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ANALYSIS OF SPACE CHARGE CALCULATION IN PARMELA
AND ITS APPLICATION TO THE CEBAF FEL INJECTOR DESIGN*

H. Liu

Continuous Electron Beam Accelerator Facility
12000 Jefferson Avenue, Newport News, VA 23606

ABSTRACT

The space charge calculation in PARMELA is analyzed in detail. Two different
methods, the 2-D mesh method and the 3-D point-by-point method, are compared
based on a cylinder model. Mesh dividing and choice of screening factor for
alleviating the numerical noise are discussed and clarified. The analysis is applied
to the CEBAF FEL injector design.

INTRODUCTION

Space charge is one of the most intractable issues in designing high intensity
charged particle injectors and accelerators. In this respect, it has turned out that
PARMELA is suitable for handling an electron bunch of several nC in several ps?,
given that space charge has been calculated properly and all the missing physics
have been included.

It seems that the details of the methods for calculating space charge forces in
the code are interesting to many users. In this paper, two different methods, the
2-D mesh method and the 3-D point-by-point method? are analyzed in detail, and
compared based on a cylinder model. Several issues like mesh dividing, choice of
screening factor for alleviating the numerical noise, etc. are discussed and clarified.
The analysis is applied to the CEBAF FEL injector design.

CYLINDER MODEL

Fig. 1 shows a uniformly charged cylinder in a long metal tube. The cylinder

has a radius rg, a length L, and a charge Q;

oz and the tube has a radius a. The normalized

- }9p) field components e, and e, at a point (r, z)
inside the cylinder are®

a r

Fig. I Cylinder bunch model
(w9) = 2 [7 S(at) cos(Gat) L WOKE) + HOKIE, (1)

ex(,9) = 2 [ S(at)sin(2ag0){1 - LK) + LOKNEE,  (2)

where u = r/rq and v = z/L, & = L/2ry the aspect ratio, K, = Ko(ka)/Io(ka) the
image charge contribution with k = {/ro, 5(z) = sin(z)/z the sampling function,
and I, and K, the nth-order modified Bessel functions. The electric field strength
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Ep = o,/2¢ is used for normalization, where ¢ is the vacuum dielectric constant,
-and o, = Q/7rf the surface charge density. The integral form instead of the series
expansion is chosen for its fast convergence.

2-D MESH METHOD

The 2-D mesh method is virtually of a PIC (Particle-In-Cell) scheme. It as-
sumes cylindrical symmetry and the bunch is embedded in an r-z mesh in the rest
frame. The mesh is specified by Rmesh Zmesh Nr Nz and Frm, where Rmesh and
Zmesh represent the maximum radial and longitudinal dimensions of the mesh,
Nr and Nz the numbers of radial and longitudinal intervals and Frm the factor
for enlarging the longitudinal dimension as the bunch is accelerated.

The mesh is desigﬁa.ted by two 1-D arrays: Rm and Zm. Then, as shown in
Fig. 2, through integrating over a finite-size charged ring corresponding to a bin
of the mesh, a background table is established, containing

B (re, =) EZ A‘“”A(“”E“”m,zz;rm,-,:mj), i (3)

i=1 ;r-l

where E(}) is E, or E, at the node (ry, z1), n=(m—1)(Nr+1)Nz+(1—=1)(Nr+1)+k
the sequence number of the field data, m; and n; the radial and longitudinal num-
bers of zero-size rings in the bin used for
integration over AS = ARAZ, AP and
)\("1) the 2-D Gaussian integral coefficients,
Trni a.nd Zm; thelocation of the zero-size ring
within the mth bix, E,(;) the space charge
fields at the node (7, z;) produced by a ring
located at (rp;, =m; ) in the bin, Rn; and R,
the radius of the ring (i, j) and the aver-
age radius of the corresponding finite-size
ring. For a given bin, this integration is
done (Nr+1)Nz times for all the nodes in
the mesh, and then another bin is picked
up and the integration is repeated till the
Fig.2 2-Dr-zmesh last bin at the first column of the mesh (no
more than this is necessary because of the
symmetry). Therefore Nr layers of meshes are established with each layer repre-
senting (Nr+1)Nz field data at all nodes. Note that n, and n, are related to the
parameter Opt on the space charge card Scheff.

{rezJ

The second issue is the charge assignment. By shifting a half interval relative
to the Rm-Zm mesh, another mesh designated by Rs and Zs has been formed in
advance for the use of charge assignment. See Fig. 3, where solid lines correspond
to Am-Zm arrays, and dotted lines Rs-Zs arrays. The macroparticles are located
in the bins in the Hs-Zs mesh. Recall that the space charge fields at all nodes have



been calculated previously by assuming a unit and uniform charge distribution in
a bin. Now if the charge density in each bin can be found, the space charge fields
at all nodes can be calculated by summing up the contributions from all the bins
rated by the charge densities assigned to each of them.

Suppose a macroparticle (MP) is located in a bin, as shown in Fig. 3. It
occupies an area of AS = ARAZ
in the Rs-Zs mesh. It can be di-
vided into four parts, A, B, C,
and D. Then part A is assigned
to the bin (3, j), Bto (i-1, j-1), C
to (%, j-1) and Dto (i-1, j), which
constitute the area weighting co-
efficients for these four bins in the
Rm-Zm mesh. The assignment is
done for all particles. Now the
space charge fields at all nodes
can be calculated according to

3|
Fig. 3 Charge assignment (MP: MacroParticle)

M
ED(raym) = 3 A E ) (ri z),  Zh o) )
F=1
where M = Nrx Nzis the total number of bins in the mesh, 4; the charge density
weighting coefficient of the jth bin, E,(,IJ) the contribution to the field at that node
from the jth bin, which has been calculated previously according to Eq. (3). The
summation goes over all the bins in the Rm-Zm mesh.

A space charge field table based on the actual charge distribution has thus
been established. Using linear interpolation, the space charge fields at any point
possibly occupied by a macroparticle in the mesh can be obtained. Then the fields
are transformed to the laboratory frame.

3-D POINT-BY-POINT METHOD

The 3-D point-by-point method is simple. The space charge fields produced
by a moving charge Q are calculated in the laboratory frame as follows

E=Qr/y’s®, B=BxE, (5)

where s = r(1 — 8%sin® §)*/2, r the vector from the source to the observer, 8 =
v/c the normalized velocity, 4 the angle between r and 3, and + = 1/(1 - g2)/e,

This method does not require any symmetry, which is a great release with
respect to the mesh method. However, when a macroparticle is found inside
another one, the one applying forces must be screened properly to avoid artificial
close-encounter or numerical noise. The screening strongly depends on how the



size of a macroparticle is defined. All the macroparticles have the same rms size

which is defined by
o MP)  _ (bunch) /N;IS, (6)

T}, LIRS =1, Zrms
where of‘l’;“zﬁ is the rms size of the total bunch in a specific dimension, and Np

the number of simulated macroparticles. The half width of 2 macroparticle, e.g.,
in the z dimension, is correlated with its rms size in the form

LMD = folitd), (7)

where fis the screening factor. A close-encounter is defined by Az < LMP),
Ay < I{MP} and Az < L{MP), where Az, Ay and Az represent the relative dis-
tances between two particles in the z, y and z dimensions. When a close-encounter
happens, the macroparticle charge is reduced according to

Table 1 Screening Factor 0" =0 AzAyAz <Q (8)
- f 3¢ zrma O zrms )

Profile = Screening factor =

p.omt 0 We found that the screening factor may vary
rng 1 from 0 to /5, depending on the density dis-
disk V2 tribution assumed for a macroparticle. See
Square: V3 Table 1. In McDonald’s version of the code?,
Ga.usma-n 2 a uniform density profile is assumed. There-
parabolic V5 fore a screening factor of v/3 we found here

explains the empirical screening factor of 1.75 in Ref. 2.
COMPARISON

The space charge field profiles calculated using PARMELA have been com-
pared with the exact ones from Egs. (1) and (2) for three different aspect ratios
of @ = 10, 1 and 0.1. In all cases, the bunch has a charge of 6.681 nC, and remains
1 cm in diameter. The bunch length is changed from 10 cm to 1 cm, and in the
last case, to 1 mm, to be representative and complete. 10* macroparticles are
generated uniformly and randomly in the z-y plane but deterministically in the
z-dimension. See Fig. 4.
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Fig. 4 Bunch model (a=10, 0=6.681 nC, N,=10°, (b) & (c) not to scale)
The radial and axjal field profiles for @ = 10 are shown in Fig. 5. They are



obtained by sending a test particle through a specified irace and recording its
field response. The abscissas are normalized so that u = 1 represents the radial
boundary, and v==0.5 the two end planes of the cylinder. The solid smooth curves
represent the exact field profiles. The radial field profiles both at the central plane
(v = 0, solid triangles) and at the end planes (v = +0.5, solid and open squares)
are demonstrated from (a) to (c}. The on-axis axial field profiles (u=0, dots) are
indicated from (e) - (). ,

From Fig. 3, several interesting points are revealed: (1) the fields are noisier
at the central part than at the edges of the bunch; (2) with the screening factor
increased from /3 to 10 (which is a huge step), the noise can be substantially -
reduced, but in the meanwhile the particles are over-screened at the edges; (3)
the mesh method gives a perfect agreement except at the central part of the bunch
with mesh dividing of 40x50.
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Fig. 5 Comparison between two different methods of space charge calculations in
by . The space charge bunch model is shown in Fig. 4. The aspect ratio a= 10.
Abbreviarons in the figure: pp - point-by~point method; ms - mesh method: f - screening
factor. (a) - (c): radial field profiles at the central plane of the bunch (v=0) and at the end
planes of the bunch (v=:20.5). (¢} - (f): on axis (u=0) axial space charge field profiles.
Solid smooth curves represent the exact field profiles from Egs. (1) and (2) with image
charge omitted. Solid triangles: v=0; solid squares: v=-0.5: open squares: v=({.5,

The results for a=1 are shown in Fig. 6. It is seen that the point-by-
point method agrees completely with the exact field expressions out of the bunch
(v=x%1). The agreement for the axial field profile is excellent with a screening fac-
tor of v/3, as shown in (d). It is clear that a smaller screening factor under-screens
at the central part but seems precise for the edges, whereas a larger screening fac-



tor over-screens at the edges but seems precise for the central part. We emphasize
that it is the edge part of a bunch that needs to be treated more accurately, for
that is the region where various nonlinear effects are acting.

The last case is for a very short bunch of 1 mm corresponding to @ = 0.1. It
was claimed that the mesk method seems less suitable for very short bunches?
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Fig. 6 Same as Fig. 5 except that: (1) the aspect ratio o= 1.0; (2) the radial fieid profiles
out of the bunch (v==%1) are added. Solid smooth curves represent the exact field profiles
from Egs. (1) and (2) with Image charge omitted.

and therefore the point-by-point method was developed. Usually, one believes that
the aspect ratio is the watershed between the two methods. It was also claimed
that the point-by-point method fails because of the artificially large collisions
that occur®. However, we found that both methods remain accurate for a highly
charged short bunch. See Fig. 7.

IMAGE CHARGE

In the mesh method, the image charge is treated based on the ring-model
as well. It could be easily proved that® a charged ring inside a pipe induces a
continuous charge density distribution along the pipe wall as

c.(Z) = % Ji = %"E:—g cos(kA Z)dk, (9)

where AZ = Z ~ Z', 7' is the location of the ring, Ip the zeroth-order modified
Bessel function, p the radius of the ring, and a the radius of the pipe. This density
distribution is divided into a series of rings along the inside wall of the pipe,



applying forces on other charges. This treatment holds as long as a cylindrical
symmetry exists for the bunch.

The point-by-point method deals with the image charge simply as it is. When
a particle is emitted from a cathode, it has an image on the other side of the
cathode plane; when a particle is inside a metal pipe, it has an image outside the
pipe. The image of a macroparticle applies forces on others as if it was a member
at a distance from the ensemble.
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Fig. 7 Same as Fig. 5 except that: (1) the aspect ratic o= 0.1; (2) the radial field profiles
out of the bunch (v==x1) are added; (3} mesh dividing changed from 40x50 to 40x10.
Solid smooth curves represent the exact field profiles from Egs. (1) and (2) with image
charge omitted.

APPLICATION

PARMELA has been used for a free-clectron laser (FEL) injector design at
CEBAF for which the space charge effect is important. CEBAF proposes to build
an IR FEL and 2 UV FEL utilizing the superconducting accelerator technology
that has been developed at CEBAF*®. The FEL injector consists of a photo-



cathode DC gun, a prebuncher, a cryounit containing two standard CEBAF SRF
cavities, and a phase-compressor chicane. The DC laser gun will be operated at
~ 500 kV and generate a cw train of bunches having a charge of 120 pC and 2
length of ~ 100 ps from a ~3-mm-diameter photocathode’.

Based on the previous calculation®, extensive integrated sumerical simulations
have been conducted with the point-by-point method for space charge treatment
from the cathode all the way down to the exit of the chicane. The injector per-
formance has been fully investigated based on an optimized baseline design for its
robustness, sensitivity, and operational flexibilities. The effects of space charge on
the phase spl.:ea.d, energy spread and emittance of the electron bunches have been
closely examined. It is shown that the design will perform beyond the specifica-
tions. The results will be presented elsewhere®.

SUMMARY

It has been revealed that both methods remain suitable for very short bunches
as long as a proper screeming factor is introduced for the point-by-point method
and a proper mesh is divided for the mesh method. We suggest to set 40x50 as
the limit for mesh dividing. The reason is that the space charge is always over-
estimated at the central part, which could be alleviated if a larger radial nodal
number is allowed.

It is emphasized that the number of macroparticles per cell must be signif-
icantly larger than unity for both methods. For the mesh method, this means
N,/N.N.>>1. For the point-by-point method, it means that the condition
N, >> f* must be satisfied. We suggest to choose f € {+/3, 0.5N;/3}.

Finally, it is worthwhile to mention that the method introduced in Ref. 4
might be most promising for accurate but less time-consuming 3-D space charge
calculations. It would be helpful if a comparison could be made between that
method and the point-by-point method on the basis of an appropriate screening
factor using a 3-D bunch model.
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