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Pion nuclecn scatering up to 600 MeV lab kinelic energy is described by a manifestly
covariant wave equalion in which the pion is restricted to its mass-shell. The kernel of
the equation includes nucleon (N), Roper (N*), delta {A), and {3 poles, with their
corresponding crossed pole terms approximated by contact interactions, and contact o-
and p-like exchange terms. The * NN vertex is treated as a mixture of +* and y*4°
coupling, with a mixing parameter A chosen so that the dressed nucleon pole will be
unshifted by the interactior. Chiral symmetry is maintained at threshold. The reso-
nance contributions are fully unitarized by the equation, with their widihs determined
by the dynamics included in the model. The A and D)3 are treated as a pure spin 3/2
particles, with no spin 1/2 amplitude in the S-channel. The complete development of
this model, which gives a very good fit to all the data up to 600 MeV, is presented.



1. OVERVIEW, RESULTS AND CONCLUSION

A. Introduction

Pion nucleon scattering has been studied thoroughly for many years. One
of the best known early models, which treated the nucleon non-relativistically,
was introduced by Chew and Low in 1956 [1]. This model described low energy
P-wave scattering very well, but had to be medified in order to describe S-wave
scattering [2]. Among later efforts is the work based in current algebra [3, 4],
and Lagrangian models based on chiral symmetry [5-7]. More recently, Banerjee
and Cammarata [8] have extended the Chew-Low model to include nucleon recoil
and anti-nucleon contributions, and Pearce and Jennings [9], using a Lagrangian
model and a relativistic wave equation, have extended the analysis up to pion lab
kinetic energies of 400 MeV.

However, with the construction of powerful new facilities such as the Con-
tinuous Electron Beam Accelerator Facility (CEBAF), it is necessary to have a
good description of # N scattering which extends up to higher energies. Such a
description must be covariant, and include not only the nucleon (N) and delta
{A) resonances, but also the Roper {(N*), which plays a prominent role in the Py,
channel at energies above 400 MeV, and the 13(1520), which makes a significant
contribution to the total isospin % cross section near 600 MeV.

In this paper we present a simple, covariant, and unitary model of 7 N scat-
tering which works well up to 600 MeV. These are essential features of a N
model which is to be used as a reliable input to other model caleulations, such
as the calculation of NN scattering up to nucleon laboratory kinetic energies of
1 GeV, where the excitations of pion degrees of freedom become important. It is
with such applications in mind that this model has been developed.

In this work the 7N scattering amplitude is obtained as a solution of a rel-
abivistic wave equation in which the pion is restricted to its mass-shell in all
intermediate states. The rationale for this approach is described in Sec. II A.
In order to describe the # N resonances at Ty lab ~ 187 MeV, ~ 485 MeV, and
~ 611 MeV, the kernel (sometimes refered to as Born or “driving” terms) of the
relativistic integral equation includes undressed A, N*, and Dj3 poles in addition
L¢ the nndressed nucleon pole. We make no attempt to explain these bare un-
dressed states within the model; they are presumably explained by quark models
in the same way that the nucleon state is explained. The kernel also includes
contributions derived from crossed N, A, N*, and )3 diagrams, and from o-
and p-like exchange terms. To simplify the equation, and obtain analylic solu-
tions, these laiter terms are approximated by a contact interaction, as described
in Part 1I1. The approximations used to obtain the contact terms give zero for the

crossed A and Dy poles. All of these driving terms arc shown diagramatically
in Fig. 1. The solution which emerges from the integral equation antomatically
satisfies umitary, and dresses the resonance poles by shifting their masses and
giving them a width, and hence our model complements quark models by adding
the pion interactions sometimes omitted from such models. For reasons which
we will discuss in some detail below, we adjust the parameters of the model so
that the dressed nucleon pole 1s not shifted by the inleraction.

For the # N N coupling we use a superposition of both pseudoscalar (1) and
pseudovector (7°") coupling, with a mixing parameter A defined so that the
coupling is independent of A when both the incoming and outfgoing nucleon are
on-shell. This mixed coupling was used succesfully in one boson exchange models
of NN scattering by Gross, Van Orden and Holinde [10, 11], who found that a
small admixture (about 25%) of y® coupling made it possible to fit the data with
a minimum of exchanged mesons. One of the purposes of this study was to see if
this mixed coupling had any justification within the framework of 7N scattering.

The A and 23 are treated as pure spin 3/2 particles, using a spin 3/2 projec-
tion operator proposed by Behrends and Fronsdal [12], and recently discussed by
Williams [13], and their widths emerge automatically as a dynamical consequence
of unitarity. We also introduce a new form for the #NA and #/N )3 verlices.
The combination of the spin 3/2 projection operator and this new vertex not only
makes the calculation simpler but also eliminates all spin 1/2 amplitudes. Some
authors [14] have argued that these virtual spin 1/2 amplitudes, which must be
present if the spin 3/2 propagator is to have an inverse, are an important feature
of the physics. We obtain a very successful fit without them. The D3 is inelastic,
and in this model we allow for this by coupling the D3 to the 7A channel, which
gives an excellent description of the data.

The role of the Roper, especially at low energies, has been questioned for
many years. Many authors {9, 15, 16] do not include the Roper, even in their
description of the Py channel. They argue that a cancellation between the
direct and crossed N pole terms can explain the unique behaviour of Py partial
wave, which is negative at low energy and changes sign at T, lab ~ 150 MeV.
Oset et. al [17] argue that the change of sign is due to the cancellation of the
N and Roper pole terms, but they treated the Roper only at the tree level. In
ihis paper we inciude V* «+ ¥* and ¥* — N mixing to afi orders, our resuii is
unitary, and the Roper width emerges as a natural consequence of the dynamics.
We also include the inelastic coupling of the Roper to the 1A channel, which is
its dominant inelastic decay mode [18].

We conclude this brief introduction by sumarizing the novel features of this
model, which to our knowledge have not been studied before in the context of
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# N scattering:

o the scattering amplitude is the solution of a relativistic wave equation In
which the pion is restricted to its mass shell in all intermediate states;

o the 7N N coupling is taken to be a superposition of both pseudoscalar ®

and neeudovectar (v3+#) counline-
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e the nucleon self energy is constrained to be zere at the nucleon pole, so
that the nucleon mass remains unshifted by the interactions;

e the A and D3 are pure spin % particles, with widths which develop natu-
rally from the unitarity of the solution; and

o contributions from the Roper (N*) and N* «— N transition amplitudes are
iterated to all orders, giving a consistent description of the Roper and its
width.

These new features are discussed in the following sections of this introductory
Part [, which also includes a presentation of the numerical results, discussion and
conclusion. Part 11, General ‘Theory, presents the relativistic formalism including
the partial wave expansion and a discus~:..u of unitarity. The construction and
the development of the relativistic kernel are presented in Part 1II where the
treatment of the Roper (N*), A, and Dy3 is described in some detail. The
appendicies discuss some techmical points.

B. Restricting the pion to its mass-shell

One w -, to insure that a scatiering amplitude is both covariant and unitary
is to obtain it as a solution of a covariant integral equation. Solving the equation
automatically iterates its kernel to all orders, and gives a unitary amplitnde.

The Bethe Salpeter (BS) equation is one possible starting point for a rela-
tivistic description of wN scattering. If the 7N scattering matrix is M, then the
BS equation 1s

1k
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(1.1)
where V(' p; P) is the relativistic kernel, Ggs(k, P) is the free relativistic two
particle Green’s function {two body propagator) and p, ¢/, k and P are the four

momenta of the incoming nucleon, outgoing nucleon, intermediate pion and the
total four momentum of the system, as shown in Fig. 2. The integration is over all
four components of the pion four-momentum, and for this reason the equation is
described an a “four-dimensional” equation. The ezxact *N scattering amplitude
can be obtained from the BS equation only if its kernel includes the sum of all
connected two particle wrreducible diagrams. There are infinite number of these,
and no known way to sum them, so that the kernel must be approximated.

One approximation is to introduce a separable interaction. In Refs. [19, 20]
this approach was used to parametrized the S and P-wave phase shifts, with
a different set of parameters for each phase shift. This worked well, but the
parameters have no physical interpretation, and it is difficult to relate them to
masses and coupling constants.

Since the kernel must be approximated (by using a few diagrams that we
believe to be especially important physically) there is not necessarily any reason
to retain the full four dimensional BS equation. There are several covariant three
dimensional equations [21] which can be used, and the choice depends on the
physics and on the approximations being made. Recently Pearce and Jennings
[9] used what they refer to as a smooth propagator [22] to describe wN scattering.
They replace the two body propagator of the BS equation,

mi P
(12 — k2 —ie)(m? — (P — k)2 —1¢) (1.2)

G(k, P) =

by the propagator [22] ,

G;m(k,P):'Zﬂ'é(w(W) — ko) ( m+70E(W)+7‘k )

2w m? + k2 - EX(W)— ic (13)

where u and m are the mass of pion and the nucleon, W is the total energy in
the em system, and E(W) and w(W) are the energies of the nucleon and pion
when both are on-shell. They derived this propagator by letting the mass of the
nucleon become infinitely heavy and eliminating the short range structure from
their relativistic kernel. They obtained a pretty good job to fit the phase shifts
up to 400 MeV.

Our approach follows from the examination of the singularities of a typical
Feynman diagram which the equation will iterate, and study of these diagrams
is carried out in detail in Section Il A. We are lead to conclude that the most
accurate method of summing the diagrams is to put the pion on its mass-shell.
Since the pion is the light particle, and previous studies of scattering in which a
light meson is exchanged between two heavy particles of masses my > my led to
the conclusion that the heaviest particle {(mn) ) should be on-shell [23, 24], the new



result seems surprizing at first glance, and we also explain in Section Il A why a
different conclusion is reached for the # N system.
The propagator we obtain can be written

Hwe — ko) (m+‘y°(Ww;,)+7-k
% EZ— (W - wp)? — i

Colk, P) = 27 (1.4)

where wi = /pu? + k? is the on-shell energy of the pion. Not only is this prop-
agator efficient in summing the relevant Feynman diagrams, but it also suggests
some nice approximations for the relativistic kernel, as will be discussed in Part
Hi.

To insure convergence of the mtegral equation, we multiply all of the driving
terms by form factors. Since the pions are on-shell, the form factors will depend
only on the virtual mass (squared} of the off-shell incoming and outgoing baryons
(the N, A, and the N*; no form factor is needed for the Dy3). For example, we
attach a universal function f(p?) to each off-shell nucleon entering or leaving any
vertex, so the form factor for the ¥ ¥ N vertex automatically assumes a factorized
form f(p?) f(p'*}, where p and p’ are the four momenta of the incoming and
outgoing nucleon, respectively. For clarity, we will defer all further discussion of
the details of the definition of the form factors and the construction of the kernels
to Part I11.

C. NN coupling

It is well known that in a model in which pions interact with nucleons which
are on- shell, the pseudoscalar and pseudovector 7N N coupling give the same re-
sults [25]. When the nucleon is off-shell this is no longer true, and the results may
depend on which coupling is used. In some early pertubative calculations based
on lowest order Feynman diagrams, v® coupling was used because this coupling is
renormalizable {26]. However, the use of ¥° coupling for the nucleon Born terms
gives an incorrect result for a,, the 7N isospin-even scattering length. This fail-
ure is associated with the fact that 4% coupling violates chiral symetry unless it
18 accompanied by a ¢ exchange term with precisely the correct strength, as de-
scribed {for example) by the linear o-model introduced by Gell-Mann and Levy
[27] in 1960. The Born terms in this model include the exchange of a ¢ particle
with precisely the correct strength to give good predictions in the soft pioa limit.
'This model was further improved by Weinberg [5] and others [28], who eliminated
the ¢ and developed non-linear chiral Lagrangians. Models based on these La-
grangians give a good desription of 7 N scattering in the soft pion limit without
explicit reference to a ¢ particle. One form of these effective Lagrangians replaces

the pseudoscalar coupling and effective ¢ term with a pseudovector coupling and
a p term. Since then, some people have preferred to use pseudovector conpling
to describe 7N scatlering [6,9].

However, if one is careful to include the correct sigma term (which need not
be a real & exchange, but could be a o-like 7a NN contact term), then it is still
possible to use ¥ coupling. Furthermore, one can show that a coupling consisting
of a mixture of pseudoscalar and pseudovector, with a corresponding mixture of
o-like and p-like contact lerms, is completely equivalent in Born approrimation
to either 4° or 7°y* coupling alone. Specifically, consider a mixed # N N coupling
of the form

g7 [/\75 —(1-2%) %v"] : (1.5)

where p and p’ are the four momenta of the initial and final nucleon, respectively,
i 18 the isospin index for the pion, and X is the mixing parameter. (The vertex also
includes nucleon form factors, omitited here for simplicity: see Part I11.) In this
form, we can easily see that when A is zero the coupling is purely pseudovector
and when it is unity the coupling is pure psendoscalar, and also that the coupling
will be independent of A if both initial and final nucleons are on-shell. Next,
consider a #m VN contact term of the form
2
_Ci /\26i5+(1—/\)2[1}.ﬁ}£— ) (16)
m 4m
where (' is a strength parameter, QQ = %(k + k'), and k,i and k',j the four
momenta and isospin indicies of the incoming and outgoing pion, respectively. If
the contact term (1.6) is added to the nucleon Born terms (the N and crossed
N pole terms shown in Fig. 1(a) and (e)) computed from th~ roupling (1.5),
the resulting # N amplitude is independent of A if the external nucleons are on-
shell, and ' = 1. This comes about because the contact term in Eq. (1.6) also
depends on the mixing parameter A. It is pure g-like if the # ¥ coupling is
pure ¥° (corresponding to A = 1) and pure plike if the 7N coupling is pure
¥34# (corresponding to A = 0), and these contributions are just what is needed
to cancel the A dependence which arises from the nucleon Born terms, giving
amplitudes independent of A. However, if these ampiitudes are used as driving
terms in an integral equation in which the mucleons are off-shell, they will no
longer give identical results, and it is natural to ask whether a particular choice
of X is favored by the physics.
It was found recently [10, 11] that relativistic N N scattering, in a formalismin
which one nucleon is off-shell, is very sensitive to the mixing parameter A, and that
a very good fit to N N data could be obtained using a one boson exchange (OBFE)



model with only the four mesons 7, o, p and w, provided the =N coupling included
an admizture of 22 % 7° coupling. Furthermore, this admixture of pseudoscalar
coupling also gives a good description of the p **Ca spin observables [29]. And
recently Goudsmit et. al. [30] analyzed # N scattering at the tree level and found
that an admixture of about 24% +° gives a good description of the scattering
lengths. They obtained this value of the admixture from their analysis of data
on pionic atoms with isoscalar nuclei using a relativistic mean field theory.

To get a feeling for the dependence of our model on the parameter A, we plot
the isospin-even scattering length, ay, versus the isospin-odd scattering length,
a_, in Fig. 3. For convenience, both scattering lengths have been made dimen-
sionless by multiplying by the pion mass u. Three analyses of the experimental
results, labeled 1 {31], 11 [32], and 111 [33], are shown in the figure. The dashed
line shows how the scattering lengths, as calculated from the nucleon Born terms
only (Figs. 1a and le) vary with the mixing parameter A. Note that the curve
comes closest Lo the data if A = 0.2. The solid line gives the dependence of the
scattering lengths on A when the nucleon Born terms are used for the kernel of
our 7N integral equation, and we see that the iteration of the Born terms by the
equation produces negligible effects. From this figure it is clear that if we use a
kernel with nucleon Born terms only, pure pseudoscalar coupling (A = 1) or pure
pseudovector coupling (A = 0) will not give as good a simulleneous description
of the even and odd scattering lengths as a choice A ~ 0.2. Since the OBE model
of Ref. [10,11] is most consistent with a model of N scattering based only on
the nucleon Born terms, this result may partially explain why the result A = (.22
was obtained.

Next, consider a slightly more complete model in which the driving terms
of the integral equation include the contact terms of Eq. (1.6), in addition to
the nucleon Born terms. Now the Born term result for the scattering lengths is
independent of A, but it turns out that the scattering lengths obtained by solving
the integral equation (the cross in Fig. 3) are also (nearly) independent of A.
Finally, the scattering lengths obtained from the solution of the integral equation
with the full kernel, including all the terms shown in Fig. 1, also does not depend
very much on A. These results are represented by the large star burst in Fig. 3.
We therefore conclude that the scattering lengths (and most of the low energy
observables) will be insensitive to X if the kernel is chirally symmetric.

Does it follow, therefore, that the mixing parameter A plays no role in the
description of 7N scatiering? To the level of sophistication to which we are
working, this is not the case. To see where the dependence on A reappears,
consider the nucleon self energy, X(p).

D. Nucleon self energy

If the Roper contributions are omitted for simplicity (they arc discussed in
detail in Part [II D) our integral equation produces a nucleon self energy which
can be written diagramatically as shown in Fig. 4. The elementary pion-nucleon
bubble diagram is shown in Fig. 4a, and all other contributions which come from
iterating the contact terms are shown in Fig 4b. [The integral equation for the
unitarized contact amplitude, M., is shown in Fig. 4c.j Now the coniributions
shown in Fig. 4 include much physics, but also leave out many processes. An
infinite class of diagrams excluded from our model are shown in Fig. 5. As
the figure shows, this class could also summed by the integral equation shown
diagramatically in Fig. 5d. We can allow for these contributions approzsmately
if we demand that, at the nucleon pole, the nucleon self energy not be shifted by
the interactions. This requiremeni means that the infinite family of interactions
is, in effect, included automatically, at least near the pole. It also means that the
addition of the nucleon self energy to a model with bare nucleons will produce the
minimum effect possible, meaning that the model is fairly stable under changes
in the dynamics. We will impose this requirement on our model, and will refer
to it as the stability condition.

At the nucleon pole the nucleon self energy is only a function of the parameters
of the model, and its dependence on the parameter A (with the others held fixed)
is shown in Fig. 6. Note that it is zero for a A 2 0.25, and our stability condition
is therefore realized practically as a constraint on the parameter A. Note that
this constraint yields a value for A which is in rough agreement with the value
required to simultaneously minimize the error in the scattering lengths a; and a_
obtained from the naive model which used only the nucleon poles as the driving
driving term in the integral equation (recall the results shown in Fig. 3 and the
subsequent discussion). We do not believe that this is an accident; the value of
X = 0.2 which seems to stabilize the model should also give the best physical
approximation in situations where the model is incomplete.

Before leaving this section, we wish to emphasize that the stability condition
can only be satisfied if a mixed coupling is used, and that 1t is almost completely
determined by the buble diagram shown in Fig. 4a. For pure pseudoscalar cou-
pling, the self energy is positive definite, while for pure pseudovector coupling it
is negative definite, so that only the parameter A can be determined from the
stability condition.



E. Description of spin % particles

1t is well known that the A(1232)-isobar plays an important role in describing
iteractions involving nucleons, and there are many works which include this
resonance. However, in spite of the number of papers which have studied this
particle, is still some disagreement about the best way to describe a spin 3/2
particle, and in this section we will discuss the choice we have adopted. The
same choice is used for the D;3 resonance.

There are two spin 3/2 propagators used in the literature. One, which is
known as the Rarita-Schwinger propagator, has the form

. ; 1 2P,P,  v,P, — Pay,

va - (M o P) [g#l‘ 37#7” 3M2 3M (17)
where P, is the four momentum of the particle and M its mass. This propa-
gator, which was proposed by Fierz and Pauli [34] and simplified by Rarita and
Schwinger [35] more that 50 years ago, can be obtained from the Lagrangian for
a spin 3/2 particle [6, 14]. Another propagator

i 1 1
Py = (H-t_"?) [g#v - E'YM'YV - W(P‘Yﬂpl’ + PM7VP)] (1.8)

was recently popularized by Williams [13] and used by Jaus and Woolcock [36],
who point out that the Rarita-Schwinger propagator P, projecis out a pure spin
3/2 state only when P? = M? (when the particle is on its mass shell). Moreover,
Benmerrouche, Davidson and Mukhopadhyay [14] have recently pointed out that
P,, does not have an inverse, and claim that P;,,, is therefore the correct spin
3/2 propagator.

It this paper we are not interested in developing a field theory of spin 3/2 par-
ticles. Instead, we need a propagator which gives a covariant, phenomenological
description of a composite spin 3/2 state. Iteration of this term by our integral
equation will then generate a dressed contribution which satisfies unitary and
has the correct width as determined by the dynamics. We will use the Williams
propagator for this purpose, because it turns out to have a very nice property:
when iterated by the integral equation, it retains its structure, giving a dressed
propagator of the form

dressed _ i _1 —
P ‘(M*P+EA(P)) {""” 3

3%(1)711}9" + Py7vP)]

(1.9)

where T a(p) is the self energy of the A. With out kernel, this seif energy turns
out to be a simple function. See the discussion in Section 11 E for more details.
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I. The Roper

The £; phase shift is siall and negative at low energy, then it changes sign
at Ty ~ 150 MeV and grows rapidly to pass through a resonance [N*(1440) |
at Ty ~ 485 MeV. There are two different explanations for this behavior in the
litterature. Oset, Toki, and Weise [17] argue that the Roper is needed to change
the sign of the P, which is negative at low energies because of the nucleon pole
term. However, Mizutani el. al. [15], Morioka and Afnan [16], and Pearce and
Jennings [9] argue that this sign change is due to a cancellation between the
tepulsion from the nucleon pole and attractive non-pole contributions, and can
be understood without the Roper. Qur calculation supports this latter point of
view, as we will show later.

In this paper we study the role of the N* both at low energy and in the
resonance region. To describe the N* consistently, we include a new “ nucleon”
pole term with a mass m” in the kernel of the integral equation, and iterate these
contributions to all orders (in the same way other contributions are handled),
being careful to include contributions from the amplitudes which describe the
transition of a Roper to a nucleon, and vice versa. We describe the principal
inelastic channel of the Roper by including the inelastic transitions N* — 7+ A
and 7 + A — N*. The final solution satisfies unitarity, and antomatically dresses
the Roper pole. This treatment is discussed in detail in Section II1 D.

G. Results

Qur principal results are shown in Figs. 7-15, and in Table I. The S, P, and
D wave phase shifts and in elasticities are shown in Figs. 7-13, the total elastic
7~ p cross section in Fig. 14, and the total elastic x¥p cross section in Fig. 15. In
each of these figures, the solid line is the total result, including all of the driving
terms shown in Fig. 1. Qur fit to the phase shifts and inelasticities is very good,
with an overall Y2 ~ 1.7 per phase point.

Table I gives the final values of all parameters. Those given in bold face (14
parameters) were adjusfed to make the fit. The a NN coupling constant was
initially fixed at the value shown, but later we did try varying it and found that
the fit could not be significantly improved and was nol very sensitive to small
variations in its value. The Table also gives values of parameters determined
by the fit. These include effective resonance masses and widths (see below)
and two other parameters fized by consistency requirements. The N N mixing
parameter, A, was determined by the requirement that the nucleon self energy
be unshifted by the interaction, as discussed above, and the overall strength C
of the combined o- and p-like contact terms [recall Eq. (1.6)] was fixed so as to

It



insure that they exactly cancel the nucleon pole terms at the wV threshold, as
required by chiral symmetry. (This adjustment Is necessary because the nucleon
forin factors are nol unity at the # N threshold.)

Because of our choice of spin 3/2 propagator, and our approximation scheme
which leads to the result that the crossed A and )3 poles are zero when ap-
proximated as contact terimns (for details see the discussion in Part III}), the A
contributes only to the Psy channel (except for a tiny contribution to the Ds3
channel, which we will not discuss), and the )13 contributes only to the Dig and
P13 channels. Furthermore, approximating the crossed nucleon and Roj.er poles
by contact terms means that they only contribute to spin 1 /2 channels. Hence
the phase shifts decouple, with the Pag channel driven only by the direct A pole,
the I),3-Pi3 channels driven only by the direct Dy3 pole, and all the other (spin
1/2) channels driven only by the nucleon, N7, and the effective - and p-like
contact terms.

It is therefore convenient to describe the fits to each of the decoupled channels
separately, and we will begin with the spin 1/2 channels, shown in Figs. 7-10. As
discussed above, these channels are driven by the nucleon and N* Born terims,
and the effective o- and p-like contact terms. These driving terms depend on
only 8 adju: : ible parameters: the undressed mass of the N* pole, m*, the bare
AN N* coupling, gn-, the strength of an “additional” p-like 77 NN contact term
V, not required by (but consistent with) chiral symmetry, parameterized by a
constant (7;, where {omitting the form factors)

2
V, > —C, 4—5:;5 [, 7R (1.10)
three parameters needed to describe the inelasiicity of the N™, and two form
factor masses: the mass in the nucleon form factor, A and the mass in the N*
form factor, A*.

The inelasticity of the N* is approximately described by coupling to the 7A
channel, with coupling constant gy.. Now the A which dominates the P33 channel
is fully dressed by the interactions, but for simplicity, we did not dress the delta
in the 7A inelastic channel, and we compensate for this omission by allowing this
virtual, undressed delta, which we denote by A’, to have a diflerent mass, ma:,
and forin factor with a different functional form and mass, As:. We find the fit
to the Roper inelasticity, shown in Fig. 10, requires mas = 1074 MeV. This low
value is close to the sum m + g = 1078 MeV, showing that a good description of
the inelasticity requires that the Nax threshold be in the right place. This leads
us to believe thal our model can be improved by replacing this effective delta
with the fully dressed delta determined from the fit to the Pag channel.

Before we discuss the fits to the other channels, we wish to point out that
the S waves, shown in Figs. 7 and 8, are particularly sensitive. To show how the
total result is built up from individual contributions, the curves in the figures
show the result when the kernel (i) includes only the direct nucleon pole term
and the contact term derived from crossed nucleon exchange (the dotted line),
(ii) the terms in (i) plus the combined o- and p-like contact terms of Eq. (1.6)
(the dot-dashed line), (iii) the terms in (i1) plus N~ driving terms (the dashed
line}, and finally (iv) the total result, which includes the terins n (iii) pius the
additional p-like 7ANN contact term of Eq. (1.10) (the solid line). Since the
contributions add non-linearly, it is difficult to extract the separate contributions
from the figures, but we can conclude that the chiral model without the N* and
rho, (ii), gives a very good account of the scattering lengths, but the N* pushes
the S, phase shift in the wrong direction, and only after the additional rho is
added do we restore the correct low energy behavior. The bend in the Sy is due
to the N*, and we have no need for the 511(1535) in our model.

The same curves are shown for the spin 1/2 P waves in Fig. 9. Note that the
nucleon Born terms make a very small contribution to the P;; channel above 200
MeV, but that below 200 MeV they already exhibit the change from repulsion
to attraction. The Born terms alone give a zero in the P phase shift at ~ 280
MeV, but inclusion of the Roper moves this zero down to the correct region =~
150 MeV. At higher energies the Py, phase shift is dominated by the Roper, with
the contributions from the o- and p-like contact terms being very small.

We now discuss the spin 3/2 channels, where the situation is much simpler.
The results for the P33 channel are shown in Fig. 11. This channel is fit by three
parameters; the bare delta mass, ma, the bare N A coupling constant, ga,
and a mass in the delta form factor, Aa. (The nucleon form factor has already
been fixed by the fit to the spin 1/2 channels.) Note that the mass of the bare,
unshifted delta pole is at 1319 MeV, considerably higher than the nominal delia
mass of 1232 MeV, but that the dressed A mass is very close to the nominal value
of 1232.

The D;3-P;3 channels are fit by 3 more parameters; the bare mass of the
D3 pole, mp, the coupling of the D3 to the =N channel, gp, and the coupling
of the Dy to the inelastic 7A’ channel, g),, which describe the inelasticity of
the D,3 approximately. The parameters which describe the effective delta in the
inelastic channel, mas and Aa:, are constrained to be identical to those used for
the Roper. The fit to the D3 channel, shown in Figs. 12 and 13, 18 good, and
the bare Dy3 mass, mp, is about 1513 MeV, in good agreement with the nominal
value of 1520 MeV.

The total elastic 7~ p cross section is shown in Fig. 14. The data are from
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Ref. [31). The three dotted curves are the result for a kernef with nucleon Born
terms only (practically zero), the Born terms plus the chiral contact terms, and
then these with the A contribution. The A clearly dominates the cross section
below 300 MeV. The addition of the N* (the dot-dashed line) followed by the
additional rho (the dashed line) suppresses the cross section up to 300 MeV,
but gives needed strength above 400 MeV, and adding the Dy to get the final
result {solid line) restores the cross section at very low energies and gives a very
significant addition above 400 MeV.

The total elastic x*p cross section is shown in Fig. 15. The two dotted curves
which are practically zero are the result for a kernel with nucleon Born terms
only and Born terms plus chiral contact terms. Then the results of adding the A
and the crossed N* are two overlapping dotted and dot-dashed curves. Finally,
the addition of the extra rho (solid line} makes small but important contributions
at low and high energies

A number of interesting parameters are determined by our fits, and these are
also given in the Table. We have already discussed how the # N mixing parameter,
A, is fixed by the stabilily condtlion, and how the strength of the A-dependent
o- and p-like contact terms, defined in Eq. (1.6), is fixed by chiral symmetry. In
addition, we have looked at our solutions, and extracted an effective mass and
width for each resonance by writing the solutions, near the resonance, in the
following approximate form

A
— 1t 8,
meg — W — i

(1.11)

where m.g and I are constants obtained from the exact solutions (which depend
on the total cm energy W) evaluated at W = m.g. 1n particular, the value of
meg 18 the solution of the non-linear equation

mpg —- Meg + ReXp(meg) =0 (1.12)

where mp is the bare mass and Ep(W) is the self energy of the resonance K.
The values of the these effective masses and widths are given in the Table. The
definition of the effective coupling constants for the resonances, g.q, is discussed
in Appendix D. The renormalized 1N N coupling constant, g® | is

() = (1= gwowom)

Note that the renormalization of the 7N N coupling constant not insignificant.
The coupling of the nucleon to the N* means that the dressed states are linear
combinations of the bare nucleon and N* states. The admixture is given by a

(1.13)

W=m
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function Z{W) (defined in Eq. (3.27), and the values of 7 at the nucleon mass
and at the effective N* mass are given in the Table. Note that the mixing is only
a few percent.

Finally, we close this review of our results by discussing the form factors used
in this model (for a detailed discussion, see Sec. 1l C). A form factor is needed
to insure that the solutions of the integral equation exist, or alternatively, to cut
off the integrals over the # N loops which appear in the solution. This form factor
cannot be associated with the pion mass, as is usually done in pion exchange mod-
els, because the pion is on-shell. Anticipating the extension of this model to the
description of the electro-production of pions, where a gauge invariant treatment
of electromagnetic interactions is possible following the procedure introduced in
Ref. [37], we choose to make the form factor depend only on the off-shell nucleon
mass, and to identify the form factor with the nucleon itself, so that the same
universal form factor will be used for all off-shell nucleons, wherever they appear.
When the nucleon form factor accompanies the intermediate nucleon in the direct
nucleon pole term, the virtual nucleon mass (squared) is simply

W2 =m? + p? + 2m(Tiap + 1) , (1.14)

and the form factor is plotted versus Tju, in Fig. 16. When the nucleon form
factor accompanies a virtual nucleon in a 7N loop, ils mass (squared) is

pPP=W2 - 2Ww(k) (1.15)

where k is the magnitude of the pion Lthree-momentum in the loop, and w =
V2 + k2. The form factor is ploited versus k for a fixed W = m + g in Fig. 17.
We emphasize that the same nucleon form factor is shown in both figures; only
the variable on which it depends has been changed.

Because of the inelastic #A’ channel, a form factor is also needed for the
A’, and once form factors have been introduced for the nucleon and dehta, it
is natural to include form factors for the other resonances as well. We found
that no form factor was needed for the 213, but an N* form factor was included
because it improved our fits. The A and N* form factors are plotted versus Tiap
for the kinematics of Eq. (1.14) in Fig. 16. In common with the nucieon form
factor, the A and A’ form factor was also chosen to peak af. the nucleon mass
m, but the N* form factor was chosen to peak at the N* mass. The A’ form
factor is plotted in Fig. 17 for the appropriate kinematics of Eq. (1.15), but with
W = ma. + p. Unfortunately, our results are sensitive to the form factors, which
are purely phenomenological.



H. Conclusions

We draw the following conclusions from this work:

o A simple resonance pole model, with nucleon, delta, Roper, and I3)3 poles
and other couplings described by 14 adjustable parameters (including 4
resonance masses, i coupling constants, and 4 form factor masses) has
been found to give a very good description of x/N scattering up to pion
lab energies of 600 MeV. The model is simple, covariant, satisfies unitarity
exactly, and is approximately chirally symmetric at threshold. A vory good
description of the data up to 400 MeV lab energy would require only 8
parameters.

o The requirement that the nucleon self energy be unshifted by the interaction
(refered to as the stability condifion) can be satisfied only if the x N coupling
1s a mixture of pseudoscalar and pseudovector couplings, and the value we
obtain (25% pseudoscalar and 75% pseudovector) s well constrained by our
fit, and largely independent of the values of the other parameters. Further-
more, it is in good agreement with the value of this parameter obtained
from a OBE model of NN scattering [10].

e The spin 3/2 resonances in our model have no virtual spin 1/2 compo-
nents, leading us 1o conclude that such components (which may very well
be present in a less phenomenological treatment) are not necessary for a
successful fit to the data.

¢ The position of the bare A pole (1ma ~ 1319 MeV) is surprizingly [ar from
the effective mass of the A resonance (m<$f ~ 1230 MeV). This should be
taken into account in any quark model which neglecis pion interactions.
The same is not true for the Roper and the D,3; in these cases the bare
and effective masses are quite close to each other.

¢ The existence of a zero in the P;y phase shift does not depend on the Roper,
but its precise location is sensitive to the presence of a Roper resonance

e The value of the renormalized 7NN coupling constant, (g%)%/4x, is not
well determined by our model; a good fit is obtained for values in the range

from 12 - 15.
The retnainder of this paper is divided into two Parts, which give more details
about the relativistic wave equation which we use, and the details of the model.
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II. GENERAL THEORY

In this part the relativistic equation for the 7V scattering matrix M is pre-
sented, and we show that the theory is covariant and satisfies unitarity. We
include a complete discussion of the justification for restricting the pion to its
mass shell. Then we develop the technique used to solve the integral equations.

A Why should the pion be on sheli?

Before we construct the covariant integral equation used to describe N scat-
tering, we discuss typical Feynman diagrams which contribute to the scattering
amplitude. Following the historical route, we first consider a simplified problem
where 7 N scattering is dominated by diagrams like the direct and crossed nucleon
poles (diagrams (a) and (e) in Fig. 1}. A unitarized amplitude is obtained from
these “driving terms” by iterating them to all orders. [The role of the integral
equation is to carry out this iteration in a convenient, closed form.} The iteration
of the direct pole diagrams (Fig. 1a) is straightforward; the most challenging
case is the iteration of the crossed nucleon pole diagrams (Fig. l¢) and we are
therefore lead to look at the diagram in Fig. 18a, and the corresponding crossed
diagram shown in Fig. 18b. The box and crossed box diagrams, which occur in
the meson exchange theory, are shown in Figs. 19a and b for comparison, and
will also be reviewed below.

For simplicity, we will carry out our analysis at threshold, with all of the
external particles on-shell, so that the four-momenta of the external nucleons is
po = {m, 0), and of the external pions is go = (g, 0). The four-momentum of the
internal pion is k¥ = (kg, k), and each of the diagrams (18) have four poles and
two double poles in the complex kg plane. If the three momentum k is very small,
the location of these poles is as shown in Fig. 20, and introducing the quantities
w=/p2+k? and £ = /m? + k2, the poles for the box, Fig. 18a, are at

k[],“:uuif

k3 =m+p—E +ie
E*=m~ E + ic

By% = —w +ie
k= E 4+ m—ie

kS =E+m+ p—ie .

Since > p, the poles (ba) and (6a) will give very small contributions, and we see
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that the box is very well approrimaled by closing the kg contour in the lower balfl
plane, and keeping only the positive energy pion pole (1a). The same argument
holds for the “crossed box”, Fig. 18b, with singularities at

k(l,b:w—if
kgb:m—ng+if
kgbzm—-E+if

ki = —w + de
kgb:E+m—if
EP=E4m—p—ie .

Note that only the poles (2) and (6) have a location different for the corresponding
poles in (a), and that the pole in the lower half plane, (6) is still quite distant
from the pole (1), which gives the dominant contribution.

We can use this analysis to make some very interesting estimates. If the
pion three-momentum is small, so that E ~ m, then the contribution from the
dominant pion pole (1) to the box (a) and crossed box (b) is approximately

1 A 1

M; = M = , 2.1
"= G- e T e imee 0 @Y
and the contributions from the poles (5) and (6) are approximately
15
Mz =M} = : 2.2
m m (2'"1)7 ( )
From these we conclude the following:
o If we neglect the crossed box, we make an “error” proportional to
b -
M _w-# (2.3)
M* w+p

Since momenta of the order of a few 100’s of MeV are probably important, the
crossed box contributions are not negligible when compared with the box contri-
butions generated by the iteration of the crossed nucleon pole term. But these
crossed boxes will not be included in our kernel, and hence our calculation of
the effects of the crossed nucleon driving term is intrinsically approximate. Ap-
proximating the crossed nucleon driving term by a contact term is therefore not
inconsistent with the precision of this method.

¢ The “error” which results from neglecting the two poles (5) and (6) is negligible:
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m YT (2.4)

Therefore, the difference between the use of the Bethe-Salpeter equation and our
equation in which the pion is on shell is not large enough the justify the difliculity
which accompanies a serious attempt to solve the Bethe-Salpeter equation. This
is particularly true in view of the fact that a much larger error results from the
neglect of the crossed box terms, which are neglected in both methods.

‘The conclusion that the light particle (the pion) should be put on shell is very
different from the result obtained in a theory in which a light meson is exchanged
between to heavy particles with masses m; and mjy, where both m; and m; are
much greater than p. If we take my > my, then the best approximation leads to
an equation in which the heavy particle (m3) is on shell [24], and it is worthwhile
to review the difference between these two cases here. The box and crossed box
for the meson exchange case, Fig. 19, also have four poles and two double poles
in the complex ky plane, with the singularities as shown in Fig. 21. Il we take
m3 to be very large, so that F; = \/mzE + k2 ~ my, then the singularities of the
box are at

e e
k§“=m. + 1€
kg“:ml —w + i€
k" =—FE; +ie
k32 =my +w — ic

k3“=2m2+m1—ic ,

where Ey = /m? + k2 and w = /p? + k2. Because the exchanged particle is
light, the situation is completely different; while the poles at (1) and (2) dominate,
the singularities from the exchanged meson are very close, and are the most
important source of “error”. Because the singularity at (5) is now very close to
{1), the “light” particle pole at {1) nc longer clearly dominates. Here the crossed
box plays an important role. As before, its singularities are at the same places
as the box, except for the poles at (2) and (6), which are at

kgb =my; — ic

kSt =my — 2my +ic
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Now we see that the crossed box 1s well approximated by closing the countour
in the upper half plane, and keeping only the double pole (3). However, this
contribution is cancelled by a similar contribution from the same pole in the box.
Neglecting the distant poles (6) and (4), the sum of the two diagrams is

1

{w—my + kg —ie)2(w + my — kg — ie)2(E; — ko)
N 1 + 1 1

(ku —m; — IE) (m1 - kg - i()_

M® + M? ~ [dko

, (2.5)

which displays the cancellation. However, (2.5) is not zero, because the two
poles in the bracket “pinch”. The only way (o evaluate (2.5) exactly, withoul
considering the crossed box at all, is to close the coutour in the upper half plane, in
which case the total result comes only from the pole (2) in the box, corresponding
to putting the heavy particle on shell.

Looking back over the arguments in the two cases, we see that the essential
difference is the mass of the ezxchanged particle. If this mass is large (which is
the case for 7N scattering), then the singularities from the exchange are very
distant, and the on-shell contributions of the light particle dominate. If the mass
is light, the singularities from the exchange are important, and are best cancelled
by putting the heavy particle on shell, and as the discussion shows [24], the exact
answer is oblained in the limit when the mass of the heavy particle becomes very
large.

B. Integral equation

To obtain the correct factors for our equation, it is convenient to start with
is the Bethe-Salpeter equation for 7N scattering,

Ma’a(pfw P, P) = va'a(P’, P, P)
[ dk )
+i [ Gy Ve (b, PGB (b, P Mok, P)
(2.6)

where Mao(p', p, P) and V,o(p', p, P) are the scattering matrix and the rel-
ativistic kernel (potential) of the scattering, a,a’ and «"” are Dirac indicies
of the initial, final and intermediate states, and the two-bhody propagator
GB a”,a‘”(k, P) 18

[m + P - ‘]o"n""
(n* — k% —2eY(m? — (P — k)" — de)

Gl ar (b, P) = (2.7)

20

The initial and final momentum of the nucleon are denoted by p and p’, and the
total momentum is P. In center of mass systemn these momenta are writien

P=(W0
p=(W — kg, -k); k = (ky, k)
p=(W -k, —k'); k' = (K, k') (2.8)

where W is the total energy of the system.

FEq. (2.6) can be reduced to the three dimensional equation with the pion
on shell by formally integrating over the internal pion energy kj and retaining
only the contribution from the positive energy pion pole in the propagator (2.7),

gi"ing
B‘Ia‘a(p’apaj )— \'a‘a(P',P,j )
j v ( ! ) ( ) ( )
(2 )32 N alall p,k,J Ja''a knj I"Iu a ‘-';P»J

where the itwo-body propagator Gg oo (k, P) is now replaced by the off sheli
nucleon propagator gy ,m(k, P)

[+ (P = Blara 210)

afo k,P = "
4 ( ) (m? — (P — k) —i)

and wy = ko = \/ps? + k2 is the on shell energy of pion.
Consider a kernel which is a sum of a contact term V; ,-o(p', p, P) and baryon
pole terms, collectively denoted by B (ihe set { B} includes the nucleon itself)

Va‘a(P’: p, P) =V, a'rx(P':P: P) + Z I‘OBIQJ(P’: P) G(I)EI(P) r(t}i a(pl P) ’
B

(2.11)

where I'}; | (p, P) are undressed vertex functions describing the coupling of baryon
B — aN, and G%(P) are the undressed propagators of the baryons. Then, if the
baryons do nol miz it can be shown that the solution to (2.9) can be written

Mﬁ'ﬂ(p'lp:P): MCﬂ'ﬂ(p‘)p: P)+Zrtﬂ (,J(P’;P)GH(P)FB ﬂ(p!P)
B

(2.12)

21



where M, ,...(p, p, P) is the infinite sum of iteraled contact-diagrams,
Mca'a(p',p, P)= Veaalp'.p. P)
dk
- m cara(P' K, P)ganam(k, PYMc omalk,p, P),

I'g of(p, P) is the dressed vertex for baryon B, which is computed from the bare
vertex and M., using Lhe following equation

(2.13)

FB a(prP) = a(p: P) /(2 )32 rB u"(krP)ga"a"'(k!P)Mc ci”’a(kapnp) 3
(2.14)

and Gg(P) is the dressed baryon propagator, which is calculated from the equa-
tion

o _ 0 1
6u") =0 (rararsm) (2.15)

where g(P) is the baryon self energy, given by

&k
p(P) = ] e (k. Pgaar(h, P o (, P)

[

Bn('k P)gaa'(k, P)M, oior(k, K, P)

Xgauom(’t’, P)I‘OB’ a"'(k" P)

+Ep(P) | (2.16)

where 53¢ contains the effect of the coupling of baryon B to inelastic channels
(discussed in Sec. 1T G). Equation (2.12} is illustrated diagramatically in Fig. 22,
and Eqgs. {2.14}, (2.15), and {2.16) in Figs. 23a, b, and ¢, respectively. The
equivalence of Eqs. (2.12) - (2.16) with Eq. (2.9) is proved in Appendix A for the
case of a single baryon, and the proof is trivially generalized to more than one
il there is no mixing. If there is mixing, which is the case for the nucleon and
the Roper, the sell energies and propagators become matrices, and this case is
discussed in detail in Sec. 11T D.

It is more convenient to use Eq. (2.12) instead of Eq. (2.9) for several reasons:
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(i) since we approximate the crassed terms by contact terms, all of factors
which make up Eq. (2.12) can be expressed as geometric series, and summed
to a closed convenient form;

(i1) we want to keep the nucleon pole unshifted, and this requirement is con-
veniently implemented by requiring that Eq. (2.16), for B = N, be zero at
P2 — m2;

(iii) The form of Eq. (2.12) enables us to separate the resonance contributions
from the background, and the widths of resonances can be casily obtained
from Egs. (2.16).

All of the integral equations above are manifestly covariant. This is guaran-
teed by the covariance of the volume integration,

d®k

Furthermore, these equations automatically give a solution which satisfies uni-
tarily exactly, as we will show in the next section.

C. Unitarity

The derivation of the unitarity relation for pion nucleon scattering is similar
to the one given in Ref. [11] for NN scattering.
Let us start from Eq.(2.9), writting it in a compact form

M:V—/VGM, (2.18)
where [ = [ d®k. Taking the Dirac conjugate of this equation yields,
M:v—/ﬁév (2.19)
Faliowing [11] we obtain
H—M:—%/ﬁAGM (2.20)
where in this case
AG:nm(mﬁ4P-kF)C"%£:ﬁ) (2.21)
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Restoring the indicies and integrating over the inagnitude of k gives * explicitly
-.M_u‘n(p’,p, P)_ M E!'C!(p’vlh P) -

|k j — L5 - - )
-—_ T L —_ " nr i 2_
"l6xW d M aran(p b, PYm + P — oy anMamalk, p, P} (2.22)

where ¥ — {wi, i:) is the pion momentum when both nucleon and pion are on
shell. X
If we expand (m+ P — })ao in terms of Dirac spinors with helicity A [38]

(m+ P = Baa =2m Y ua(p, A) dar(p,A) (2-23)
A

and introduce,

MEL (' p. P) = i (p', M) Mara(p', p, Plua(p, A) (2.24)
we obtaln
=14, p _mlk —t+ . z
M)VA{P ,P,P)—M;j(p P IJ) - —187I'i“|r" Z]in MA'A"(p lkl P)A’I}:,t(k,p,}))

Alf

(2.25)

Eq. (2.25) 1s an exact statement of elastic unitarity.

1I1. MODEL

The results obtained in the previous Part hold for any choice of the relativistic
kernel (or potential). In this Part, details of the model of pion nucleon scattering
describe in Part I are presented. The main goal is to calculate the scattering
amplitudes shown diagramatically in Fig. 22. The choice of form factors is
discussed in Sec. C, followed by a discussion of the treatment of each baryon
resonance (N*, A and D,3) and the inelasticity.

A. Relativistic contact terms

The solution of the integral equation (2.13) is greatly simplified if the relativis-
tic kernel V. is approximated so that the two-pion production cut, which arises
from the crossed pole driving terms, is eliminated. This approxiination allows us
to reduce the integral equalion to a geometric series, which can be summed to
give a closed form for the solution.
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However, this approximation must be done very carefully, as these terms make
important contributions to the S-waves. We require that the approximation
preserves chiral symmetry at threshold (which will give the correct scattering
lengths), that it not depart significantly from the tree level calculation (where all
external particles are on-shell), and that it extrapolates smoothly to the nucleon
pole. For the last requirement we extrapolate the amplitude off-shell in the
manner suggesied by the structure of our integral equalion; we consirain ihe
pions to their mass-shell and allow the nucleons to go off shell.

The exact crossed nucleon Born term with mixed coupling is

— A m . =
VI, p. P)=gnT; (Ms + (12m )#75) - j(vf;; fk, _#k)z

(f‘f’ + %ﬂf’) L@ - DI GDInGY  (31)

where 7 and 7; denote the isospin of nucleon coupled to the pion field i and j
and ¢ is the bare NN coupling. The nucleon formfactor fx will be described
later in Sec. C. This term can be written in the following form

VY@, p P)=¢’'ri7 [(a, + blg)
+ "‘2—# (aﬁbzi_-?) N (aﬁbsp) m-p

m ; 2m

-+ m2'r'nﬁ' (04 +bqg) E{%é] fi{((pl _ k)?)IN(p!2)fN(p2)
(3.2)

which displays its coupling, through the factors m—p ( or m—#’), to the negative
energy sector. We will first assume that all the particles are on shell and neglect
the off-diagonal part of ) (which gives only a tiny contribution to the S-waves).

This gives us
A -1 1 1-2)?
)

m? —u 4m

VW, p P)= Cotnn IR ) (45

= VNP (™) In(p®) (3.3)
where C is a proportionality constant, u = (p’ — k)?, and
N W24 put-—m?
Q= — w7 (3.4)
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Since we are inlerested in retaining the dominant S-wave terms only, we will also
neglect the p’ - k in u (this gives only a tiny contribution anyway). This gives
o (W)W g m? 2 g 5)
N 22 ’
Finally, in order to obtain the correct himit at W = m, which is very important
for a calculation of the stability condition, we have modified the second term of
V. as follows

R W(W?2 + u? — m?)
2—u_(W2—m2)(W2+m2—2p2)—p
w 0
~W2+m2~1np~2p27

0
i
m 4

(3.6)

This approximate expression is very close to the result we would have obtained if
we had averaged the exact crossed diagram (evaluated below threshold by putting
the pions on-shell) over the pion three momentum ( such as would occur when
V. is used as a kernel); it gives only a 6% error when used to evaluate the fourth
order diagram. It is also very close to the exact tree diagram above threshold,
as shown in Fig. 24. Note that the “tree approximation”, the first form given in
Eq. (3.6}, gives a very bad resuit below threshold.

To restore the chiral symetry which is broken by the pseudoscalar coupling,
we introduce a g-exchange term. A p exchange term is also introduced in order
get a good description of the 5 wave scattering lengths. The ¢ and p exchanges
are approximated as contact terms, and the p exchange is divided into two terms,
one with a strength proportional to (1 — A)?, and one independent of A. The first
of these, when combined with the o-like exchange term can be adjusted to give
an interaction at the 7N threshold which is independent of A [ recall Eq. (1.6)],
while the second will have a strength which is independently adjustable [recall
Eq. (1.10)]. Specifically, with the approximation for § made above and with the
form factors added, these two contact terms are

2
Ve p Py f _ )
Vi e Py=-Cf§ [6-,*2 +[r, (1 - A)ZE’:]

2
7 t s g
Vi(p',p P)= --(,.pmf(?[rjm-m (3.7)

where V¢ was defined in Eq. {3.3). Since it is very difficult to preserve chiral
symetry to all energies, we maintained it at threshold, which required the same
form factors in all of the contact terms, and the condition
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CfE=fiim+p)*) (3.8)

which determines the constant .

The crossed diagrams for the baryon resonances (N*, A, D3) also were ap-
proximated in the same way as we approximated the nucleon crossed diagram,
and n this approximation the A and )3 crossed diagrams are zero. The details
of the treatment of the resonances will be disscused in Secs. 111 D-F.

Finally, the total relativistic contact interaction,

Vo' p, i) - v W p, P)+ VW 0, PY+ VI .0, P+ VY (0,0, P)
(3.9)

can be written in the following covariant form,

Vep P = GO L+ COVIINGINGED  (310)

B. Solving the integral equation for M,

In this section we would like to solve the integral equation (2.13) for the
background amplitude M.. This equation is shown diagramatically in Fig. 4c,
and is the first term in the full solution, as represented in Fig. 22a. The driving
terms for this equation are given i Eq. (3.10). The calculation of the dressed pole
diagrams which complete the solution, as shown in Fig. 22b, will be postponed
until we discuss the resonances.

To calculate both background and the pole diagrams it 1s more convenient if
we use the projection operators:

at = 12T (3.11)
2
In terms of these projection operators Eq. (3.10) becomes
Vo' p, P) = (VAT + VOAT NG In () (3.12)
where
VE = C{W) % Co(W) (3.13)

Since V.t only depends on the total momentum P = (W,0), the integral
equation (2.13) is a geometric series, which can be summed in closed form. The
result is,
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M(p,p, P) = (MFPAY + M7 A7) fn(p))In(P™) (3.14)
where

V:i:
+ — c
T 1+ VHmlg £ WhhF ph)

(3.15)

The integrais I, which arise fromn the bubble inlegrations shown i Fig. 4c, are

Lo [ ok (w_k) I (P - k)?)
T @\ ) 2u(m?—(P—k)?—ic)

(3.16)

C. Form factors

Form factors are needed to insure that the integrals in Eqgs. ( 2.13), (2.14),
and (2.16) converge. Ideally, the results shouid be insensitive to the details of
the form factors.

The form factors for the nucleon and N* have the following form

" . 9
(Ag - mf3)2 (3.17)
(A% —mi)? + (m} —p?)? ’ )

fo(p?) = (

where Ap is the form factor cuttoffl mass, and mp 1s the dressed baryon mass
(recall, as we discussed above, that the dressed nucleon mass is equal to the bare
nucleon inass). ldeally, the same form should be used for the A and A’, the
delta which appears inside the #A’ loops which generate the inelasticities of the
N* and D)3 resonances, but we found that the same form (3.17) did not work
unless we replaced mg by m, the nucleon mass. The behavior of these factors
for various illustrative cases has already been shown in Figs. 16 and 17.

The form factor (3.17) not only gives fp(m%) = 1, but also satisfies the
criteria that was suggested for the form factor in Ref. [11]. The form factor
should be only a function of p?, decrease at most like a power of p? as p? — o
and have no pole on the real axis.

D. Treatment of the coupled N N* system

In this section we will first calculate the contribution of the N* to the back-
ground diagram, Fig. 22a, and then calculate the N* pole contributions. Since
N7 has the same properties as the nucleon, we treat it like a heavy nucleon. ‘The
Feynman rule for the N* N7 vetex 1s
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o (.\* 4 “—")‘l) . (3.18)

m + m*

where gy« is the 7N N* coupling constant | m* is the N* mass and A* is the mx-
ing parameter for the x NN* coupling. The reduced (with the external nucleon
form factors removed) N* crossed diagram can be written

g PN Y R

m-+mt m*2 — (p — k)? m -+ m*

N A2 ] p; ( 1 (1— A% )] nr (3.19)

m+mt m-2_u-(m+’n!)2

2 {m—m
= 9N~ m*2 —u

where u is approximated as before. We chose A* = 1.

To calculate the dressed pole terms (Fig. 22b) coming from the coupled N N*
system we first calculate the dressed propagators for the N and N*, including
the transition from N* to N and vice versa. This requires that we diagonalize
the inverse propagator matrix

— x h>
g l= (M 2)_(m P+Zn . I ) 3.90
(921 g2 Xy m" — P+ X (3.20)

where X;; is the self energy, and the indicies 4, j can be either 1 (for nucleons)
or 2 {for N*). Note that this matrix is syminetric, but not hermitian. 1t can be
diagonalized by a complex symetric matrix

G;'=AG™'A (3.21)

where, choosing the following simple form for A

A= (é f) (3.22)

gives the following results for the diagonal elements of Gy

1
Gy =
T m—PYE) 4 QE)Z + (m7 — P + En)2?
1
Gya = , 3.23
2T (m —P+En)+ (2122 + (m - P+ T0)Z? (323)
where
7 = —(g11 + g22) + /(g11 + 922)% — 44, _ (3.24)

2810
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It turns out that the quaniity gi1 + g22 is negative, and hence we must choose
the minus sign in (3.24) in order that Z — 0 as g1 — 0.
The contributions of these terins to the scattering matrix M is

M=rT¢r=r7(¢-H'r
- l.T(A—iAG—lAA—l)—II\ — rT(AflGEIA-—l)-IF

 ITAGAT . (3.25)
where the unmixed vertex column vector [ 1s
r
r={ . "» ) . 3.26
(F *NN* (3.26)
The dressed vertices are therelore
rdressed — 1 wn + ZTxnne
PaNme! =Tanne + 20w (3.27)

The mixing therefore depends on Z, which is dependent on energy and is complex
above the pion production threshold. The values of Z at the nucleon mass and
the dressed Roper mass are given in the Table; note that Z is very small. Note
that this treatment extends that of Pearce and Afnan [39], which can be applied
only below the # N threshold where all the matrix elements are real.

Each of these propagators and the corresponding dressed vertex functions can
be writien in terms of the projection operators Ay of Eq. (3.11), and then the
contributions from the dressed N and N* pole terms to the scattening matrix,
part of the sum shown in Fig. 22b, can be easily expressed in this form as well:

M=MuAg+ M_A_ | (3.28)

These two poles contribute to spin % (S and P) partial wave amplitudes.

E. Treatment of the A

In this Section we review the properties of the spin 3/2 propagator which we
have used in this calculation, and calculate the contribution of the dressed A pole
to the scattering amplitude (Fig. 22b).

We start with the most general form of the spin 3/2 propagator:

—i(ma + P)

BulP) = (m%‘ — P2 — i)

O (F) (3.29)

where
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J),’p IJV [J#,.',D !r
[ZE + dmp'z

O (PY=agu +by,7 + ¢ (33
where P is the four momenta of the A and mga is its mass.

To get a pure spin 3/2 propagator, we impose two conditions which eliminate
the virtual spin 1/2 and spin 1 parts

18, (P)=0 {3.31)
PP, (P)=0 . (3.32)
From these ' -+ condition we get
1
b:c:dzga (3.33)
Choosing a = —1 gives
1 1 Yu P + Puy
G#V(P) = —Guv + 57;171: + ‘3' (&!‘_m—ﬂ‘”’) (334)

We will exploit several properties of #,,(P). In addition to Eq. (3.32), we will
use

Pg.urJ(P):g;w(P)P
8,°(P)0s, (P) = ~8,,(P) . (3.35)

To calculate the sell energy of the A, we need the Feynman rule for the
coupling of the A with pion-nucleon channel. For this coupling we take

M (Py) = ("7“) Fa(P)Ou (PY)pak fi (b)T; (3:36)

whete ga is the bare 7 NA coupling, 1; is the isospin 3/2 — 1/2 transition
operator for an incoming pion with isospin f, fa(p'?) is the nucleon formfactor,
fa(P?) is the delta form factor, k is the momentum of the incoming pion, and
o is the Dirar index of the incoming nucleon. ( The Dirac index, J, and Lorentz
index, u, of the outgoing A are suppressed in I'.) Note that 7; is related to 7, by
the relation [40]

1
‘T:fn = 2(6j,' - Erjﬁ) {3.37)

The A self energy (only the first term of Fig. 23¢ contributes because the second
term does not couple to the P33 channel) can be written:
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2
sy _ {9 2 2 ¢ 2 d°k f;‘:;((P“k)Q)
EE(P)= ( ,u) (2m)? JalP )fﬂm'z—(P—k)Lic

x 085 (PYko(m + P — B)(—kg )0 (P) (3.38)

The angular integration can be carried out using the formulae given in Appendix
B. Using the properties of ##¥(F?) , the dressed propagator becomes,

—ipar(P)
ma — P+ XaA(P)

The dressed vertex is calculated from Fig. 23a. However only the first term
(the bare vertex) will contribute; the second term is zero (using the properties of
6#* { P) after doing the angular integration). Then the contribution of the dressed
A pole to the scattering matrix is

Gh'(P) = (3.39)

2 foo e fi)
R

(3.40)

which can be reduced using the properties of the 8,,.(F).

F. Treatment of the [Dy;

In this section we calculate the scattering amplitude for the 23 dressed pole
term. The calculation of this pole term is similar to the A pole term just calcu-
lated, except there is an extra ¥% in the 7N D3 coupling. We write the interaction
Lagrangian for the # N D3 coupling as

¢t
dz,

L= (gf\ ‘i’gmﬂm, T 75\I'N + h.e. (3.41)

where gp is the coupling constant and 8, is the spin 3/2 projection operator
which is described in the previous section. From this Lagrangian one can derive
a Feynman rule for the # N D3 interaction vertex

Iﬂ}D Q(Plp') =1 (%D) (Bpu(P))ﬁakv'stN(pm) Ti - (342)

Note that no form factor for the D3 is used. Using this coupling, I3 propagator
becoines

—igm(P)
mp — I)+ ZD(P)

GH Py = (3.43)
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where Ep(P) is the self energy of the D3 and mp is its bare mass. As in the
case of the A, the self energy of the )3 is given completely by the first term in

Fig. 23c
sarpy = (22 ]dak SRUP kY
DPYITn ) @ ) 2w mE —(P-k)? - e

64 (PYkar®(mp + P — Fn k07 (P) (3.44)

The scattering amplitude is calculated in the same way as the A channel. The
D5 resonance contributes only to the D3 and Py; partial waves.

G. Inelastic channels

It iz well known that the inelastic channels become more and more important
as we go to higher and higher energy. In this analysis we consider the inelasticity
from the Py and I3 channels which is dominated by 7 — A scattering. We
approximate the finite width A by a zero width A’, which has the same properties
as A except of its mass,

Now calculate the inelasticity of the P, channel. Figure 25a can be written

_{gn-\’ 2 [dk  FLP- k)Y
z_(—:“’—) fﬁ"(P)(zwp EJImg,A—(P—k)?—ie
x k¥8,4(P — k)(mar + P — B)0°°(P — k)05, (P — k){(—k*) (3.45)

Since (£ — F) commutes with #,,(P — k), the tensor calculation can be carried
out easily, and the angle integration can be carried out using the formulae in
Appendix B.

For the D;3 inelasticily, we start from a Feynman rule for an interaction
between Dy3, A’ and =,

T3(p,P') = i gp0ua(P)O* (F) far (P)T: (3.46)
where p and p' are the momentum of the ;3 and A’ respectively and T; is the

isospin 3/2 to 1/2 transition operator. The self energy for this channel (Fig. 25b)
can be written

, 2 a3k 2.((P—k)?
Eaw (P)= _(gD)2(2T)36ua(P)f E;mi{i(((]?_ k))z)_,-(

X8 (P~ K)(mar + P — Py (P = B)0T(P — £)05,(P)  (3.47)

This equation can be simplified using the properties of 8,,(FP) and the angular
integrations given in Appendix B . Details of these calculation can be found in
{41] '
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APPENDIX A: ALTERNATIVE FORMS FOR THE INTEGRAL EQUATION
First, we show that
I(p', P)=Tolp', P)+ jﬂ'ak Ve(p'. k, P)Go(k, P)T(k, P) (A1)
is equivalent to
r(p', P)=Tolp', P) + j &k M.(p', k, P)Go(k, P)Co(k, P) (A2)
where I'g is the bare vertex , I' is the dressed vertex, M. is the scattering ma-
trix with the crossed diagrams as driving terms and V. stands for the potential
(crossed diagrams). In this Appendix we absorb the minus sign in front of the

integral in Eq. (2.9) into G, giving a plus sign in Eq. (A1)
To carry out the proof, simplify the notation, and use the scattering equation

M, = V. + V.GoM; (A3)
to write the second ferm in Eq. (Al) in the form
V.Gol' = M Gol' — VeGoM.Gol’ (Ad)
Now since
V.GoM. = M .GoVe (AB)
Eq. (A4) becomes
V.Gol = M.Gol' — MGV, Gol' (A6)

Substituting Eq. (A-1) into (A-6) gives,

V,:Gni‘ = McG()F - MCGU(I‘ - ru)
= M.GqTp (AT)

Finally substituting Eq. (A.7) into Eq (A.1) gives Eq. {A.2), in the short hand
notation:
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=T+ MGolo (AR)
Next, prove that
M = M, +IGT! (A9)

is equal to the infinite sum of all the possible diagrams generated from driving
terms which are the sum direct and contact diagrams

M = (Ve + Va) + (Ve + Va)GoM (A10)

Here M is the scattering matrix, Vy is the direct potential, Go 1s the lwe body
propagator, and Go and G are the bare and dressed propagator of the baryon,
where

G=0Co+CGo TG G . (A11)
Proof:

V.GoM = V.GoM, + V.GoFGT!
= M, — V. + V.G IGI'!
=M, — V. + ot —reor!
=M -V, —ToGT! (A12)

where we used Eq. (A.9), (A.3) and (A.1).
Now consider the direct term, which in this notation is V4 = I‘DGOI‘(',. Hence

ViGoM = oGol}Go(M. + I'GTY)
= ToGo(T! = T}) + To(G — Go)I'!
= [oGT! — FoGol} (A13)

where we used the complex conjugate of Eq. (A.8) and (A.11).
Adding Eq. (A.12) to Eq (A.13), yields

(Ve + Va)GoM =M — V. — Talol'}
=M-V,.— V4 (A14)

which is the same as Eq. (A.10)
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APPENDIX B: ANGULAR INTEGRALS

[raa =" 0 (B1)
/k"dﬂk = 4’:; wy (B2)
/k#pdﬂk —ar ’[;;‘f (w}j + %kz’) _ 41r7#%k2 (B3)
/ EPEYdQy = 4x P;/P" (wk + 31:2) _4,5,#”%1;2 (B4)
/k“k”ﬁdﬂk = 47r£%%—}]wk (Wi + k?) — dmg™” 3k2 f—wk

APPENDIX C: PHASE SHIFTS AND CROSS SECTIOGN
The phase shift is calculated using,

My, o, By
a 2i CD)

where 1y, and &, are the inelasticity parameter and phase shift. The + refers
toj=1+ % and a is defined by

8riW
= — C2
a lk] (C2)

where k is the on-shell momentum in the cm system. The inelasticity parameter
ni, can be caleulated from

Mo ((MEND T MY ,
T*_%e(j - l) +(§+3( - )) (C3)

This formula can be obtained easily from Eq. {C.1).
The total crossed section Tormualais |

Jo

Otor = T Z((!+1}9‘(fz+)+13(f; ) (C4)

where,
M,
Jip = — = (Cs)
a
For n* P system,
T1ot = 0:0‘3/2 (C6)
and for 7~ P system we have,
o1t = 5ol + 20151%) (€

APPENDIX D: WIDTH, EFFECTIVE MASS AND EFFECTIVE COUPLING

To calculate the width, the effective mass of resonances and effective coupling
constant of resonance particles, we start from the pole diagrams in the scattering
amplitudes (for the Dy3 and A we have only 1 diagram, but for Py channel, after
diagonalization, we have two pole diagrams a:, :liscussed in Part 111).

These scattering amplitudes can be written in form:

M) = BP0 (1)

where gp is the pion-baryon coupling constant. The imaginary part of this M (W)
(at W=m")is

2 »
\ -y = 8eS(m")
(M (m*)) = r/2 (D2)
Taking the real part of the derivative of Eq. (D.1) gives
OM(m*)\ _  gpf(m*)
8?( oW ) = T (D3)
and from Eq. (D.2) and Eq.(D.3)
_ 2SM(m*)
I'=- %Bﬂf[m‘) (D)
aw
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The effective mass m* is calculated using Eq. (1.12).

The effective pion-baryon coupling constant can also be derived from Eq.

(D.2)

2
98 —

rasM(m*)

2f(m*)

(D5)

REFERENCES

[1] G. F.Chew and F. E. Low Phys. Rev. 101, 1570 ( 1956).

[2] S. D. Drell, M. H. Freedman and F. Zachariasen Phys. Rev. 104, 1956 (236).
[3] S. Weinberg Phys. Rev. Lett. 17, 616 (1966).

i4] H. Schnitzer Phys. Rev. 158, 1471 (1967).

(6] S. Weinberg Phys. Rev. Lett. 18, 188 (1967).

[6] R.D. Peccet Phys. Rev. 176, 1812 (1968).

[7] B. Dutta-Roy, I. R. Lapidns, M. J. Tausner Phys. Rev. 181, 2091 (1969);
177, 2529 (1969).

[8] M. K. Banerjee and J. B. Cammarata Phys. Rev. D 16, 1977 (1334).

[9] B. C. Pearce and B. K. Jennings Nuc. Phys. A528, 655 (1991).
{10] F. L. Gross, J. W. Van Orden and K. Holinde Phys. Rev. ('41, R1909 (1990).
[11] F. L. Gross, J. W. Van Orden and K. Holinde Phys. Rev. C 45, 2094 (1992).
[12] R. E. Behrends and C. Fronsdal Phys. Rev. 106, 345 (1957).
[13} H.T.Williams Phys. Rev. C 31, 2297 (1985).

[14] M. Benmerrouche, R. M. Davidson and N. C. Mukhopadhyay Phys. Rev. C
39, 2339 (1989).

[15) T. Mizutani et. al. Phys. Rev. C 24, 2633 (1981).

[16] S.Morioka and 1.R. Afnan Phys. Rev. C 26, 1148 (1981).
[17) E. Oset, H. Toki, W. Weise Phys. Rep. 83, 282 (1982).
[18] Review of particle properties Phys. Rev. D) 45,1 (1992).

[19] 3. Frohlich, K. Schwarz, L. Streit and H.F.K. Zingl Phys. Rev. C 25, 2591
(1982).

[20] K. Schwarz, H.F.K. Zingl and L. Mathelitsch Phys. Leti. 83B, 297 (1979).

39



[21] R. M. Woloshyn and A. D.Jackson Nucl Phys. B 64, 269 (1973), and refer-
ence therein.

[22] E. D. Cooper and B. K. Jennings Nuc. Phys. A 483, 601 (1988).
[28] F. L. Gross Phys. Rev 186, 1448 (1969).

[24] F. L. Gross Phys. Rev (26, 2203 (1982).

[25] G. F. Chew Phys. Rev. 95, 1669 (1954).

[26] K. Nishijima, Fields and Particles W. A. Benjamin, New York 1969
[27] M. Gell-Mann and M. Levy Nuovo Cimenio 16, 705 (1960).

[28] J. Wess and B. Zumino Phys. Rev. 163, 163 (1967); Y. Tomozawa and Y.
P. Yao Phys. Rev. Lett. 18,1084 (1967); P. Chang and F. Gursey Phys. fev.
164, 1752 (1967).

[29] F. L. Gross, K. M. Maung, J. A. Tjon, L. W. Townsend and S. J. Wallace
Phys. Rev. C 40, R10 (1989); K. M. Maung, . L. Gross, J. A. Tjon, L. W.
Townsend and 5. J. Wallace Phys. Rev. C 43, 1378 (1991).

[30] P.F.A Goudsmit, . J. Leisi and E. Matsinos ETHZ-IMP PR/ 91-6 (1991)

[31] R. Arndt and S. Roper, Scattering Analysis and Interactive Dial-in (SAID)
prograni, Virginia Polytechnic Institute and State University.

[32] R. Koch et al. Nucl. Phys. A 336, 331 (1980).

[33] E. Bovet Phys. Leii. 153B, 231 (1985).

[34] M. Fierz and W. Pauli Proc. Roy. Soc. A 173, 211 (1939).

{35] W. Rarita and J. Schwinger Phys. Rev. 60, 61 { 1941).

[36) W. Jaus and W. S. Woolcock Nuovo Cimento 9TA , 103 (1987).
[37] F. L. Gross and D. . Riska, Phys. Rev. C 36, 1928 (1987).

[38] M. Jacob and G. C. Wick, Ann. Phys. 7, 404 (1959).

[39] B. Pearce and 1.R. Afnan Phys. Rev. C 40, 220 ( 1989)

[40] 'T. Ericson and W. Weise Pions and Nuclei Oxford University Press, New
York 1Y88.

[41] Ph.D Thesis (Part 1), Yohanes Surya, 19493, unpublished.

40

Table 1: The parameters of the model. Those in bold face were varied during
the fit; the others are determined by the fit.

parameter bare dressed
2 /ax 13.5 12.72
A 0.253
c 0.891
C, 0.903
m* 1444.7 1456.0
g fax 4.792 6.857
re 265.9
Z(m) —0.019
Z(m*) —0.023 —0.046 §
ma 1074.4
g4 0.031
A 1294.3
A" 1951.7
Apr 1092.1
ma 1318.6 1229.1
P NLL 0.459 0.365
Ta . 109.8
Aa 1506.2
mp 1513.4 1518.6
ghfan 0.346 0.974
I'p 179.0

g8 /ax 0.073
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