14].

The usual method for improving on the adiabatic approximation in the ¢% system
is to employ the resonating-group method. This involves expanding the wavefunc-
tion of the system in a basis which describes system subciusters maultiplied by un-
known functions of the intercluster coordinates. One then solves the resulting coupled
integro-differential equations using various numerical techniques. Baryon subcluster
wavefunctions are usually taken to be simple Gaussians, and the coupled system is
truncated at the NN, NN + AA, or NN + AA + hidden color levels. The first
applications of the resonating-group method to the NN system were given by Warke
and Shanker [15}, Oka and Yazaki [16| and Ribeiro [17]. All groups found a repulsive
core, which was dominantly due to the Pauli principle and the color hyperfine term.
The AA and hidden color channels were found to make only small contributions to
the hard-core S-wave phase shifts. These studies found that several contributions
including the Coulomb and confinement kernels approximately cancelled, leaving the
spin-spin OGE hyperfine term as the dominant interaction. The resonating-group
approach has been extended to include more channels, strange quarks, effective one-
boson-exchange long-range potentials, and virtual excitations of the quark wavefunc-
tions. In particular, Koike {18} has applied these techniques to the “flip-flop” model
[19] (which eliminates long-range color van der Waals forces}, supplemented by an
effective meson-exchange potential, and Cao and Kisslinger [20] have developed a rel-
ativised resonating-group formalism and applied it to the determination of equivalent
potentials and low-L phase shifts in a model which incorporates OGE and meson
exchange forces. Both these references find reasonably good agreement with experi-
mental low-energy NN phase shifts. A summary of work in this field to 1989 has been
given by Shimizu [21]. |

Maltman ‘and Isgur [22] have performed a detailed variational calculation of the
ground state properties of the deuteron using a A - A quark-quark interaction with
the fuil OGE color Breit-Fermi interaction. a quadratic confinement term, and a phe-
nomenological one-pion-exchange potential. In contrast to typical resonating-group
calculations, they allowed spatial excitations within the clusters. They found a repul-
sive core, and noted that the admixture of P-wave color octet clusters significantly
increased the range and depth of the intermediate-range attraction. Their results



for the deuteron binding energy, RMS radius, quadrupole moment, and magnetic
moment all agreed well with experiment.

Although the origin of the nucleon-nucleon force at the QCD level is now res-
sonably well understood, the resonating-group and variational techniques which have
been employed in this work are rather intricate and require considerable theoretical
effort, and usually lead to numerical rather than analytical results. As these tech-
niques are best suited to the determination of ground state properties, topics such as
resonance production and scattering cross sections at higher energies have received
little attention in these quark model studies.

In recent work we have investigated the possibility that these low-energy nonres-
onant hadronic scattering amplitudes may actually be dominated by simple pertur-
bative processes; if so, it may be possible to derive useful estimates of these ampli-
tudes using a much simpler approach. A complementary possibility of perturbative
dominance of hadronic scattering processes at high energies through constituent-
interchange mechanisms has been investigated by theorists almost since the devel-
opment of QCD [23]. Results for elastic hadron-hadron scattering amplitudes, in par-
ticular the asymptotic Q* dependence of fixed-angle scattering, have recently been
presented by Botts and Sterman [24].

Concerns regarding the range of validity of the high-energy perturbative QCD
studies have been expressed by Isgur and Llewellyn-Smith [25], who suggest that
higher-twist hadron wavefunction effects may actually dominate perturbative QCD
contributions at experimentally accessible energies. We have explicitly incorporated
these wavefunction effects in our study of a constituent-interchange scattering mech-
anism in the nonrelativistic quark potentiasl model. We calculate the hadron-hadron
scattering amplitudes which follow from one gluon exchange followed by constituent
interchange (quark line interchange is required at lowest order in a, to restore color
singlet final states), with nonrelativistic quark model wavefunctions attached to the
external lines, This OGE+CI mechanism may be dominant in processes in which
47 annihilation is forbidden for the valence wavefunctions. We have applied this de-
scription of scattering to elastic =2 nr [26] and 1=3/2 K« [27] reactions and found
excellent agreement with the experimental 5-wave phase shifts given standard quark
model parameters. Related approaches to calculating meson-meson scattering ampli-
tudes which iterate this quark-gluon mechanism have been discussed in the literature
[28]. These Born-order techniques have also been applied to vector-vector meson sys-
tems [29], and lead to interesting predictions of vector-vector molecule bound states in
certain channels [30]. In the vector-vector system the hyperfine interaction apparently
does not dominate the scattering amplitude, unlike the pseudoscalar-pseudoscalar and
NN systems. More recently we applied the quark Born formalism to KN scattering
(31}, which is also free of g4 annihilation at the valence quark level. We found satis-
factory agreement with the experimental S-wave KN scattering lengths, although 1=0
is not yet very well determined experimentallv. The KN S-wave phase shifts at higher
energies, however, are not well described: 1hev require stronget high-momentum com-



ponents in the nucleon wavefunction than are present in the single Gaussian forms
we assumed. The higher.L KN partial waves, especially the P-waves, show evidence
of a spin-orbit interaction which does not arise in single-channel spin-spin scattering,
which has not yet been adequately explained in the literature.

The next level of complexity in Hilbert space is the ¢° baryon-baryon sector. Since
this system is free of annihilation at the valence level, and the spin-spin hyperfine
term has already been established as the dominant interaction underlying the core
repulsion, derivation of the NN core interaction is an important test of the quark
Born formalism. Here we derive the nucleon-nucleon interaction predicted by the
OGE spin-spin term using quark Born diagrams, and show that the predicted core
interaction is indeed strongly repulsive in all four spin and isospin channels. Low
energy Born-equivalent NN core potentials are also derived and compared to previous
results. We then consider other nonstrange baryons and derive the NA and A A short-
range interactions; some of these are found to be attractive, and we investigate the
possibility that these channels might support dibaryon molecule bound states. Some
of our results for attractive AA channels are consistent with the previous conclusions
of Maltman [32]. Finally we derive the elastic NN differential cross section predicted
by our quark Born formalism and find that some familiar experimental features of the
high-energy elastic proton-proton differential cross section are evident in our resuits.

II. DERIVATION OF SCATTERING AMPLITUDES

a) Hamiltonian and hadron states

In the quark Born diagram formalism we derive the matrix element of the inter-
action Hamiltonian between quarks in incoming hadron states to leading Born order,
which is then used to calculate scattering observables. We factor out the overall
momentum conserving delta function and then derive the remaining matrix element,
which we call hj;;

(BB'|Hyct| BB'), = hy, §(P; - P)) . (1)
Since the hadron state normalizations we will introduce are identical to those used
in our previous study of I=2 »x scattering {26] we can use the relations between the
scattering matrix element k;; and the phase shifts and cross sections given there. The
details of our diagrammatic procedure for determining hy; are described elsewhere (26,
27, 31]; here we shall simply recall some basic points and then give our resuits.

For baryon-baryon scattering we shall follow previous studies [4, 10-19, 21, 22]
and assume that the dominant part of the core interaction derives from the spin-spin
color hyperfine term,

Hsca! = Z

ai<j

[ 8ra.

dm,m,

SERIESAREAF (2)



where F?2 is the color matrix A%/2 for quark i. The baryon color wavefunctions are
the usual color singlets,

baryon) = 3 % ik lidk) - (3)

1,5,k=13

Our spin-flavor states for the meson and baryon are the usual SU(6) states, but as
explained in reference [31} we find it convenient to write these states using field theory
conventions rather than in the usual quark model form. The quark model conventions
show explicit exchange symmetry by assigning a fixed location in the state vector
to each quark. The field theoretic convention greatly reduces the number of terms
encountered in our scattering matrix elements; for example, the proton state in field
theory conventions has only 2 terms instead of the usual 9 for quark model states, so
PP —PP elastic scattering involves only 16 terms, far fewer than the 6561 we would
encounter with the usual quark model conventions. As examples, the orthonormal
=3/2 IA:!/!) and S, = 1/2 |P,/;) states in field theory conventions are

|AT,) = %|“+“+d+) (4)

|Prya) = \/; {|u+u+d \/7 lusu_dy) . (5)

The other baryon states considered in this paper can be derived from these by appli-
cation of spin and isospin raising and lowering operators.

We shall quote general results for baryon-baryon scattering amplitudes with ar-
bitrary spatial wavefunctions attached to the external lines and then specialize to
single-Gaussian forms to derive representative closed-form results. The general spa-
tial baryon wavefunction we assume is of the form

and

Poaryon (Prs P2, P35 Frot) = haryon(P1: 2, 3) 6(Piot — P1 — P2 ~ ) . (6)
with a normalization given by

(an:rvon(ﬁot)lq’hrvon(ﬁtot))
= [[[[[[ th a0 s din " a5 %5055 55 B Brarnon (B s B Bi)
- 6(anf - Prnr) : (7)

The standard quark model single-Gaussian baryon wavefunction we shall use for
illustration is



5 B f) = (A AR B =P B
¢bary¢m(php'hp3)=1r3/2asex {— L 2 IILEE o P1)}_

Oscillator parameter values of 0.25 GeV < a < 0.42 GeV have been used in the quark
model literature on baryon spectroscopy, as we will discuss subsequently.

b) Baryon-baryon scattering amplitudes

By analogy with our study of KN scattering [31] (see especially section IIb) we
first write a generic scattering diagram with initial and final baryon-baryon states.
We then connect the initial and final quark lines in all ways consistent with flavor
conservation; for example A**A*+* elastic scattering has 6!=720 quark line diagrams.
These may be grouped into four sets in which the number of ¢§ pairs which cross in t-
channel is zero, one, two or three. We then generate scattering diagrams by inserting
one-glnon-exchange interactions between all pairs of initial quarks in different initial
baryons; this gives nine times as meany scattering diagrams as we had quark line
diagrams. Many of these diagrams are trivially zero; these include the zero-pair-
interchange and three-pair-interchange diagrams, which vanish due to color. The
nonzero scattering diagrams may be related to a small “reduced set” of diagrams by
permutation of external lines, which leaves a diagram invariant. In baryon-baryon
scattering this reduced set contains eight independent diagrams, which are shown
below.

Lh =

- - - - - 4

D, = (10)




D,

D,

Ds

(11)

(12)

(13)

(14)



JDT =

---——--q--} -4

(15)

In a given baryon-baryon scattering process the matrix element ky; in (1) is
a weighted sum of the eight spatial overlap integrals represented by the diagrams
D, ...Dy, '

hf,' = i Wn In(Dn) . (17)

The weight of each diagram (introduced in [31]) is the product of a color factor, a
fermion permutation phase called the “signature” of the diagram (which is —1 for
D,...D, and +1 for D;s...Dg), the overall (—) in H; (2), and a reaction-dependent
spin-flavor factor. The derivation of these factors and the spatial overlap integrals they
multiply is discussed in detail elsewhere [26,31], so here we will simply present results
with minimal discussion. There is a minor change in the convention for diagram
weights relative to our earlier reference. In our KN study [31] we incorporated the
(—) phase of H; and the signature phase in the spatial overlap integral; here we include
them in the diagram weight. This overall factor was (+1) for all KN diagrams, so
the KN weights are unchanged by our new convention. Similarly, in our first paper
[26] we incorporated the (—) phase of H, in the spatial overlap integral. Our new
convention is uneful because it makes all the NN spatial overiap integrals considered
here positive, so the overall amplitude phases are clear from the weights alone.
The color fuctors of the diagrams D, ... D= are

Lotor([Di ... Da]) = [ +4/9,-2/9. -2 9. +1/9,+4/9,-2/9,-2/9,+1/9 ] .
(18)
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D,, is related to D, ;4 by ¢ « u crossing; for this reason the weights w, and w,,, are
closely related in many reactions. To simplify our presentation, when possible we will
just give results for the weights of D, ... D and indicate the relative phase of the set
for Ds... Dg after a bar. Thus for {I.cior(D.)} above we write

Icolor = [ +4/9,—2/9,—2/9,+1/9 ‘ (+)] ' (19)

The spin-flavor welghts (mcorporatmg the signature phases) are just matrix el-

ements of the operator S . .S' between two initial quarks for the given process. As
an example, for A**A** § = 3,5, = 3 scattering there are four |u,u u.)/v6 ex-
ternal baryons, and only the 575} terms contribute. On summing over all scattering
diagrams in this channel we find

= [ +9/4,+9/2,+9/2,+9 [(-)],  (20)
A, f=3,5=3
which is I,- and S,-independent. Combining these we find the I = 3,5 = 3 AA

diagram weights,

{wa(AA, 1=3,5=3)} =] +1,—-1,-1,+1[(-)]. (21)

Ispl'n-ﬂcuor * Iaignature

Since the spatial overlap integrals [;(D;)...Is(Ds) are equal to the integrals
Ii(Dy)...I,{D,) after t « u crossing, the relative (—) phase in the diagram weights
(21) insures that the / = 3,5 = 3 AA scattering amplitude hy, is spatially antisym-
metric, as required for a totally antisymmetric fermion-fermion scattering amplitude
that is symmetric in the remaining degrees of freedom (I and S). This antisymmetry
is a nontrivial check of our spin-flavor combinatorics, since it is only evident after the
sum over individual quark-gluon scattering diagrams is completed.

The diagram weights for all 1,S channels of NN, NA and AA elastic scattering
are tabulated at the end of the paper; these and the overlap integrals constitute our
central results.

The spatial overlap integrals associated with the diagrams may be determined
using the simple diagrammatic techniques presented in Appendix C of reference [26].
In these integrals all momenta implicitly three-dimensional, and have an overall spin-
spin coefficient x,, of

8ra, 1

3m? (27)3

(22)

Ky =

This is (—1) times the x of {26], since we have chosen to include the (—) phase of H,
(2} in the diagram weight factor, as discussed above. The integrals are

Iy = “u’/‘ dd;ddz ‘1'_4(a[,a2,.—1 - Iy - a'l)@z'(aha%c"’al - a?)

11



: / dbydby ®p(—A — by — by, by, by) &3 (—C — by — by, by, by) ; (23)

I, = ke /]f daydaydbydey a(an, A — ay — a3,23)85(an, C — ay - ca, ¢3)
®p(C — A+ a3, by, —C —as — b))®p(a3, by, ~C — a3 — by) ; (24)

I, =r,, f/[/ da da,dbyddy ® 4(ay,a:, A — ay — az)®;(ay,a;,C — a; — a3)
®u5(C — a1 — a2, —A — C + ay + ag — b, b3)®5(dy, ~C — by —dy, b3) ;  (25)

I = ., j[[f da,daydbdbs 3 4(a,, A - a) — a3, 82)8%(a1,C — a, — by, by)

QB(b'la —A - bl - b:}, b']}‘b;)(ag, -C —az — 63,63) . (26)

We evaluate these in the c. m. frame, 50 the t — u crossed integrals I5...[; can
be obtained by exchanging C and D = -C, or in terms of the cosine of the c.m.
scattering angle u = cos(f.n.),

Lnva(p) = In(—4) - (27)

A simplification follows if all baryons have the same spatial wavefunctions, as we
assume here; in this case I; = I, and hence I = I5.

The overlap integrals may be carried out in closed form given single-Gaussian
wavefunctions (8), and each gives a result of the form

In = KssTIn CxP{ - (An - Bn”)Pz} ) (28)

where P is the magnitude of the c.m. three-momentum of each baryon, P? = A? =

= C? = D?. The results are

I = Ky exp__{ - &7(;{_ C")’} = Ky eXP{ - 3}72(1 - #)Pz} = Ky CXP{‘:.;':;} ;
(29)

3/2
I-z = I3 = Kgs (E) exp {

- 2
= (20 - 124)P }

 33a?

12



12\** 2(s — 4M?) 2t
=R |\ T “P{ T } “p{naz} ‘ (30)

3\* 1, 3\** { (s — 4M?)
L= ne (4) “P{'QP}"‘”(Z) xp{ - ) (D

In the final expression for each integral we have substituted for P? and g in terms of
the Mandelstam variables s and ¢ using relativistic kinematics, s = 4(P? + M?) and
t=—2(1 — p)P2

Near threshold the overlap integrals are comparable in magnitude, but at higher
energies their behaviors differ markedly. All but 7, and its crossing-symmetric part-
ner [; are strongly suppressed in s; the diagrams D, and Ds therefore dominate at
high energies, for forward and backward scattering respectively. This behavior is due
to the mechanism of “minimum spectator suppression”, as was discussed in detail
in section IIe of reference [31]. To summarize the arguments for this case: 1) for
forward scattering, A =20, diagram D, (9) requires no spectator to cross into an
opposite-momentum hadron, which would carry considerable suppression due to a
small wavefunction overlap; only the hard-scattered constituents are required to re-
verse momentum. 2) Ds (13) requires all spectators that were initially in a baryon
with momentum A to reside finally in a baryon with momentum D. Clearly the
suppression due to wavefunction overlaps of the spectators will be less important if
the final baryon D has the same momentum as the initial baryon A, D = A. This
corresponds to backscatter, C = —A4, since C = —D in the c.m. frame. As in
D\, only the hard-scattered quarks are then required to recoil into a baryon with
three-momentum opposite to that of their initial baryon. These two explanations are
actually equivalent because D, and D5 are related by crossing.

II. NN CORE POTENTIALS AND PHASE SHIFTS

The Hamiltonian matrix elements
hy = Z w1, (32)

for the four I,S channels accessible in NN scattering are summarised by the diagram
weights in Table I. Specialising to the even-L channels [,5=0,1 and 1,0, for which
a repulsive core in S-wave is a well known feature, we see that all eight coefficients
{w, ...ws} are positive or zero in both cases, corresponding to a repulsive interaction.
For a more quantitative evaluation, we can relate this h;; matrix element to an NN
potential near threshrld, which is defined to give the same low-energy scattering
amplitude near threshold in Born approximation. (See Appendix E of reference [26]
for a detailed discussion.) For an Ay, of the form

13



_ 87ma, 1

= 3m? (2r)? 2 wniln exP{ ~ (4 - B"“)Pz} (33)

the Born-equivalent potential is

Saa . WnTln { 1'2 }
Van(r) = T (A.+ B
N,\(T‘) 3.‘/1?111,3 ngl (An + Bn)ﬂ/2 exp (An + Bn) (34)

The t « u crossed diagrams Ds ... Dg are not included in this sum because they will
automatically be generated by the crossed diagram in NN—NN potential scattering
through Vyn(r).

The numerical potentials predicted for S-wave I=0 and I=1 NN systems are shown
in Fig.1 for our “reference” set of quark model parameters (31}, a, = 0.6, m, = 0.33
GeV and a = 0.4 GeV. Actually only the two parameters a,/m; = 5.51 GeV~?
and @ = 0.4 GeV are involved in Vin(r). These potentials are consistent with
expectations for NN core interactions; they are repulisive and have ranges of about
1/2 fm and peuk values comparable to +1 GeV, which is essentially infinite from a
nuclear physics viewpoint. It may be interesting in future work to parametrize the
amplitudes associated with each diagram (the weights in Table I) as a two-nucleon
spin- and isospin-interaction of the form Al + BS, -5, + C# -2+ D §,- & 7 - &,
which will allow a more direct comparison with meson-exchange models [33].

Low-energy equivalent NN core potentials have been presented as the results of
some of the NN resonating-group and variational calculations we discussed in the
introduction. In their Figs.l1 and 2 Suzuki and Hecht [34] show numerical results
for the NN core potentials of Harvey [12], Faessler, Fernandez, Libeck and Shimizu
[13] and Oka and Yazaki [16]. The Faessler et al. and Oka-Yazaki potentials are
quite similar to our potentials in Fig.1, with values at the origin between 0.6 and 1.0
GeV and comparable ranges. Harvey finds potentials with somewhat longer ranges,
which Suzuki and Hecht attribute to his choice of a larger nucleon width parameter,
by = 1/a = 0.8 {m; the Faessler et al. and Oka-Yazaki values are 0.475 fm and 0.6
fm respectively, and we use a comparable 1/a = 0.493 fm.

The NN core potentials found by Maltman and Isgur, in Fig.1 of reference [22],
also have similar ranges but are somewhat larger in magnitude, V(0)=1.2 GeV for
[=0 and 2.3 GeV for I=1. Our difference in the contact values is due in part to the
choice of parameters; in our calculations the potentials are proportional to a,a®/ m:,
which is 0.383 GeV with our parameters and 0.489 GeV for Maltman and Isgur.
Note, however, that no other reference finds the large Maltman-Isgur I=1/I=0 ratio
at contact. The value chosen for a,a’/ mq by itself does not explain the differences
between potentials; those reviewed by Suzuki and Hecht use a,a®/m? ~ 0.55 GeV, so
we would naively expect our potentials to he = 0.6 times as large as theirs. Of course
the values near the origin have little physical relevance due to their small Jacobean
weight, and in any case we are comparing potentials derived using three different
methods, and these differences may precliide a more accurate comparison of results.

14



The choice of parameters will be discussed in more detail in the section on differ-
ential cross sections. Here we simply note that the smaller value of a, we use is now
generally preferred because recent spectroscopy studies using improved wavefunctions
have considerably lowered the value required to fit hadron spectroscopy. The NN ref-
erences we compare with predate the improved spectroscopy studies and thus used
a rather large value of a,, which was required to give a realistic NA splitting given
single-Gaussian wavefunctions. We also prefer to use our fixed parameter set because
these values were found to give reasonable results for low-energy S-wave v, K7 and
KN scattering in our previous studies [26, 27, 31].

Note in Fig.1 that the intermediate-range attractions which are responsible for
the deuteron in I=0 and its almost-bound I=1 partner are absent from our quark
Born potentials. This is as we anticipated, given that these attractions arise mainly
from a spatial distortion of interacting-nucleon wavefunctions (4, 22]; in our leading-
order Born calculation we assume fixed nucleon spatial wavefunctions. The attraction
presumably arises at higher order in the Born series, and may be accessible through
leading-order Born calculations of off-diagonal matrix elements.

Oka and Yazaki (Fig.2 of [16]) and Koike (Fig.3 of [18]) also show the S-wave
phase shifts which result from their NN core interactions. In Fig.2 we show the S-
wave phase shifts we find on numerically integrating the Schrodinger equation with
the potentials of Fig.1. Our phase shifts are very similar to the results of these earlier
resonating-group studies. Although we would like to compare our phase shifts to
experiment directly, the experimental phase shifts [35] are unfortunately complicated
by the presence of the deuteron and its I=1 partner near threshold. These states will
have to be incorporated in our calculation before we can make a useful comparison
between our theoretical core phase shifts and experiment.

The Born-order approximate phase shifts (proportional to hy,) can be determined
analytically using Eq.(6) of [27] and dividing by 2 for identical particles,

§0 = “%PEP /_ll k() Pe(p)- (35)

The momentum, energy and g = cos(f. ) are for one nucleon in the c.m. frame.
From our general result for hy; (17) and the Gaussian-wavefunction integrals (28), we
find an {th Born-order partial-wave phase shift of

§0 = - 2 3

i 3.3 PEr Y wanne iy (BaP?) . (36)

q n=|

The spin-dependence of this result is implicit in the weights {w,}. Note that these
phase shifts are functions of £ and spins vnly, so there is no spin-orbit force in our
effective NN interaction. This is as expected given that our only interaction at the
quark level is the spin-spin hyperfine term. A\ more realistic model will require a gen-
eralization to include the OGE spin-orbit term and perhaps coupled channel effects,
as we discussed in our study of KN scattering.
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The analytic Born-order result (36) for the phase shifts is unfortunately of little
utility for NN S-waves given realistic quark-model parameters; the equivalent poten-
tial Vyn(r) is nonperturbatively large in this case, and must be iterated coherently to
determine phase shifts, as we have done in Fig.2 using the NN Schrodinger equation.
In contrast to this result, we previously found nonperturbative effects in the S-wave
phase shifts of wr, KK and KN systems to be much less important, due to somewhat
shorter-ranged forces and the smaller reduced mass. The NN Born-approximation
phase shifts (36) are presumably inure u.eful for higher partial waves and higher
energies, since multiple scattering effects are expected to be largest in S-wave near
threshold.

IV. OTHER NONSTRANGE BB’ CHANNELS: NA AND AA

The core potentials predicted by the quark Born formalism for other nonstrange
baryon-baryon channels should allow tests of the assumed hyperfine dominance in
systems other than the familiar S-wave NN cases. The short-range interactions in the
NA and AA channels may be observable experimentally as final state interactions or,
if the interaction is sufficiently strong to support bound states, as dibaryon molecules
not far below threshold. The possibility of nonstrange resonances in the ¢g° sector has
been considered by many authors, the earliest reference apparently being a group-
theoretic study by Dyson and Xuong [36]. These ¢® systems have also been studied
using the bag model (which is unfortunately known to give unphysical predictions of
a host of multiquark resonances), one-boson-exchange models and the nonrelativistic
quark model; references before 1985 are summarised by Maltman [32].

Our results for NA and AA are summarised by the diagram weights in Tables II
and II1. After completing their derivation we found that some of these matrix elements
had previously been tabulated by Suzuki and Hecht [34]; our NN and AA weights
wy, wy, wy, w; are equivalent to the coefficients CL7, —-CL), —CE), €L} in their Table
I1, which provides an independent check of our results in these cases. As these weights
multiply comparable spatial overlap integrals which give positive contributions to the
low-energy equivalent baryon-baryon potential (34), negative weights imply attractive
potential contributions.

Referring to Table II, we see that the NA system has a strongly repulsive core
in the channeis [,5=2,1 and 1,2 and weak core interactions in 2,2 and 1,1. Unlike
the AA system (to be discussed subsequently) our NA core interactions do not lead
to bound states in any channel. Since the lightest reported dibaryons have masses
very close to the NA threshold (35,37, 38|, the experiments may be seeing threshold
effects due to the opening of the NA channel. or perhaps weakly-bound NA molecules.
QOur calculation does no* support the existence of such bound states, although the
NN system is similarly predicted to have a purely repulsive core, but the 1,5=0,1
deuteron is nonetheless bound by an intermediate-range attraction which is absent



from our leading-order Born calculation. Similar weakly-bound states may exist in
NA and AA as well, despite repulsive cores.

Next we consider the AA system. For AA some general rules follow from the
assumption of a single X - )\ interaction; since the initial three-quark clusters are
transformed into color octets by the interaction, line diagrams with zero or three pairs
of quarks exchanged are forbidden. Thus the amplitude for A** A~ elastic scattering
must be zero. This implies relations between AA amplitudes with different isospins,

hi(AA T =0,8) = —h(AA T = 2, 5) (37)

and

he( AN T =1,5) = —glh,,-(AAJ:s,S). (38)

Specializing to the (+)-symmetry (even-L) cases in Table III, which include the S-
wave channels that are a priori the most likely to support bound states, it is evident
that two AA channels have strongly attractive core potentials, I,.S=1,0 and 0,1. Of
these 0,1 has the strongest attraction. We search for bound states by solving the
Schrédinger equation in the AA systrm using the low-energy potential (34). With
our reference parameter set a,/m? = 5.51 GeV~? and @ = 0.4 GeV the attractive core
is too weak to induce binding. Note, however, that previous studies of baryons us-
ing single-Gaussian wavefunctions have generally assumed a much stronger hyperfine
term, for reasons we will discuss subsequently. If we use a typical parameter set from
these references, a,/m? = 14.9 GeV~? and a = 0.32 GeV (Maltman and Isgur [22)),
we find a single S-wave AA bound state in the 0,1 channel, with Eg = 40 MeV. Of
course this channel has a fall-apart coupling to NN, so a coupled-channel treatment
including the NN system may be required to search for resonant effects. None of the
other AA channels have sufficiently strong attractive cores to form bound states in
our formalism with the Maltman-Isgur parameters.

Our result for the I,5=0,1 AA channel is remarkably similar to the conclusion of
Maltman [32], who found that the 0,1 channel has the strongest diagonal attraction
in the AA Hilbert space, and that these diagonal forces led to a AA bound state
with Ey = 30 MeV. Maltman concluded, however, that off-diagonal effects due to
the excitation of hidden-color states eliminated this bound state and led to binding in
1,5=3,0 (Eg = 30 MeV) and 0,3 (Eg = 260 MeV) instead. The 3,0 and 0,3 channels
had previously been suggested as possibilities for AA bound states [16, 39, 40]. In
contrast we fifid strong repulsion in the 3,0 channel and a weak core in 0,3.

In view of the parameter- and approximatinn-dependence of predictions of AA
bound states and the theoretical uncertainties in treating hidden-color basis states, the
possibility of nonstrange dibaryon molecules should be regarded as an open question
for experimental investigation. The channels which appear of greatest interest at
present are the attractive-core systems [,S=0,1 and 1,0 and the 3,0 and 0,3 channels,
which previous studies suggested as possibilities for binding,.
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V. NN DIFFERENTIAL CR(OSS SECTIONS
We can use Eq.28 of reference [26],

de 4n°s

b a—T A L

at = (o= ap) M (39)
to determine the nucleon-nucleon differential cross section in leading Born approxima-
tion, given the NN hj, matrix element (17). For the experimentally well-determined
case of unpolarised PP elastic scattering, we have a weighted sum of the S=0 and
S=1 diflerential cross sections,

do ldo Jde

dt |pP.unpolacised 4 8t lr=1,520 4 dt lj=y 521 (40)
To obtain the S=0 and S=1 cross sections one simple substitutes the appropriate I=1
diagram weights {w,} from Table I and the integrals {I,} from (29-31).

Before we discuss our prediction for this differential cross section we briefly recall
the experimental unpolarised PP result. This is shown for a range of P, in Fig.3,
adapted from Ryan et al. {41], Ankenbrandt et al. {42], Clyde et al. [43], Allaby et al.
(44], and from the ISR data of Nagy et al. [45] and Breakstone et al. [46]. The data
in the figure were obtained from the Durham-Rutherford HEP data archive. Near
threshold the angular distribution is approximately isotropic, but as P, increases
the scattering at large angles falis rapidiy, and at high energies the differential cross
section is dominated by an asymptotic “diffractive peak”,

expl.
do =*F

— = be .
s—00, ]ﬁ}s((l dt ae (41)

For the purely hadronic part (as distinct from the divergent forward Coulomb peak)
one finds

a®*®" 2 70 mb GeV~? (42)
and
bOPt 2 11 — 12 GeV ™2 (43)

for the asymptotic form [46].

On evaluating (40) for NN scattering using (17), (39) and Table I, we find that
several features of the experimental differential cross section are successfully repro-
duced by our Born-order calculation. The theoretical Born-order cross section (40)
which follows from our “reference” parameter set a,/m: = 5.51 GeV~? and a = 0.4
GeV is shown in Fig.4 for B., = 1.05,1.75.3. and 10. GeV, selected for comparison
with Fig.3. Although P, = 10. GeV superficially appears to be very relativistic, in
the c.m. frame it actually corresponds to F ., = 2.07 GeV, which for nucleon-nucleon
scattering is only quasirelativistic,



First note that the smooth evolution from an isotropic angular distribution to
an asymptotic forward-peaked one with increasing s is a simple consequence of the
suppression in. s of all diagrams at small || except D,. In our calculation the contri-
butions of the other diagrams fall exponentially with s. The experimental large-angle
scattering does not fall this rapidly, and the discrepancy is probably due to our use
of single-Gauesian forms; the actual proton wavefunction has short-distance quark-
quark correlations, which presumably lead to power-law contributions at large s and
¢t

Second, the observed approximate asymptotic form (41) is actually predicted by
our single-Gaussian Born calculation. The overall normalization a and slope param-
eter b for this process are predicted to be

a = 4”&3( 1 wl=1,3=0)2 +

Toomi\ 4!

|

- 6364 ra®
[=1,5=1+2 2
: = ———— 44
(ur ) ) 19683 m (44)

and
2
b= —.
a2 (45)

The theoretical result (44) for the magnitude of the forward peak is actually indepen-
dent of the spatial wavefunction, since the defining integral (23) is just the product

of two normalization integrals in the limit 4 = C.
With the reference parameter set we predict a somewhat smaller, broader peak
than is observed experimentally, with

a =12. mb GeV™? (46)
and
b=42GeV™?. (47)

Both a and b, however, are sensitive to the choice of quark model parameters, and
vary by factors of about 10 and 3 respectively when a,/m? and a are varied through
a plausible range, which we shall discuss below. If we use typical ISR experimental
intercept and slope values of @ = 70. mb GeV~? and b = 11. GeV~? [46] as input to
fix our two parameters, the fitted values are

S _ =
i 13.3 GeV (48)

corresponding to m, = 0.21 GeV if we leave o, = 0.6, and
a=0.246 GeV . (49)
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Although these fitted parameters give the observed intercept a and slope b, the higher-
|t| wings of the resulting distribution fall much too rapidly with s. This is probably
en artifact of our use of soft single-Gaussian wavefunctions, and a calculation of the
differential cross sections which follow from more realistic wavefunctions will be a
very interesting exercise.

The fitted strength of the hyperfine interaction (48) is now believed to be rather
large, although it is similar to the values used in many previous quark-model studies of
baryons. Examples of previous values ‘r. ch-onological order are a,/m2 = 15.5 GeV~?
(Oka and Yazaki, 1980 [16]); 37.8 GeV~? (Harvey, 1981 [12]; this value now appears
exceptionally large); 7.7 GeV~2 (Faessler et al., 1982 [13]); 14.9 GeV~? (Maltman and
Isgur, 1984 [22]); and 14.4 GeV -2 (Koike, 1986 [18]). Large values were required to fit
the N-A mass splitting given single-Gaussian wavefunctions; since this is proportional
to (a,/m?2){4(0)|, an underestimated wavefunction at contact must be compensated
for by a large (ct,/m?). If one instead uses the actual Coulomb plus linear wavefunc-
tions from the nonrelativistic Schrodinger equation with m, = 0.3 GeV, the larger
value of |#(0)| leads to a much smaller a,/m? ~ 5 GeV~2. Since our scattering calcu-
lation uses Gaussian wavefunctions, one could argue which parameter value is most
appropriate; an improved calculation with more realistic wavefunctions will probably
be required to eliminate these parameter uncertainties.

The baryon width parameter o has also been assigned & rather large range of
values in previous work. Representative values in chronological order are a = 0.41
GeV (Copley, Karl and Obryk, baryon photocouplings, 1969 [47}); 0.32 GeV (Isgur
and Karl, baryon spectroscopy, 1979(48]); 0.41 GeV (Koniuk and Isgur, baryon pho-
tocouplings, 1960 [49]); 0.33 GeV (Oka and Yazaki, NN interactions, 1980 [16]); 0.25
GeV (Harvey, NN interactions, 1981 [12]); 0.42 GeV (Faessler et al., NN interactions,
1982 [13]); 0.25 GeV (Hayne and Isgur relativised quark model, 1982 [50]); 0.32 GeV
(Maltman and Isgur, NN interactions, 1984 [22]); 0.34 GeV {Koike, NN interactions,
1986 [18]); 0.3 and 0.42 GeV, with the smaller value preferred (Li and Close, baryon
electroproduction, 1990 [51]).

Most potential models assume a value of m, near 0.3 GeV, although the relativised
models of Hayne-Isgur [50], Godfrey-Isgur [52] (mesons) and Capstick-Isgur (baryons)
(53] use a lower value of 0.22 GeV. Although these relativised models also use a small
value of a,(Q* = 0) = 0.6 for the infrared limit of an effective running a,(Q?), the
hyperfine strength a,(0)/m?2 = 12.2 GeV~? is again large because of the smaller m,.
Its effects are reduced, however, by the use of a “smeared” contact interaction.

The m, afid a used by Hayne and Isgur are essentially identical to the values we
need to fit the slope and intercept of the experimental PP diffractive peak, although
this is presumably fortuitous agreement.

Although we can fit the magnitude and ¢-dependence of the small-|t| differential
cross section at high ererties reasonably well with our quark Born results, we empha-
size that this is at best an incomplete description of diffractive scattering, because the
Born amplitude is purely real whereas the experimental small-{¢| amplitude is known
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to be close to imaginary {45, 54]. This may imply that the first Born approximation
is inadequate for small-jt| diffractive scattering, and that the coupling to inelastic
channels is an essential component of a description of the diffractive amplitude, even
for elastic processes [55]. It may be necessary to iterate the effect of diagram D,
to generate the observed phase [56], perhaps including a sum over virtual inelastic
channels. Our conclusion that suppression due to the spectator lines is the dominant
origin of the observed diffractive ¢-dependence [31] would presumably be unchanged
by iteration of the gq hard scattering process in diagram D,.

In view of the complexity of the baryon-baryon scattering problem, which in-
volves & sum of thousands of diagrams and the evaluation of 36-dimensional overlap
integrals, and the questionable accuracy of our nonrelativistic single-Gaussian wave-
functions, we find our approximate agreement with experiment encouraging. The
most important discrepancies are in the phase of the scattering amplitude (which
may require a higher-order Born study) and in the higher-|¢| “wings” of the distribu-
tion, which may be more accurately described by more realistic Coulomb plus linear
baryon wavefunctions. A determination of the proton-proton differential cross sec-
tion given more realistic nucleon wavefunctions would be a very interesting future
application of this formalism.

VI. SUMMARY AND CONCLUSIONS

We have applied the quark Born diagram formalism to nonstrange baryon-baryon
elastic scattering. In this approach the hadron-hadron scatiering amplitude is taken
to be the sum of all single quark-pair interactions followed by all allowed quark in-
terchanges, with nonrelativistic quark model wavefunctions attached to the external
lines. This may be a useful description of reactions which are free of ¢§ annihilation.
The model has few parameters (here only two, the baryon oscillator parameter a and
the hyperfine strength a,/m3, since we incorporate only the OGE spin-spin hyperfine
term in this study), and with Gaussian wavefunctions and a contact interaction the
scattering amplitudes can be derived analytically. The model was previously applied
to I=2 mx and I=3/2 Kx scattering with good results, and also gives reasonable re-
sults for low-energy S-wave KN scattering, although there are discrepancies at higher
energies and in higher partial waves.

NN scattering is an important test of this approach because it is also annihilation-
free (at the valence quark level), and the baryon wavefunction and the dominance of
the spin-spin .OGE hyperfine interaction in NN are aiready reasonably well estab-
lished. We find that the quark Born diagrams predict repulsive core interactions in
both S-wave NN channels, and the equivalent low-energy potentials we extract from
the scattering amplitudes are very similar to the results of previous resonating-group
and variational calculations. We also give results for the NA and AA core interac-
tions induced by the OGE spin-spin term. and find that certain AA chaanels have
attractive cores and may possess bound states. Finally we determine the NN differen-
tial cross section predicted by our Born amplitude, and compare the results with the
21
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experimental unpolarised PP differential cross section over a wide range of energies.
We find that several well known features of experimental PP scattering are evident
in our Born results, including the development of a high-energy forward peak with
an approximately correct width and magnitude.
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TABLES
Table I. Diagram weights for NN elastic scattering.

W wh wy wy rel. phase wy...wa
e 59
I=1; S=1 81 At & 8 (-)
— 3 7 T
§=0 2 37 37 0 (+)
1=0; $=1 12 % = 7 (+)
S=0 —é g % 0 (—)

Table I1. Diagram weights for NA elastic scattering.

W) Wa wy wly Ws Ws wr g
—9. Q_ 7 L _3 2 2 - | 1
1=2; S=2 5 5 3 0 3 9 9 ~3
— 7 L L _ 4L - - e !
S=1 27 27 27 27 27 '2‘2? 77 ‘517"'
=1+ 8= 13 L L - -
I=1; §=2 ¥ # 7 0 bid id 3 §
S=1 I 19 - 29 - 28 2 2 -4 L
- -1 &1 81 81 a1 81 81 8t
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Table III. Diagram weights for AA elastic scattering.

g ws wy W rel. phase wy...ws
I=3; $=3 1 -1 -1 1 (=)
§=2 i -3 -4 -1 (+)
=1 ¥ é é -4 )
5=0 i 4 4 1 (+)
1=3; §=3 a -3 - a..- +)
5=2 : -} -4 -} (-)
§=1 # 7 7 ~ (+)
5=0 I ] : 4 (=)
I=1; §=3 -§ 5 5 -3 (-)
5=2 - % i b : (+)
=1 B -4 - & (-)
=0~ - 4 -} (+)
[=0; 5=3 -3 3 3 -3 (+)
5=2 -§ § é | -)
s=t B & - aéf (+)
=0 -3 -4 -4 -4 ()
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Figure 1. NN core potentials from quark Born diagrams.

Parameter set a S/mq2 =0.6/(0.33) GeV~ and a=0.4 GeV.
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Figure 2. NN core S-wave phase shifts from the quark Born VN N(r).

Parameter set o/ mq’=0.6/(0.33)2 GeV” and a=0.4 GeV.
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Figure 3. Unpolarised PP differential cross section.

Plab indicated near data sets.
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Figure 4. Theoretical unpolarised PP differential cross section.
Parameter set a / qu = 0.6/(0.33)' GeV" and o = 0.4 GeV.
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