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L INTRODUCTION

Hecently, & lower bound was proposed (1] for the universal Isgur- Wise function [2]
£ that describes “elastic™ heavy meson form factors. The bound is striking because,
when combined with Bjocken's upper bound (3], the behaviour of ¢ would be very
highly constrained. For example, with the kinematics relevant to § — Def, decay,
these bounds prohibit { from falling by less than 12% or more than 21% from minimum
to maximum recoll. The lower bound conflicts with many form factor models [4-7],
and could have considerable impact upon such matters s the extraction of Cabibbo-
Kobayushi- Maskaws parameters from data.

In this paper we present & counterexampls to the lower bound [1]. Using the
counterexample, we identify which of the hypotheses needed to prove this bound
fails, and in doing so discover an interesting physical interpretation of an experimental
violation of this bound.

For orientation, we first review the proof

IL TEE BOUNDS
ﬂnwpnbnlilhihﬁ_h[ﬂ].bﬂmu-ﬂhwmautmulhﬂt
bound derived by de Rafasl and Turon [1]. Three hypotheses underlie the proof. The
first is xn integral constraint om the magnitude of the form factor in the production
region; we begin by briefly racapitulating the derivation of that constraint.
By heavy quark symmetry, {(w) = F(2m}[l - w|) where w = v .o = p. §/m}
and F(q?) is the elastic form factor defined using V* = by*b and

< B()IV*|B(p) >= F(¢")p + )", ()

where g = p—§'. The derivation of the constraint starts by using a dispervion relation
for the scalas fumction defined from the correlator

™ = (¢'¢" - ¢'¢*) O(¢")
=i f dlze'™ < O[T[V*(2)V(0)]]0 > . (2)

The constraint on |F[? is obtained by comparing two evaluations of x = 5I1/8¢". Rel
[1] first evaluates y perturbatively as a b loop, using its value at ¢* = 0 where the



perturbative and son-pertarbative corrections are expected to be small [1]. They also
write s dispersion relation for x, and evaluate Imll by inserting & sum over & complete
set of hadronic intermediate gtates in (2). All contributions to Imll are positive, 5o
that keeping only the BB contribution must underestimate the vum, leading to
boand

5 T2
Jaa= g [ Py -1 IFG) <1, 3
where y & (1 — w)/2 = ¢*/4m}. A stronger condition can be obtained by including

the B*B, BB*, and B*B* states which depend upon the same form factor by heavy
quark symmetry; the corresponding integral J must also be less than or equal to
anity.
The three conditions for obtaining the bound on F are:
1)J<1,
2) F(0)=1,
3) F(y) is snalytic except for the cut along 1 < y < oo,
Given these conditions, the proof begins by mapping the integral giving J into an
integral around the unit circle using the transformation [1, 8],
‘.1+:
l=12
If (y — 1) = re*, then the sheet 0 < ¢ < 2r is mapped to the interior of the unit
:irr.h.Thuﬁm—un-::gnummthemliiungxsl.ltr{:'ji-u.lrﬂ;.
it is clear that one can use Canchy's theorem to get the value of F inside the uait
cirele from its value on the boundary. What is interesting is that an upper bound for
|F|* on the unit circle gives both lower and upper bounds on F saywhere inside the
circle.
To see this, define an inner product

| i
ﬂ:gua.ﬁj; dog"f. (5)

myy=-1 . (4)

In terms of this inner product, ome can rewrite the bound on J as
1
7= o [7 d0ig(a)F(a)* = I8FIF <1 (6)
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For the bound on Jy g corresponding to (3), #(z) = (1/18)y/5=/8(1+2)'vT = 3. Two
aseful vectors in this Hilbert space of fanctions are [§]

n=1 ™

and

1
=TT (8)
5o that, using Canchy's theorem,

< g |dF == ${0) (9)

and
< ml|éF >= $A)F(L) . (10)

It is here that the assumed analyticity of F, which translates into F(z) being snalytic
ingide the unit circle, is crucial.
To complete the proof, note that
|¢F + pgn + paall* 2 0 (11)

for any values of 4 and p. The left hand side of the above expression, minimised with
respect to g and p, is & quadratic function of F(A) with everything else defined or
calculable. Positivity then requires that F|(1) lie between certain definite upper and
lower bounds, which are the bounds given in Ref. [1]. The upper bound is weaker
than Bjorken's bound [3], but the lower bound is wery restrictive. In terms of the
“charge rading® defined by

ﬂ _ =

Lo =-s, (12)
the combinasien of Bjorken's bound and the lower bound of Ref. [1] which arises from
J mives
(13)

s
1
-,
[Fa

=1
=



OL A COUNTEREXAMPLE

Wemﬂthhrhmwumntmidmplrhunmhiﬂd
the bound should apply, but for which it is manifestly false. This system is » b
mmn{-udiﬁn:th:pu-puﬂuithhuﬂmmtmqhiduhdmlqlmin
which my, m, == oo but m, < my, slthough the arguments we present should be
approximately valid for the real B, meson). The ground state of this system will to
tmmﬂmmmlnmﬂnﬁrhﬁnﬂaﬂmﬁchud state with
“Bohr radins” $m.a,, sad it would therefore have

i = i (14
which elearly doesn't satisfy the upper bound in (13), corresponding to the lower
bound on the [sgur-Wise function derived in Ref. [1]. The flaw in the proof of the
bound contains some interesting and possibly useful physics.

Consider first the spproximation of the idealised B, meson as hydrogenic. This
l;lpmﬂ.uﬂhl'ﬂllnimuuﬂtruﬂ]mnhdutdpﬂﬂnfiumm_-m_
with m, < my. In this spproximation the B, is nonrelativistic with s wavefunction
proportional to exp(—r/ag), where a3" = $m.a,, and the form factar for scattering
off the b quark is given under these conditions by

-3
F= J." Pre = wir) = [l+ ﬁ:’llﬂ:'!) : (15)
Thas the form factor bas a pole in the timelike region at ¢ = —|§]* = Ymia], well
mm:whﬂlpﬂm.mﬁhwﬁummﬂ.m.m
assumed analytic structure of F(g') is not realised.

Wﬂtmwuﬁuﬂhlhnmﬁuntmnﬂhthprﬂﬁmh[l],ud
whﬂenhﬂﬂﬂhhp&rﬂnﬂrmhiim,itm&ﬂthhﬂmdth
hnudhuﬂluﬁl.hihnl;hddlhemmpudt:urnﬂuquhhtm],illum
something to be desired. (These basic arguments were given much earlier in this
context in Refs. [4,9,10], in which the existeace of such “unexpected” charge radil
was traced to the presence of “pseudo-ancmalous-thresholds”, that is, large but not
qﬁhdﬂ]ﬂuﬁmdmiﬁnhmn:utnwhmﬁamﬂuuﬂtwwld be in
the absence of confinement.) Thupm'hlmhthltthuld.u‘uluil]inﬂq"ju,ﬁm




in (15) arises from the large r bebavior of the wavefunction, which should, of course,
not be Coulombie becanse of confinement. The “real” F(g') will therefore be sharply
peaked near ¢ = $mia? (it will display & “peendo-anomalous-threshold™), but aot
sctually singular. Thus, while the counterexample stands, it leaves the faw in the
proof of the bound unclear.

Although squally unsatisfactory in its own way, we note in passing that a har-
monically confined nonrelativistic system has & gaassian form factor which is analytic
everywhere apart from an essential singularity st infinite ¢*, which is the point 2 = 1
in the transformed space. A sharply peaked F(g") would not contravene the theorem,
but an essential singularity on the boundary of the unit circle does.

As Jaffe pointed out [11] in the context of a potential model, neither of these
pictures gives u satisfactory pictare of the analytic structure of F(g"). The complete
wavefunction of & confined system will comtain not only the highly damped wave-
function of the confined constitnents, but also the exponentially damped tails of the
virtual decay channels of this state. [n Jaffe's example, these states produced wildly
oscillating dingularities along the normal cut (¢* > 4mj in the case at hand) which
built up the sharp spike st ¢* = $mial. A feld theoretic realisation of this scennrio
waa considered by Jaffe and Menda [12], who showed that in the N, — oo limit of 1+1
dimensional QCD , the psendo-snomalous-threshold in & world with & single flavor
of quark is built ap by & series of narrow resonances with wildly cecillating residues.
These more realistic descriptions present us with & pusale: the lower bound fadls, but
there do not seem to be any singularities near ¢* = $mja? to violate the theorem.

A partial resolution of this pussle emerges once one notices that the form factor of
the B, meson will in fact hare real snomalous thresholds. Recall that such anomalons
singularities asies from trisngle diagrams ke that shown in Fig. 1. The resulis are
well knows [18}. Por very strong binding, meaning m}, < M + M7, such diagrams
have culs only for real ¢* satisfying ¢ > 4m}. This is the “normal threshold”.
However, f m}, > M + M?, the cut begins at the "snomalous threshold,”

{ml - (M + H‘.}’} {mi‘ - (M - H-I‘:I BM. (M + M,)
'!:-. e, L ,H'II ] M, ‘r

(16)



where in the second form we define the binding energy by mp, = M; + M, = ¢,
and keep only the leading term in «. For the Conlombic case, this threshold is the
same as the pole location in the form factor of eq. (15). This singularity has an
qriﬁnthﬂh-qhundmmdhnmhﬁﬂlﬁcwtuhuwthnmr. Consider,
£.4., the positronium ground state system at rest. The nonrelativistic version of the
Wdﬁ.lmﬁht&ﬁdthﬂtﬁn:ﬂhm&uﬁnﬁﬁﬂuﬂr
into an e*e~ pair with imaginary moments § = i&t{ﬁmihlunitrmu}
so that E, + E. = Im, — 1/ém,a} is equal to the ground state energy, ie., the
intermediate state is on the emergy shell so that the virtual process is singular. A
pmhaiuthﬂaﬂmhﬁ:ﬁuhmm:ﬂmi’=+¥iudmu--|1','l'|’,."-lm.
Iﬂhhnpmdmuduﬂt;uﬂniqﬁnmﬂuuwlhﬂummdilhm.
The sssociated form factor will have & singulasity at [§[" = 4/a] as expected.

/l..

N

8

Fig. 1: A typical triangle graph which can have anomalous threshold singulasities; M,
miu,m:hmu-dmnHmpHmﬂ.,-ﬁ:hmwbud&mumu
hadrons or b and Z quarks.

Inthmﬂcﬂnﬂhﬂﬁ{ll,l!l.thmhmlrtthdlhmdquﬂ.m
thﬂih:hﬂ_iﬂmﬂmdthhmﬂﬂ*udth&hmtﬁﬂulimrw
is Q0 — @0+ QJ. Thus m! < m] + m] and there is no snomalous threshold.
Em.hnw-ﬂmlu‘lhgli‘htqwh.mﬁl would have open virtual decay
channels starting with B, — B + D, sstisfying m} > m} +m} so that there arv
anomalous thresholds. hdﬂ.mmuﬁlr:hnthﬂinthﬁmiﬁqmth
revulting singularities are exactly those required to produce the pole seen in Eq. (15).
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This behavior has an interpretation in terms of duality: all of the dissociation channels
have a mass which in the limiting case are at the “hydrogenic”™ threshold with respect
to mg, and thes contribute hadronic exponeatial tails which produce the singularities.

Although this discussion means that we have identified an illegal sssumption of
thpmf-uflh‘[n[1i,iitmﬂhlhfuﬂltnqdnulhurﬂlﬁudth'hundhﬂ.
should be independent of the existence of light quarks. However, if ¢ is the lightest
quark, then the lowest virtual decay channel of B, would be B, + 1, and there would
be no anomalous thresholds! Simee it is this case that corresponds most closely to the
case of the B meson, it too must be addressed.

We shounld not find the elusive nature of the flaw in the proof surprising. The
examples we have seen tell us that the physics is in the “charge radins” of the hadron
and not in the positicns of the singularities which can move from ¢ = ¥mia] for
the hydrogenic case (which we have seen includes B, in the presence of light quarks),
to ¢' = oo for the case of naive confinemeant, to & sequence of very strong poles of
oscillating residues near ¢* = 4m}. Thus, although the sssumed analytical structure
of F(q") is » techinical flaw of our counterexample, we have not yet completed the
delinestion of the the flaw of the proof, since B, stands as & counterexample even
in & world in which charm is the lightest quark (so that there are mo anomalous
thresholds). As pointed cut to us by Falk, Luke, and Wise [14] (see also 15, 16]), in
this case s well the flaw can be found in the assumed amalytic stracture of F. In
particular, the T or b6 bound states that lie below the threshold for BB production
will give poles in the form factor F which lie within the unit circle in the z-plane
as previously defined, and will viclste cne of the conditions required for the proof of
the bounds. That these poles are implicated in the failure of the bound is certainly
consistent with the observations of Ref. [12]. The dependence of the residues of
ih—pﬂ._tha{uinpnd.ﬁxhtn}qnukmhdun:u'ltutiilhlh
requirement thad they reflect the structure of the B, bound state even though they
themselves are b bound states.

The z-plane is shown in Fig. 2 with some corresponding points in y = ¢*/dm}
indicated. Each value of y (except y = | and 2] maps into two values of z. The
ph:ﬁﬂlrtﬁmiuﬂ.ﬂprdu:ﬁm.thulin:lEycm,mmnuhmthnuit
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semicircle above the real axis and once into the unit semicircle below. An T that lies
above the BB threshold would, if its width were sero, give two poles which both lie
on the unit drce in the z-plane, at points ustrated by the open circles. Accounting
for the width of the T moves both of the poles ouiwnrd and outside the unit crcle,
snd they cause no problems with the proof.

=]

HEN

y=0 Yo

y=1I

2: The ing y — 5. The unit circle |z = 1 containg the resl ine 1 < y < oo
lm : at two ul:_l-l,hm the
mnﬂqud-.wtﬂ location in the p- an imaginary part the
correct mign for a wounld move both poles in the z-plans outride the

umit circle. Pﬂuhdwthmﬂ'ﬂthutﬂd,mthahmﬂq < 1, give two each
on the real r-axis, one IIQ td:rdlﬂrrﬂﬂw

by the markings “x".

The unphysical region for BB production, 0 < y < 1, maps onto negative real
:.n:uh:hﬂmﬂuﬂ-lu&mnmh:htﬂ—lud-mThthu
(in the real case) T's that lie below BB threshold give poles in F(r) at locations
illustrated by the marks “x*. Three of these lie within the unit circle; accounting
for their small width will move them smoothly awny from the positions indicated but
not outside the unit circls. These singularities thus violate the nsumption on the
analyticity of the form factor needed to derive (10).

One might wonder if the bounds could htru:lldhrrminhf = ¢*fmi
and using y' to do the mapping to z. All T poles would then lie cutside the unit
-u:h'd-[mdnnln-luu;ﬂtluuhht,lurmmph.hh-ﬂlmhnﬂ
to be significant). Consider, however, the constraint J £ 1. J is an integral over
|F|* with » weighting fanction. The weighting fanction became the factor |¢{" on

)



the unit circle, with ¢ analytic within the anit circde. The saalyticity of &z) is a
important as that of F in the proof of the bound. The weighting fanction came from
integrals over & set of real states in the evaluation of Imll, and cannot be changed.
Implementing it with the vasiable y* would require a step function ©(y' - 4m}/md),
which is not analytic and conld not Iater be replaced by & |#|* on the unit crcle with
¢ analytic. Hence the proof cannot proceed with a redefined y.

Note that while for the case of the B meson form factor it is caly the prendo-
ancmalous-thresholds arising from the T resonances that are relevant, B, mesons will
already have real ancomalous threshold singularities. Moreover, while the B, system
may not be an important one in practice, it shows ws that compositeness is the key to
the failure of the bound. It also reemphasizes the perils of the use of dispersion theory
[11,12] for systems where the compositeness seale is important: although (at least in
the large N, limit) the bb vector meson specirum would be essentially unchanged by
the existence of light quarks, they would transfer the important singularities for de-
scribing the B, form factor from these bl poles to the B D-type wnomalous thresholdas.
It might be interesting to delineste the mechanism by which this tranfer occurs.

IV. SUMMARY
The proof of the lower bound oa the ligur-Wise function requires, among other
things, that it be analytic over most of the complex ¢ plane, particularly including
m:ﬁulhllhlﬂllﬁbdﬂithmmdihmhﬂlﬂfa-iml. We have
shown that the form factor of the B, meson would wiolate this assumption in the
Coulombic approximation (via an anomalous threshold at the quark level), in & wozld
with naive confinement (s an essential singularity), in & world with light quarks (via
an ancomalous threshold st the hadronic level), and in & world in which the charm
quark is the Bghtest quark (vis the subthreshold vector meson paoles in the ¢-channel
which build wp the “peendo-anomalous-threshold”™). On the positive side, the bounds
of de Rafsel and Taron can provide useful information. If these bounds are indeed
violated by the data, then this would be evidence for the existence of real or psende-
anomalous-thresholds. In either case, this would be the fiest time that such effects

would be seen to be important in hadronic physics.
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