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Abstract

The long-standing problem of the applicability of perturbative QCD to
hadronic elastic form factors is discussed. The basic ingredients hoth of the
asymptotic large-Q? treatment and of the QCD sum rule spproach are an-
alyzed. The main conclusion is that for accessible energies and momentum
transfers the soft (nonpetturbative) contributions dominate over those due to
the hard quark rescattering subprocesses.

For many years, elastic form factors have been a subject of very intensive studies
_ both experimental and theoretical. The reason is that they contain an important
information about the internal structure of the “elementary” particies. In the non-
relativistic quantum mechanrics, e.g., the form factor is directly given by the Fourier
transform of the charge distribution inside a system. In the (light-cone} quantum
ficld theory, the form factor of a two-body bound state is given by a convolution

F(g") ~ j¢P(=-kl) vp(z, k. + zq) &k, dr (1)

involving initial and final state wave functions. If g, the momeatum transfer to the
system, in large enongh, studying the form factor one can extracl information about
the high-k; behavior of the bound state wave function. In the pre-QCD parton
model |1], it was assumed that the wave functions ¥plz. k) are strongly (e.g.,
exponentially) suppressed in the high-k, region. In that case the form factor integral

*Talk presented at the lnte;natinnal Conference “Baryons-92" (Yale University, June 1 - 4,
1992), o be published in the Proceedings



(1) is dominated by the & ~ 1/¢ region, and the result is determined by the smalil-r
behaviour of the hadronic wave funciion. H ¥p(z,k,) has a power-law behaviour
¥(z) ~ z° for small z, the form factor is also power behaved: F(g*} ~ ¢~ =~ for
Inrge g. Physically, this means that the large-g behaviour of F{g%) is determined by
the configuration when the active (quark) parton carties a bulk part of the hadron
momentum while the spectators take a wee ~ 1/g fraction of it. This is the essence
of the mechanism formulated by Feynman in his 1972 book |[1].

However, if yip(z,k,) is only power suppressed for high transverse momenta
Yelz, kL) ~ Mt)klﬂ, then a power-law large-g behaviour F(g®) ~ g ? % is given by
the k; integration. In fact, such & power-law term i generated in any quantum field
theory model due to rescattering processes between constituents. This situation
also has a simple physical interpretation: the inilial state is composed of partons
collinear to the momentum P and the hard rescatterings just compensate the effect
of the external momentum tranafer ¢ and convert the system into a similar final state
with all partons carrying finite fractions of the final momentum P’. This picture
was used by Brodsky and Farrar [2] in 1973 who noticed that, in » theory with a
dimensionless coupling constant, the resulting form factor behaviour satisfics the
quark counting rule [3] : Fo(Q%) ~ (1/@)*"!, with n being the number of quarks
inside & hadron. The quark counting rules are in good agreement with experimental
data on hadronic form factors and other exclusive processes, and it was only natural
to assert that the asymptotic behaviour of the hadronic form [actots is basically
understood. The only problem was to justify the hard rescattering picture within a
reliable theory of hadrons.

Such a theory - QCD - was created in the same 1973 year, and at the end of the
70's it waa finally demonstrated that the high-k, tail of the hadronic wave function
(to be referred as ¥2*%(z, k; }} can be calculated within the pertuibative QCD
approach in terms of a perturbative short-distance kernel V and the nonperturbative
“goft” wave function ¥ (2 k )

PP~ Ve et (2)

The kernel just includes the hard gluon rescatierings. Displaying 4 as a sum of the
soft and hard components, one nrrives at the QCD factorization expansion {4]. It
siates essentially that a hadronic form factor in QUD can be represented by a sum of
terms of increasing complexity. The first term - a purely soft contribution — contains
no short-distance (SD) subprocesses. Its large-Q? behaviour is determined by the
Feynman mechanism, and in QCD it vanishes like 1/Q* (or faster} for the pion,
like 1/Q® for the nucleons, etc. The hard rescattering terms are also present in this
expansion and contribute O(a,/Q?) to the pion form factor and O{{a,/Q?)*} to the
nucleon form factors. In addition, there are also corrections to the hard term: higher
order corrections containing extra a, {actors and higher twist O((a,/Q*)(M*/Q*)")
corrections. Thus, perturbative QCD supports the statement that the asymptotic
behaviour of hadronic form factors is really described by the quark counting rules.
Experimentally, however, these rules seem to work even for rather low Q? values of

2

the order of a few Gel'%.
One can imagine two pessible scenarios.

¢ pQCD scenario:

— Soft contribution dominates the low-@? region, but dies out very fast
to become negligible for Q? > 3GeV? in the pion case and for Q7 >
15 — 20GeV? in the nucleon case.

— Hard contribution dominates in the above regions and is large enough to
describe the data.

¢ nonpQCD scenario:

_ Soft contribukion is large enough to describe the data at all accessible Q.

_ Hard contribution is numerically very small in this whole region.

It is instructive 1o see how the asymptotic QCD predictions can describe existing
data. In the pion case, one has a simple formula [5, 6, 7]

1 E ! :
Fu@Y =/° dzfn dy wlz,p) 'P(y'l‘){;’z::;z + 9(1 - :)((;‘)f yiQ? }

I corresponds to a parton-model type picture, in which the pion 18 described by a
function characterizing the probability amphitude p{z, g} to find the pion in a state
where quarka carry fractions =P and {1z} P ofits longitudinal momentum P. The
dependence of w(z,u) on the factorization scale p is given by the renormalization
group. In particular, as p — oo, the pion wave function (z,p) acquires a very
simple and natural form [4, 7}

(3)

palz,p 2 o0) 0 piix) = 6fpx(l — ), (4}

whete f, = 133MeV is the pion decay constant setting the wave function normaliza-
tion. Thus, in the formal § -+ oo limit, pQCD predicts the absolule normalization
of the pion form factor: Q*F2(QP) = 8% f2a,(Q?). The experimentel value for this
combination it between 0.3 and 0.4 GeV?, and to get it one should take a, ~ 0.7 to
0.8, which ie a bit large by modern standards (but in 1979 such values were consid-
ered as acceptable ones!). So, the only way out now is to assume that the pion wave
function ¢(z, Q%) for low Q* strongly differs from its asymptotic form ¢*'(z).
Chernysk and A Zhitnitsky proposed [8] (o use a double-humped wave function

O ) = 30f.2(1 - 2){1 - 22)*. (5

Iis use increnses the result by factor 25/9 compared to the asymptotic prediction.
Thus, if one takes the CZ form for ¢{z) and a, of order of 0.3, one can formally

describe the data by eq. (3)}. Still, there is a highly disturbing observation concerning

the above “success” of pQCD: the bulk part of the relevant contribution comes from
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the regions where the virtualities of the exchanged gluons {zyQ? in the pica case) ate
not very targe |8, 10]. One can easily verily that, with the C'Z wave function, 50% of
the whole contribution is due to the regions where both z and y are smaller than 0.2
{zyQ? smaller than Q@?/25,1.¢., smaller than 0.15 GeV? for QF < 4GeV?) and 40%
is due Lo the regions where either z or y is amaller than 0.2. Only 1.5% of the total
contribution comes [rom the region, where both z and y are larger than 1/2 and one
can treat the exchanged gluon as sufficiently virtual to rely on asymptotic freedom.
More than 90% is due to the regions of small virtualitics where the applicability of
pQCD is more than questionable.

In this region one can cxpect large nonperturbative effects, e g., one should
expect that the “hard” gluon propagator is modified 17k — 1/(k? — M?) duc to
the confinement effects. Now, if one substitutes the denominator factors zyQ* by
(zyQ? + M), with the effective gluon mass M ~ 300 — 500 M eV, one immediately
observes that the resulting value for Q2 F,(Q?) is amaller than the experimental one
by = factor of 10, both for the asymptlotic and CZ wave functions.

Since the essential gluon virtualities are much smaller than the total momentum
tranefer ?, the proper argument of the effective coupling constant must be much
lower than Q7. Otherwise, the perturbative cxpansion has large cocflicients. At the
next-to-leading order, this problem was studied more than 10 years ago (11} Tt is
convenient Lo present the results in terms of the coefficient B(@, 2} characlerizing
the magnitude of the radiative correction for the pion form factor

FQ) = Fu(Q’){l + u'%"-)-B(Q.#)} : (6)

Within the M §-scheme and for ¢ = @ one has B = 7 for the asymptotic wave
function and B == 20 for the CZ wave function. To get BYZ = 0, one should take
g~ 001Q, i.e, in this case the pQCD expansion is self-consistent only starting

from ¢ ~ 100GeV. The origin of the large cotrection can be easily seen from the -

explicit expression for the hard scattering amplitude
] 2 2 232
prri = S bt g (12 2Pyt Q) +4Cehn [ 2y (Q—) -
x ] ul u?

T eyt
Q 2 =y @’
~2Crin 5+ 3Cr ln(ay) - (11 - 5N,) in ( no) -

2(cr - Z)nten) + e ]} 4 e~ (- 2hy — (1=} ()

where f(z,y) is regular when z = 0 and/or y = 0. For a broad wave function, the
moat important term comes from the soft gluon radiation. It induces the Sudakov-
type double logarithms. Though the double logarithms in Q? cancel {otherwise there
would be no factorization of short and long distances), there remain double logs in
z and y. Another observation is that Sudakov terms will appeaz in higher orders
us well, producing large corrections in higher loops. The lesson from these studies
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is that the pQCD scenario for the pion form factor is internally inconsistent: Lo
describe the data one should take a broad wave function, but a broad wave function
enhances the contribution coming from the region of small z and y, and, as a rerufl,
the expansion parametet is a,{/k} rather than (@), with a very large k.

The QCD esymptotic predictions for the nucleon form factors are normalized
by the proton “decay” constant which is experimentally unknown. However, one
can estimate it using QCD sum rules. Using the asymptobic form for the nucleon
wave function $°'(z,,2;,22) ~ T(Tax3, and the pQCD leading twist formule one
obtains a vapishing result for the proton magnetic form factor [12]. The neutzon
form factor calculated in the same way, with the proton “decay” constant estimated
by Belyaev and lofle [t3] is numerically small { its magnitude is ~ 1% of the data)
and has the sign opposite to dats. If one takes a “nonrelativistic” wave function
Y™ (zy, 3, x3) ~ $(z; — 1/3}8(xz — 1/3)8{x3 — 1/3) then the pQCD results for both
the proton and neutron magnetic form factors have wrong sign and also ~ 1% level
of magnitude compared to data. The fact that the use of narrow wave functions in
the pQCD formula gives a wrong sign for the nucleon magnetic form factors was firat
observed by the Yerevan group {14] in 1980. This observation, however, was ignored
outside the USSR for alinost 5 years until the paper by Chernyak and | Zhitnitsky
(15] appeared, where it was shown that if one uses a broad and highly asymmetric
nucleon wave function, with a large fraction of the total momentum carried by one
of the quarks, then the results of a perturbative calculation for the magnetic form
factors has sign and magnitude in agreement with experimental data. However, this
success of pQCD faces the same problems as in the pion case. Again, the bulk part
comes from the regione where the “hard” gluons have very small virtualities. Asn
tesult, the factor of 100 magnification produced by the CZ wave functions is ruined
by nonperturbative effects parametrized by an eflective gluon mass

The self-consistency of the perlurbative expansion is also doubtful. To the best
of my knowledge, nobody calculated yet the radiative corrections for ihe nucleon
form factars case. However, the siructure of the one-loop corrections for the pion
form factors unambiguosly indicates that the Sudakov effects will dominate in the
nucleon case as well. Since the Sudakov terms persist in higher orders, a natural idea
is to sum them up. Such an attempt was undertaken recently by Li and Sterman
[16). They obaerved also that the Sudakov eflects suppress the contribution from
the soft region z,y ~ 0. This effect can be also understood using our formula (7).
Indeed, the most important term [ln’ (zys;) —1n? (E;-)] vanishes when x,y — 1
and is negative (and large, if @ >> u*) when £yQ7 ~ p*. Thus, the contribulion
from the region of small = and y is perturbatively suppressed, and the claim is that
pQCD analysis may become self-consistent for lower Q@*. Note, however, that if
the soft region is suppressed, then the total pQCD contribution is smaller than the
original lowest-order term, and the “agreement” with data, produced by using broad
wave fonctions, is lost. For the time being, it is also unclear what portion of the
exach next-to-leading result is reproduced within the Li-Sterman approximation.

Let us now consider the nonperturbative nspects of the pQCD scenatio and



analyze to what extent one can justify the assumptions that the hadronic wave
functions at accessible energies are very broad, humpy functions of CZ iype, but, at
the same time, the soft nonperturbative contributions to the hadronic form factors
tapidly vanish with Q2.

The standard argument in favor of the CZ wave functions is that they are dictated
by the QCD sum rules. In particular, the moments (¥} = ﬁl "] ('—}-‘{ £ df of the
pion wave function are given by the SR (8}

M (1 - e*':.mf“’) a,{GG} lg‘l’ﬂ-(q_q}]

BepNy 27
[ = ax? (N + 1N +3)  12zM* " 81 M*

(11 + 4N) {8)
where al"? is the cffective threshold characterising the position of higher slates and
M7 i the so-called Borel parameter. The values of {{¥} are exiracted from the sum
rule using the requirement of the best agreement between its left- and right-hand
sides. The N = 0 case was considered in the pioneering SVZ papet: if onc takes
80 = 0.7 GeV?, the right-hand side is fairly constant for all M? > 0.6 GeV?, with the
ountput value f, = 130 MeV, in a good agreement with experiment. The correlation
between the 5o and f, values (obtained from u fitting procedure) is well reproduced
by the local duslity relation f2 = a5/(4n7) that follows from the SR in the formal
M? —+ co imit.

The same strategy was used by CZ for the higher momenta N = 2 and N = 4.
Note, however, that the nonperturbative terms in their sum rale have a completely
difterent N-dependence compared to the perturbative one: the perturbative term
decreases like 1/N? for higher moments while the condensate terms are either con-

stant or even increasing with N. Thus, the eflective scale in the channel (settled by '

the ratio of the condensate terms to the perturbative one} substantially increases
for higher N: ol = 2aq, sl = 335, etc. Again, the fitted values of {¥}* are well
reproduced by the local duality relation:

Nyas o, 2 3 % e

As a result, the value (£2)°Z = 0.43 found by CZ is by factor 2 larger than {¢?)** =

1/6. Such a large value can be attributed only to & wave function concentrated in

the region [¢| ~ 1. This is how the CZ wave funclion was exiracted from the QCD

sum rules. A crucial implicit assumption in this derivation is that one can neglect

higher power corrections, and it is sufficient to take into account only the lowest

condensates.

* The soft contribution to the pion form facior can be also estimaied within the

framework of the QCD sum rules. The relevant sum rule
1 o 0
PRA@) = % [ do [" dor oo exp (- 2557
a,{GG) 16 xa,(dp)? 2Q?
ot (1, 19°)

12¢M? 81 M?* ®)

[

in fact, has a striking similarity to the pion wave function sum rule (just take
Q*/M? ~ N): the perturbative term vanishes like 1/{Q*)? for large Q*, while the
{dq)- snd {GG)-terms are constant or linearly increasing with @, - even the numer-
ical values of the coeflicients are almost identical The ratios of the nonperturbative
terms to the perturbative term grow with 1 and, as a result, the parameter .l.(,q”
straightforwardly extracted from the SR (9) increases with Q7. In particular, for
Q? = 1GeV? the fitling gives the so-value very close to that obtained from the
SR for f.: ’qulr;.v') 2 sb” == 0.7GeV?, just demonstrating the self-consistency
of the physical interpretation of s and of the whole SR approach. However, for
Q* = 6GeV?, o formal fitting gives the value 29{Q* = 8GeV?) = 1.5GeV? - by
factor of 2 larger than a5 [17]. This is precisely the same effect that produced the

growth of s5*" and {£¥) in the G2 SR. Using the local duality relation for the pion

form factor
1+ 630/Q1
{1+ 4-’0/9')’“)
one can see that one gets larger F*°7(Q?) if one takes larger 8. It should be
emphasized that the soft contribution, estimated by local duality with s conatant
duality interval sy == 0.7GeV?, is sufficiently large lo describe existing data. If 2o
increases with Q?, then the soft contributior is larger than the daia [17].

Main lesson is that, within the QCD sum rule approach, the form of the pion
wave function and the magnitude of the soft nonperturbative contribution to the
pion form factor are strongly correlated : the sum rules for (€¥) and for F.(Q?) have
an ensentially identical structure (with N —» @?), and it is inpossible to increase (€%}
compared Lo {£7)** and at the same time get a rapidly decreasing soft contribulion.
In full accordance with the results obtained (in a wave function formalism) by Isgur
and Llewellyn Smith, a big perturbative contribution is always accompanied by a
big nonperturbative term, and the basic assumption of the pQCD scenario fails. A
pragmatic observalion is that taking 3o = conat & 4wf? one gets F1*/' close to
data and a small one-gluon-exchange contribution, the addition of which improves
the agreement with data. The same statement is true for the nucleons: taking the
nucleon duality parameter Sy = const = 2.3GeV? (the numerical value extracted
from the QCD sum rule for the nucleon mass [13]) in the local duality formula for
the proton magnetic form factor

saft; 42y . _ S0
FemQ@h) = o3 (! (10)

Gul@) = %‘/ﬁ{(”" SNT e YTV an

{where T = 1 + @?/25,) one gets a curve describing the data in a wide region
3GeV? < Q1 < 20GeV?. Asymptotically, this soft contribution goes like O(23/Q*).

One may ask, however: what is wrong with the original (‘Z-derivation that
produced & brosd wave function? This sum rule, taken at face value, definitely
requires a drastic increase of ss,m for N = 2,4,.... To better undesstand the nature
of the approximations made, il is instructive Lo rewrite the sum rule (8) for the wave



function itself:

2 gy
fee-ta) = %*“ —x)—emmiMYy %ﬁ%}&%lém 181 z)
+ g1 e 1108y 50— )] 2065) 4 60— o). (1)

The O(1) and O(N) terms in eq.(8) correspond to &{z)and §'(z) terms in eq.(12}). In
its turn, the presence of the #(x) functions is evidently indicating that the vacuum
fields are treated as carrying zero fraction of the pion momentum. This can be
ensily understood by observing that the operator product expsnsion (underlying
any QCD sum rule) 1s 8 power series expansion over small momenta k of vacuum
quarks and gluons. Retaining only the (§g) and (GG) terms (like in eqa.(B), (12))
is just equivalent to the assumption that k is not simply emall but exnctly gero.
However, it is much more reasonable to expect that the vacuwm quania have a
smooth distribution with a finite width . In configuration space, this means that
vacuum fluctualions have a finite correlation length of the order of 1/, 5o that
the two-point condensates like {§(0)qg(z)} dic away when |z| i Inrge compared to
1/p. Of course, one can always expand {§(0)g(z)) in powers of z atarting with the
locad condensate {§{0)q(0)) that produces eventually the &{z) term. The question is,
whether it is reasonable to do this, since the expansion resulting from such a Taylor
series will not necessarily behave well.

According to the standard estimate [13], the average virtuality of the vacuum
guarks A} = (§D?q)/{dq) = 0.4 GeV? is not small compared to the relevant hadronic
scale a9 == 0.7GeV?. Thus, one cannot say Lhal the correlation length of vacuum
ftuctuations ia much larger than the hadronic size, and the constant-feld approxima-
tion for the vacuum fields might not work, i.e., the higher-power corrections might
well ruin the conclusions derived from the original ('Z sum rule. In particular, using
& Gaussian model {F(z)}q(®)} = (Gg} exp(2222/8). we obtained a modified sum rule
for pu{z). with the 8(x)—functions substituted by terms like £8(z < X 2MPYH A
For small z, the latter have the same behavior as the perturbative contribution. The
value (£?} = 0.25 extracted from this sum rule [18} is much closer to the asymplotic
value (£%}** = 0.2 than to that of Chernysk and Zhitnitsky {(€1)°% = 0.43. Fitting
the modified sum rules produces a very mild variation of the threshold parameters
a.[,m.af,q:' with N or @2, respectively.

The value of {¢?) was also estimated within lattice QCD. A recent result [19]
{£3)feteer — .11 4 0.01 corresponds to a very narrow wave function, much more
narrower than the asymptotic one (recall that (£2)** = 0.2). An earlier estimate
{€2)fortierr = 034 + 0.17 is not so restrictive. The “world average” of these Iattice
data seems to agree with the asymptotic value. The lattice estimates for the nucleon
wave function do not confirm the large assymetry between different z; moments
predicted by (Z-approach: no asymmetry was observed [21].

Qur final conclusion is that only the nonpQCD scenario is a viable and a sell-
noncontradicting possibility to understand the dynamics of hadronic form factors.
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Soft terms eatimated within the framewnrk of QCD sutn tules and loral duality {(with
conelant dualily interval o) i3 snfficiently large to describe the data and dominates
at accessible energies. The hadronic wave functions obtained uzing the QUD local
duality are close to their rsymptotic forms and the “hard” contributions to form
factors, calculnted with this functions, are small at accessible @*. This picture is
sclf-consistent and it is supported by an analysis of the modified QUCD sum rules with
nonlocal condensates. There was a criticism by Chernyak [22] that the results of such
an approach are sensitive Lo the models one uses for the nonlocal condensates. Thie
means, however, that studying the form factors one can eventually fix the form of
the nonlocal condensates - the disttibution functions of vacutm quarks and gluons.
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