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Path integral formalism [1] is one of the most useful tools to study a quantum
field theory. However there is a serious problem to go out of boundaries of a
perturbative theory. There are instanton calculations (2], a lattice calculation
method [3] and variational approach which can be used in the case of quantum
field theory [4] and sometimes it is possible to find nonperturbative exact results
using symmetries of 3 quanium field model |5].

Here we propose an alternalive method for nonperturbative path integral
computations. All modes are decomposed into hard {(with w? > w3) and soft (with
w? < w} modes where wy is a some parameter. It is clear that when a frequency
in enough large then we can consider a polential term as a periurbation and
use a conventional pertubative theory. Thus we can find an effective Lagrangian
[6} for soft modes using wellknown perturbative theory. To find a calculation
procedure for soft modes we assume that the frequencies of these modes are
enough small and in the leading approximation we can neglect a kinetic term
and all other terms with derivatives in the eflective lagrangian and use a strong
coupling expansion. To realize a strong coupling expansion a special basis for
trajectories in functional space is suggested and in this basis a regular scheme for
the soft modes contribution is formulated in the Section 3.

Here we consider quanium mechanics as a simplest example of a quantum
field theory. It is possible, that this method can be applied in a quantum field
theory but it requires additional investigations, particularly, to take into consid-
eration a renormalization and a gauge invariance (in the case of a gauge theory).
Also a problem of a convergency of this procedure is opened and we just demon-
sirate a respectively good convergency in the case of unharmonic oscillator with
a potential V(z) = Az*.

In the next Section, a path integral and a basis in a functional space of trajec-
tories are considered. In the Section 2, we formulate a procedure of nonperturba-
tive calculation of soft modes contribution in the limit of large coupling constant.
The soft modes contribution is caleulated in the case of quantum mechanics with
a potential Az*. Then in Section 3 we find the first correction due to the kinetic
term. Ground state energy of the system is calculated in Section 4. Here we take
into account 2-loop eflective polential. In Conclusions we discuss uncertanties of
the calculations and possibility to use the procedure in other field theories.

In this paper we consider quantum mechanics in euclidean formalism.

1. PATH INTEGRAL

We consider the following path integral [1]
<zy|e Mg 5= N1 / Dr(t)e Jo’ coe (1.1)

where £(z(t)) = 3(%)? + V(2), 2(0) = z;, =(to) = z;, H is a hamiltonian of a
system, A is a normalization factor.

Here we are interesting in a lowest state energy £y and it is convenient to
consider the limit to — oo and to find a trace over z in (1.1), i.e. 24(0) = x;(t0),

2=jdz<::[e‘9'°|z>=/dz<z|n>e“'°<n|.t>|._.w (1.2)

= [dz) #o(a) [P emeote = emeot

where ¢, is an energy of n—th state, and £¢ is the lowest energy of the system.
The factor N is [ Dz(t)e” L, t1¢ A

In a perturbative theory the following basis for trajectories is used
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z{t)= Y Cuenlt) (1.3)
where e, (1) = 'oe"""'", Wn = %}n, Ca=02,,.
This basis {e,) has the following normalization

<en |em >=< enem >= j N en(t)em(t)dt = by (1.4)
L]

Therefore P1 (1.1) in basia (1.3) has the following form

+oa

Here we use the denotation: < f(t) >= o'” f(t)dt.
Hard modes are taken into consideration by conventional perturbative theory
and after integration over hard modes we obtain a low energy effective Lagrangian



for the soft ones. Soft modes are considered in context of a strong coupling ex-
pansion and a soft modes kinetic term is considered as a perturbation as well as
all other terms with derivatives in the effective Lagrangian. However a computa-
tion of this contribution is rather difficult even if we neglect the kinetic term. It
is known the way to use a strong coupling expansion in a lattice theory where we
should to choose coupling constants and parameters of a lattice to have a correct
continuum limit. Here we propose an alternative approach for strong coupling
expansion. We do not change a theory but only change a basis in functional space
of trajectories:

z(t)= Y BuEs({)+ Y Cuealt) (1.8)
Inl<N Inl>N .
Wwp = %—EN,

< Emy By Em, >= (wo/7) " 2A 80 mabimims-- Omym.

where A, is a some number which depends on a choice of the basis {E,}, n > 1.
(Notice, that Lwo subspaces {e,} |n| > N and E, |[n| < N are not orthogonal to
each other.)

The most important feature of the subspace {E,} is the fact that in this
subspace there is a factorization of the path integral if we neglect terms with
derivatives in Lthe action. It gives us a possibility to apply a strong coupling ex-
pansion. Soft modes belong to the subspace { E,,} only. But there are hard modes
in this subspace too. In the next Section, a regular procedure for calculation of
pure soft modes contribution is formulated. Notice, that this basis E, breaks
iranslational invariance of the path integral. This invariance is restored when we
subtract hard modes contribution out of the subspace {E,}.

Here we use one of the possible choices for the basis {E,}

En(t) = —=0(t — to/2 — nAB(to/2 + (n + 1)AL — 1) (1.7)

1
vat
where At = x/wy. It is obviously that in this basis we have A, = 1.

Below we use the following denotations:
greek letters: p, v,.=0,41, .., +N;
small letters: m, n,.= (N + 1), (N + 2}, .,
large letters: M, L,.=0,%1,.. 00
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Lel us show that
dB,, -<c(>:(c +B.E >
Entulin J 1.8
./H \/2! Vix 11 (18)
where
J =det(< e E, >) (1.9)

Using that E, =< E,epm > ep we have from (8)

dBu —<£(E C-¢.+E B, ZM<EFCM>¢M)> J 1.10
2= [ H\/Q_wr Vor' 171110

Then shifting C,, we cancel terms with e, in the sum over M and g and obtain

dB -<c(§:c e.+E N Ba<Eyer>)>
jnﬁ? ‘/2_'; 1] (1.11)

Using the following variables

Cu=)_ B, <Eye}> (1.12)

and taking into account the Jakobian we reproduce eq.(1.5).
Let us calculate |J|. The simplest way is to consider the determinant of the
following matrix

M, =<e E, >< Fpe, > : (1.13)

1| = \/det(< et E, >< Eye, >) (1.19)

Where M,,, is

1 {(p+1)AL410/2 . (P 1)At41p/2 )
My = —— f e_“"""dh/ ettweizgy, =
Atto » pAt+iof2 pALLIy[2
(1.15)
—fwy, At _ +iw, AL __
- (e 1)(e*" 1) Ee“‘(“"‘”")“"‘ (1.16)

Attow,w,

and the determinant has the following form



det(M) = I ((e—iu..m (e Hwet _ 1)) det (N, )

e Atlw,w,

At
Ny = -
o

oW —w, ) At

(1.17)

(1.18)

There are two different cases for matrix elements N,,,: diagonal (s = v) and

nondiagonal (41 # v). When p1 = v then we have
At
Ny Ju=v = EZI =1
r

Nondiagonal elements are

At

Ny lu#e = T—

e—i(w,—w.,)Atp =0
to
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Here we use the periodical boundary condition for {e,}
Thus from (1.19) and {1.20) we oblain that

det(N,.) =1
and
C—l’w,At _ eiw.,A! _
] = exp (%(?"(( A,,BEW 1))))
1 2((1 — cos(w, At
= exp (5 Zln( ( (w”A(:)’: )))
_ wolo .
= exp(— T")
where

j=— /ﬂd”l(—_fﬂi)l) 2(In(z) — 1) = 0.289...

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)

II. SOFT MODES CONTRIBUTION

Let us start to study a quantum mechanics with a potential V(z} = Az*. The
Lagrangian has a form

ldz

=2 2 .
gy +as (2.1)
In terms of our basis {E,} + {en} the path integral is
dC..
Z = 2.2
N./H\/21r \IZIIJI (2:2)

1
x exp{—[%lC.,lzw?, 4+ Cow? < enEy > By + =By < Eyeny > wh <evE, > B,

2
4 4 3 3 2 2
+M(B, < E; > 4B, < E en > C, 4+ 8B, < Ejemen > CinC,

+4B, < Epemener > CnCrCi+ < emenerer > CmChCi 1))}

To cancel linear terms for hard modes (C,) in the kinetic term we make a shift:
Cn = Ca— < e, E, > B,. This shift we have made in (1.8). After the shift we
have

Bn
=5 / I‘[ \/2_' I1 72 (2.3)

x exp{—[%lC..l’w: + %B,. < Eye, > wz <e,E,>B, + )«(B: < E'; >
—4B} < Eje, >< ¢3E, > B, + 6B} < Elemen >< ¢s,E, > B, < ¢%E, > B,
—4B, < Eyemeney >< e Ey, > B, < epE, > B, < e} E) > By
+ < emenerey >< e, E, > B, < e E, > B, <eyE, > B, < e} E\ > By

+{terms with C,)}}



In this Section we do not consider the hard modes and neglect kinetic term
for soft modes. To calculate the contribution we expand (2.3) over a number of
projections from subspace {£,} into subspace {e,} and back. This procedure
corresponds to a regular subtraction of hard modes out of subspace {E,}. These
projections decrease a norm of the vector z(1) in a factor & < 1 which depends
on the vector in funclional space. When we integrale over all subspace {E,.] we
can expect that an effective value of this factor is enough small. To estimate x
we can consider the jakobian |J| which is equal to unit in the case of ortohonality
between {E,} and {e, ]} subspaces. A deviation |J|from 1 is a measure of nonor-
tohonality between these two subspaces. In our case |J| = exp(—%22j) which
can be absorbed by rescaling B, — Bue#/2. It is reasonable to suppose that
k=j/2=0145...

Thus, in the leading order of our expansion for soft modes we have

—eptaj, [ dB _spejan e
[ - ( - EC ) - (2.4)

Zoop = e_'(-”"’ =

soft

where
oot = fﬂdcﬂ A

is the normalization factor for soft modes. In (2.4) we neglect nonortohonality
between {E,} and {e,} subspaces. In this case || =1 and j = jo = 0.

To take into account the first corrections of the the expansion over numbers
of the projections for the jakobian |J| it is useful to represent j in the following
form

j=———trin(< Eye, >< e, E, >)
woto
1
= —wototrln(< Eyeny >< enE, > — < E,ep >< enE, >) {2.5)
x
=———trin(b,,— < E,e;, >< e, E, >)
tho

't tr{0+ < Epe), >< enE, >
1}

1
+5 < Eue, >< enE, >< Epel ><enE, > +...)

=jotn+ijt..
Here

Jo=10

2 [*1-cos(x)

i = . ], " dz =0.227_.
Thus we have
Z.n]t = C“En)‘o (26)
= 2~ In(L/4) ! 1 (2.7)
€, ( o/2 — (—(——I)Tﬁ) — In{wo) + 1) .

=% i ("’———-"”" 4)4’3))
" 4r A(xer)1/3
Let us find the first correction for £, in the expansion over number of projec-
tions from subspace {E,} into {e,} and back. It is clear that the first correction

appears due to the term —4AB3 < Ele, >< en £, > B, in the action for soft
modes (2.3). This term gives the followmg contribution into the path integral

2019 = exp(~(el” + (' Nto) = 2{(1 - ' g) = (28)
] d.B“ 4 4 3 3
A I EU[exp(—/\B" < E}>)(144\B3 < Ede, >< e,E, > B,)
]

here we use the denotation 62'") because there is another correction of the same

order of the expansion.
From (2.8) we obtain

el = e x (2.9)
L

xzp:(jd\/g";(4).33<Fen><e"F >B)) (/l_[‘/z_r)_1
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wo I'(5/4) |
A ramh

where j, ia determined in (2.6).
Let us consider a contribution of the following term in the action (2.3):

6AB2 < Eremen >< ey E, > B, <el E, > B, (2.10)

This term gives the following correction for ¢,

ES"Jz?ﬁﬁjl%ﬂ(deB Jm‘_ﬂ)z(‘/ eI 1)
r(3/4)
6(mm)

£, 2 el 4 (1) 1 (19 (2.12)

(0 685...)j1

Thus we have

'-;w.,( ~In wol'(1/4)4/3 ))

T 4x 4(wer)1/30056

where the first corrections of our expansion (jj, ¢ (") and e. )) are taking into

account in a factor €?956. All other terms of the action (2.3) correspond to the
higher corrections of the expansion.

Thus, the next to the leading order of the expansion gives a small contribution
into the €, (~ 6%) and we can expect that next corrections of the expansion are
small.

The maximal value for ¢, is

61rer \'/°
& = 3;: 0.35A'3; at wy = w* _e°-°5°(r4(’;;4)) ~ 15509

{2.13)

The dependence of £,(wg) on wy is depicted in Fig.1 where we put A = 1. The
exact value for ground state energy is 0.66..1!/3. which is about two times larger
than the maximal value for ¢,.
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I11. SOFT MODES KINETIC TERM CONTRIBUTION

Let us take into account a leading contribution of a kinetic term for the soft
modes into €,. Then this correction for the energy ¢, is

1 ,
eHl = ? (ideB’ < Ere, > wl < elEy > e—“"'-'-‘) (3.1)

x (j.w.-,-"""-‘)_l

wﬂ .Y At
—£. efwetrgy, f eiwrtagy,  (3.2)
» !nAt (1] [1]

where

< Ele, > w: < B;El p

Z wo w3 wp 2(1 ~ cos(w,At))

2
"l wp

_wy [V dw w o {w0)?
=7 A —;—2(1—(:05(“0#))_2(”)

Then from (3.1) and (3.2} we have
1 _wo (12w) [ TI'(3/4)
=3 (Er_:_\/ ok r(lm) 33)

_wo (1(3/9)
= x \T(1/9)

At wy = w* we have
e~ 0.14e, (34)

The next correction at wp = w* is about 1% and we do not t.alte it into consider-
ation.
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IV. THE GROUND STATE ENERGY

To have a reliable result for the ground state energy we need to take into con-
sideration the hard modes contribution. We should integrate over hard modes
using loop expansion and find a low energy effective Lagrangian. Here we con-
sider the leading order of the expansion over number of projections from the
subspace {E,} into the subspace {e,} and back. It was shown in Section 3 that
an uncertainty of thie approximation is about a few percents at wy = w* and we
expect that an accuracy of our calculations will be about few percents in this
leading approximation. From (2.2) and (2.3) we see that in this approximation
there is no linear terms for hard modes in the action. It is easy to find one-loop
effective potential for soft modes:

1 w 12)22
vW(z,) = — [ V12Az3(x — 2arctan(~—ee—z)) — wo In(1 2) ) (4.1
(2,) o n(m)) wo In( +'_wg_') (4.1)
Let us calculate the soft modes contribution into the energy using 1-loop
effective polential (4.1)

g1-toop (o) = 20 (l_]n(uu‘/gjmwe-;%vw\/‘%fh) (4.2)
0

X

here V(z) = Vi-leop(z) = Az* 4 V()(z).

The dependence of €!7'°P on wy is depicted in Fig.1 (line ()). From Fig.1
we see that 1-loop hard mode contribution is comparable with ¢,. Line (c) in
Fig.1 shows the dependence of e!'°P(wg) + €¥'(wp). Where £*! is the leading
kinetic term contribution. And line (d) in Fig.1 corresponds to €2~ (wy) which
is calculated according eq.(4.2) with 2-loop effective potential V(z) for soft modes
whete V(z) = V2-i2P(z) = V'-1oP(z) 4 V(2)(2) and the leading kinetic term
contribution is taken into account. The potential V{?)(z) has the following form:

V(z) = L (1 — arctan( (4.3)

4x2z2 \ 2

Wy )) ?
V12hz2

—48)212] d“ldwjdu’36(w] +w2 + w3)
(27)? (w? + 12222)(w? + 12222)(w2 + 12Az?)

where w} > w], w? > wi, w? > Wl
In Fig.1 (line (d)) we see a very weak dependence of £2~1°P (w;) on parameter
wo in a large region (A'/3 < w® < 2.5A'/3)_ In this region the value of the next
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to the leading corrections is an order of variation varepsilon(wg). and £27'°% ~
(6.8 £ 0.3)A'/? which is in a good agreemenl with exact result: ¢ = 0.66... (curve
(e) in Fig.1). Thus we see a selfconsistence of the expansion in question.

V. DISCUSSION

Let us discuss the main features of the approach. Two main assumptions are
used here. The first one is that we suppose that an expansion over the numbers of
projections from {E,} to {e,} and back does not diverge. It was shown that the
first correction of the expansion is rather small in the case of the potential Az*
but the general structure of this expansion is not known. The second assumption
is that there is a region for the parameter wy where a perturbative expansion for
hard modes and a strong coupling expansion for soft mode work at a same time.
The results obtained have shown a correctness of these assumptions in the case
of the potential Az?. However, it is clear that this method does not work for a
potential which does not tend to infinity at * — +o0o. Also it is not possible to
use this method (at least directly) in instanton case due to the large kinetic term
corrections in soft modes sector. However this method gives a reasonable results
in the case of the potential considered here.

The next important problem is a question on translation invariance. It is
clear that this invariance is broken when we use basis E,. However in Section 1
it was shown that the path integral in this basis is equal Lo the path integral in
the basis e, which does not break translational invariance. ‘The expansion over
a numbers of projections from subspace {E,} into {e,} and back corresponds
to subtraction of translational noninvariant contributions. In the case when this
expansion works we can control these contributions.

Here we considered the ground state energy only. This parameter is not
convenient to study a restoration of iranslational invariance. In this context it
is interesting o investigate a propagator < z(t;)z(t2} >. This question is very
important for understanding of applicability of the procedure. The propagator
has the following form

S(t, ) =< I(tl), z(t2) > (51)
=€ BuB, » (Es(t)= < Eacy > em(L)NEv(tz)— < By, > en(ts))

+ & Can » cm(tl)cn(h)

Here we take into account the shift C, — C,, — B, < E,e, > which was intro-
duced in the first Section, € » denotes the average value for the path integral
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(see (2.2,2.3)). In eq.(5.1} we use that in the leading order of the expansion over
numbers of projections € B,C, = 0. 1t is obvious that € C,Cn >~ pm and
the second term in eq.(5.1) depends on (ty — t3) only and does not break trans-
Iational invariance. In the leading order we have that € B, B, »~ §,,. Then
using (1.19) and (1.20) we obtain that the first term in (5.1) dependa on (t; —13)
only also. It can be shown that next to the leading corrections of the expansion
do not break the translational invariance. Probably, that this procedure does not
break the invariance in any order of the expansion.

The most interesting application of the method is quantum field theoty. In
this case a renormalization should be taken into consideration by a standard way
in an effective Lagrangian. For a gauge theory it is necessary to study a question
on a gauge invariance.
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