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ABSTRACT

New symmetries of the strong interactions appear in heavy quark physics.
They can be used to predict many properties of hadrons containing a single
heavy quark. Some of these predictions are expected to play an important role in
determining the values of elements of the Cabibho—Kobayashi-Maskawa matrix.

1. INTRODUCTION

There are very few cases in which it is possible using analytic methods to
make systematic predictions based on Quantum Chromodynamics (QCD) in the
low-energy, nonperturbative regime. Indeed, this theory has proved so intraciahle
to analytic methods that all such predictions are hased not on dynamical calcula-
tions, but rather on some symmetry of QUD. faospin symmetry was the first such
symmetry discovered, and we now understand that this approximate symmetry
arises because the light quark mass difference m; — m, is much smaller than
the masses associated with confinement which are set by the QCID scale Agen.
Predictions based on isospin symmetry would, in a world with only strong in-
teractions, be exact in the limit my — m, -— 0 ; corrections to this limit can be
studied systematically in an expansion in the small parameters (mg—m,)/Agcp
and the electromagnetic fine structure constant a. SU(3) flavor symnmetry is sim-
ilar, but the corrections are larger since (m, — mq4}/Agcp is not small: Chiral
symmetey SU(2) x SU(2)g mrises in QCD because both my and m, are small
compared to Agop; it is associated with {he separnte conservation of vector and
axial vector currents. Although spontanecusly broken in nature, the existence of
this underlying symmetry allows the systematic expansion of chiral perturbation
theory in which many low-energy properties of QCD are related to a few reduced
matrix elements. If the strange quark mass is also treated as small compared
with the QCD scale, then the chiral symmetry group becomes 5U/(3);, x St/{1)x.

Over the last few years there has been progress in understanding systems
containing a single heavy quark!~!?) (i e, a quatk with mass mg much greater
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than the seale Agep of the strong inleractions). Tt is now appreciated that there
is a new symmetry of QUD, similar to isespin or chiral symmetry, in aperation in
such systems®. This symmetry arises because once a quark becomes sufficiently
heavy, its mass becomes irrelevant 1o the nonperturbative dynamirs of the light
degrees of freedom of QCD. Consider, as an extreme example, two rery heavy
quarks of masses one and ten kilograms. Alihough these quarks will live in the
nsual hadronic “brown muck™ of light quarks and glue, they will hardly notice
it: their motion will Auctuate only slightly about that of a free heavy quark.
Given that such quarks therefore define with great precision their own center-
of-mass, we can study hadronic systems built on them in the frame where they
act as stalic sources of color localized ai the origin. The equations of QCD in
the neighborhood of such an isolated heavy quarck are therefore those of the hight
quark and gluonic degrees of freedom subject to the boundary condition that
there is a static triplet source of color-electric field at the origin (i.e., the heavy
quark is treated as a Wilson line). Since this boundary condition is the same
for both of our hypothetical heavy quarks (in the static approximation which is
essentially perfect given their masses), the solutions for the states of the light
degrees of freedom in their presence will be the same {see Fig. 1). Thus fhe
light degrees of freedom will be symmetric under an tsospin-like rotation of the
heavy quark flavors inlo one anofher even though the heavy quark masses are not
almost equal. In particular, the heavy ineson and baryon excitation spectra built
on any heavy quark will be the same, as wilt be all amplitudes for the scattering
of light hadrons off any state built on the heavy quark.

same brown muck

FIG. 1: Q, and Q; are surrounded by identical brown muck

The preceeding comments ignored the spin of the heavy quark. This is ap-
propriate in QUD since the spin of a heavy quark decouples from the gluonic
field: all heavy quarks look like scalar heavy quarks 1o the light degrees of free-

dom. Since the flavor and spin of the heavy quark are irrelevant, the static heavy
quark symmetry is actually SU(2N;}, where Ny is the number of heavy quarks
(see Fig. 2). (We will see below that the full symumetry group is much larger since
heavy quarks moving with different velocities cannot be scattered into each other
by the strong interactions). At the spectroscopic level this additional synmmetry
means that each spectral level built on a heavy quark {unless it happens to have
spin zero in its light degrees of freedom) will be a degenerate doublet in total
spin.

same brown muck

FIG. 2: ...even i the spin of @, is flipped

Heavy quark flavor symmetry is thus analogous ta the fact that different
isotopes of a given element have the smine chemistry: their electronic structure is
almost identical because they have the same nuclear charge. The spin symmetry
is in turn analogous te the near degeneracy of hyperfine levels in atoms: the
electronic structure of the states of a hyperfine multiplet are almost the same
because nuclear magnetic moments are small.

In the situation described above where the light degrees of freedom (ie,
tight quarks and antiquarks and the gluons) typically have four-momenta small
compared with the heavy quark mass, it is appropriate to go over to an effective
theory where the heavy quark mass goes to infinity, with its four-velocity fixed *-8)
(see Fig. 3). This fixed-velocity approximation is similar to one often used in
clagsical mechanics. When a baseball is thrown it churns up the air in its path,
but, unless thrown by a major league pitcher, the ajr has a negligible impact
on the baseball’s path. Typically we just neglect the air and say that the ball
falls under the influence of gravity in a way described by Newton's taws, The
heavy quark is analogous to the baseball and the light quarks, antiquarks, and
gluons are analogous to the air, In our case, the heavy quark path is a straight
worldline described by a four-velocity +# satisfying v> — 1. There is another



similarity belween the heavy quark effective theory and the classical physics of
a baseball: pair creation of heavy quark-antignark pairs doesn't oceur in the
effective theory.

FIG. 3: Q:(#) is related by the symmetry to Q;(F}

The STI{(2N3y)} spin-flavor symmetry of the heavy quark effective theory is
not manifest in the full theory of QCT); it only becomes apparent in the effective
thenry where the heavy quark masses are taken to infinity. This situation is
familiar from our experience with the light quark flavor symmetries of QUD
mentioned ahove. The strong interactions of light quarks g (with masses m,
that are much lesa than the QCD scale) are greatly simplified by going over to
an effective theory where the light quark masses are taken to zero. For N light
quarks this effective theory has an ST/{¥)y < S1/{N)g chiral symmeiry that is
spontaneously broken to the vector SI/{ N}y subgroup. Again, the symmetry is
not immediately apparent in the full theory of QCD. However, as long as the
quark masses are small compared with the QUD scale, they have only a small
impact on strong interaction dynamics. Thus the effective theory, where the light
quark masses are set to zero, is a good approximation to QCD. We will see that
the heavy quark flavor-spin symmetry endows us with predictive power much
in the same way that light quark chiral symmetry does. For light quark chiral
symmetry, it is possible to treat the small quark masses as perturbations and
consider the corrections of order m,/Aqcy to predictions based on the effective
theory where my -+ 0. Similarly, for heavy quark spin-flavor symmetry, it is
possihle to treat as perturbations the Agen/mg corrections to the predictions
hased i the effective heavy quark theory where mg — ne.

The relationship between operatars involving the heavy quarks (e.g., @v,.q)
in the fult theory of QCD and operators in the effective theory where the heavy
quark masses go to infinily involves some interesting applications of perturbative

QUD. Contributions 1o matrix elements of Hhese operators from loop graphs with
virtual momenta camparable to or greater than the heavy quark mass are cleatly
not carrectly reproduced by the effective theory. However, because of asymptotic
freedom these differences can he handled by perturbative QCD.

Most of the physics underlying heavy quark symmetry has been understood
for a long time and has, to some extent, heen incorporated into phenomeno-
logical models used to predict properties ol hadrons containing a single heavy
quark.1!-12) What is new is that we now understand that this physics arises
from symmetries of an effective theory that is a systematic limit of QCD. Con-
sequently, model-independent predictions are now possihle. The most important
predictions are for semileptonic B-meson decay form factors, These are expected
to play an important role in the accurate determination of the values of the
Cabibbo-Kobayashi-Maskaws matrix clements V5 and V,p from experimental
data.

2. THE EFFECTIVE THEORY

We are interested in the physical situation where a heavy quark @ is in-
teracting with light degrees of freedom which carry four momenta much smaller
than the heavy quark mass mg. For such a situation it is appropriale to go over
to an effective theory where the heavy quark mass mg goes to infinity with its
four velocity v* fixed. We can derive the Feynman rules for the effective theory
by taking the above limit of the Feynman rules for QCD. In the full thenry of
QCD the heavy quark propagator is

(g +ma) .
2 2 .
Po— My

To get the propagator in the effective theory, write
Py = mou" +k* (2)

where k% is n residual momentum that is small compared to the heavy quark
mass. In the numerator the residual momentum can be neglected, but in the
denominator of the propagator it cannot be. In the limit mg — oo the heavy
quark propagator becomes

i+ 1) . 53]
2v -k
In the full theory of QUD the vertex for heavy quark gluon interactions is*
—ig7, T, {4)

* 1In dimensional regularization with minimal subtraction, an additional [actor
of 11*/? {where n = 4 — ¢ is the number of space-time dimensions}, appears in eqs.

{4} and (7).



where g is the strong coupling and T° is an SU(3) color generator. Given the

form of the propagator (3), the vertex always appears sandwiched between factors

of !%1‘—', so the vertex in the eflective theory can he taken as
11} 1+

EPRLEE WG,

1+
1,10 L (5)

= —agv, T? (---*r

With the vertex of the form {5), factors of {§ + 1)/2 in the numerators of propa-
gators and in vertices can be moved to the outside of any Feynman graph where
they give unity on hitting on-shell spinors u(v, s). As a result, we may tlake the
propagator for a heavy quark in the effective theory to be

i

-— 6
TR (6)

and the vertex for gluon-heavy quark interactions is
—igT%u, . (7

Equations (6) and (7) can be taken as defining the effective heavy quark the-

ory. They are a momentum space realization of the fact that the heavy quark
4.5}

7,8}

propagates in a manner described by a Wiison line.

We can get the same result from feld theory™®! without referring to the
Feynman eules of the full theory of QCD. The part of the QUD Lagrangian
density involving the heavy quark field is

£=0Q(p - mg)Q . (8)
{Here we omit counter terms. For a discussion of renormalization in QCD and
the effective theory, see Section 5.} Write® for a heavy quark with velocity v (as
an approximation for mg -~ oo}

Q = e imerTRQ) 9)
where the feld h(..Q' 15 constrained to salisfy

pri = BT (10)

Puiting eq. {9) into the QUD Lagrangian density gives

Lo = B [mo(f - 1) + PR .

Using eq. {10), this becomes
T ' {11a)
which can be further simplified to

P (T L ) . 7‘)@(_‘%_?‘_’,,_(‘.@1
=h%Yu. DR

(115)

This effective Lagrangian densily {11b) reproduces the Feynman rules in eqs. (6)
and (7). Note that when a derivative acts on h(,.Q' it produces a factor of the
residual momentum, since the large part of momentum was scaled out of the
field. It is important to remember that eq. (9) is an approximation because eq.

(10} constrains IR general we have, for a heavy guark,
Q= e MA@ 4 x| {12)

where
PR = D gt i@ {13)

The X,sQ] part of ¢ {which is of order Aqgcn/m ) arises because the heavy quark
ts not quite on shell as it propagates.

The effective theory is not a nonrelativistic approximation for the heavy
quark (it is in some sense a classical approximatien}. Nothing prevents the
spatial components of the {our velocity ¢* from being of order unity. Of course,
for a single heavy quark, this is nol a very significant siatement, since it is always
possible to go to its rest frame. However, if there are iwo heavy quarks moving
with different velocities then one cannot go to a frame where they are hoth at
rest, and there is nothing in the effective theory that restricts the second heavy
quark to be moving nonrelativistically in the rest frame of the first heavy quark.
In particular, we will be interested here iu the situation where an external current
acts and changes a heavy quark’s velocity (and possibly its flavor). Even though
interactions with gluons don’t change the heavy quark's four-velocity, exterual
currents (from couplings to a W-boson, for example) can. Then it is not possible
to go Lo the rest frame of both the initial and final heavy quark.

Note that while the field A% destroys a heavy quark of four-velocity v, it
does not create an antiquark. In the effective theory the field for the antiquark
is an independent degree of freedom because pair creation is not present.

In ihe effeciive theory the equation of motion for h(‘.Q' is

v DA = p . {14)



and the ¢, are arhitrary tofnitesimal paramefers. Note that since [§,8,] = 0,
transforming by this group preserves Lhe constraint, ;‘h[,.Q) — h(,.m.

If there are ¥y heavy quarks Q) ,...Qn, , moving with the same fonr velocity
v. then, denoting the corresponding, fields in the effective theory by hs.ﬂ, the
Lagrangian density hecomes

Ny
L, = Z Bitin. DR {22)

=1

This Lagrangian deusily is completely independent of the heavy quark masses,
o the ST7(2) spin symmetry of (11b) becomes a SU/(2Ny) spin-flavor symmetry
of (22). Note that because the heavy quark masses can be very different, this
symmetry, which relates quarks of the same velocity, generally relates quarks of
very differrnt momentum. This is one of the unusual aspects of heavy quark
symmelry.

At this point it is worth reviewing the continuous global {approximate) sym-
metries of the strong interactions. The six quarks 1, d,s,¢, b, ¢ naturally break
intes two groups of three. The light u,d and s quarks have masses that are much
less than the QCD seale® (m, ~ 0.005 GeV,my ~ 0.01 GeV,m, ~ 0.15 GeV).
Because of this it is appropriate to go over to an effective theory where the Lght
quark masses are set Lo zero, This effective theory has a SU(3) x SU(3)r chiral
symmelry that is spontaneously broken to the vector STU({3)v subgronp. Note
that the S{/(3)y symmetry does not arise becanse the light quark masses are
nearly equal (mmr,/{m, +my) = 10}, but because the light quark masses are small
compared with the QUD scale. Tt is important to hear in mind the origin of the
symmetry. For example, even though the pion and kaon are in the same multi-
plet {an octet) of the SU(3}y symmetry group, it is a mistake to use the light
quark flavor symmetry to deduce that their masses should be almost equal (recall
mny ~ 0.14 GeV and my ~ 0.49 GeV). The pion and kaon are pseudo-Goldstone
bosons associated with the spontaneous breakdown of the SI7(3) x SU(3)g chi-
ral symmelry; their masses go to zero as the light quark masses go to zero. One
should apply the SU{3)y symmetry to quantities that go to a constant in this
limit. (For example, a legitimate application would he to deduce that the proton
to cascade mass ratio is close to unity.) The remaining three quarks c,b and {
have masses large compared with the QCD scale (m, ~ 1.8 GeV,my =~ 5.2 GeV
and m, > 90 GeV ). Because of this it is useful to go over to an eflective theory

* The success of chiral perturbation {heory impfies that these quarks have
small masses. Mass ratins are derived from the pseudo-Goldstone masses. The
values of the masses quoted here follow from a phenomenological model and can
be valid at, al most, one particular subtraction point.

To derive this, ene should, in principle, introduce a Lagrange mmltiplier for the
constraint (10)." Alternatively one can work in the rest frame of the heavy quark
and take 5% 10 be a two component object,” since in this frame the constraint
just restricts the lower two components of Iz(l.Q] to vanish. After deriving the
equation of mation in the rest frame, boosting back to a general frame yields eq.
(14).

The heavy quark eflective theory has symmetries not manifest in the La-
grangian of QUD. Since there is no pair creation in the effective theory, there is
a U(1) symmetry of the effective Lagrangian {11b) associated with heavy quark
conservation. Under an infinitesimal (1) transformation of this type

N A R LA (1%)

with
SRLPY = je nlQY (16)

Here ¢.. is an arbitraty infinitesimal parameter. Since gamma matrices no longer
appear in the gluon-heavy quark interaction (see eq. (7)), the spin of the heavy
quark is conserved. Associated with this is an SU{2} symmetry group of the
Lagrangian in eq. {(11b). To define the action of the SU/(2) group on the heavy
quark fields we introduce three orthonormal four-vectors, g0 = 1,2,3, tha
are orthogonal to the heavy quark’s four-velocity

€auth = —Fap , (17)
vel = 0. (18}
Then the three matrices )
Sa=1¥ canclfntel s (19
L X4

have the same commutation relations as the generators of 57/(2) and in the rest
frame of the heavy quark are the usual spin-matrices. The Lagrangian (11b) is
invariant under the ST7(2} group of {infinitesimal) transformations

J AR I A N T AR (20)

where

LA P T (21)

a

* The two forms £, = JTJE.Q)iDh[,.Q) and £, = B0 . DBL? yield the same
B,

equation of motion for



where the heavy gquark masses go to infinity. This effective theory has a S{/(6)
spin-flavor symumetry. The heavy quark flavor symmetry arises not because the
heavy quarks are almost degenerate in wass, but because their masses are all
large compared with the QCD scale. Again, it is importani to bear in mind
the physical origin of the symmetry. For example, even though the B and D
mesons are in the same multiplet of the heavy quark flavor symmetry, it would
he a mistake to use this symmetry to deduce that their masses should be ahnost
equal (recall that experimentally mp ~ 5.3 GeV and mp ~ 1.9 GeV). These are
quantities that go to infinity as the heavy quark maasses go to infinity. The heavy
quark Bavor symmetry should be applied to quantities that go to a constant in
this limit.

There is another respect in which the SU(3})z x SU(3)r chiral symmetry
of the light quarks is similar to the SU(6) spin-flavor symmetry of the heavy
quarks. Since the strange quark mass is not very small compared with the QCD
scale, there are sizable (typically ~ 20%) corrections to predictions based on
SU(3) « SU(3)g chiral symmetry. Similarly, because the charm quark mass
is not very large compared with the QCD scale, we expect sizable (typically®
~ 20%) corrections to predictions based on SU(6) spin-flavor symmetry.

Because the top quark is very heavy, it will probably not have a long enough
lifetitne to form a hadron. If it is heavy enough it will decay rapidly {compared
with a strong interaction time scale) through the mode ¢t — & + W. Ironically,
for the heaviest of the quarks, it is unlikely that heavy quark symmetry will play
a useful role.

3. SPECTROSCOPIC APPLICATIONS OF HEAVY QUARK SYMMETRY'Y

In the limit mg — 2 the spin of the heavy quark .EQ and the spin of the
light degrees of freedom (1.e., the angular momentum of the light degrees of
freedom in the heavy quark’s rest frame)

=550, (23)

are separately conserved by the strong interactions (here 5 is the angular mo-
mentum of both the lieavy quark and the light degrees of freedom in the heavy
quark’s rest frame, i.c., the total spin). Therefore, in this limit, 3g,mg, s¢,m,
are good quantum numbers. Since the dynanics are completely independent of

* This is based on a comparison with phenomenological madels like the non-
relativistic constituent quark model. In the case of SU(3)r x SU(3)r symmetry,
experience tells us to expect about 20% corrections. As the experimental situa-
tion in heavy quark physics improves, a betier estimate of expecled deviations
from the predictions of ST/{G) spin-flavor symmetry will be possible.

the mass and spin of the heavy quark @ it is convenient to classily states con-
taining a single heavy quark by s;. Then associated with each snch state for the
light degrees of freedom will be a degenerate doublet of hadrons with total spins
(formed from combining the spin of the heavy quark sg = 1/2 with the spin of
the light degrees of freedomn s3,)

31:3;11/2, (24}

{unless 3¢ = 0, in which case a single s = 1/2 state is obtained). The flavor
symmetry ensures that the spectrum is identicsl for each flavor Q up to an
averall constant mass shift associated with the mass of the heavy quark. Of
course, states are also labeled by their parity 7 (which is the same as the parity
of the light degrees of freedom, m,, since the heavy quark has positive parily)
and by other “radial” quantum numbers (see Fig. 4}.

Ha; Hoj
FIG. 4: the apectra and transitions of the hadrons built on Qi and @

To get a better picture of how this works let's consider the mesons with Q§
flavor quantum numbers. (Note that although we use the language of the con-
stituent quark model, our conclusions will be completely general.) It is reasonable
to assume that the ground state mesons with these flavor quantum numbers have
s¢ = 1/2 and negative parity, forming a doublet consisting of a spin zero state
{s_ = 0) which we denote by Pq and a spin one state {a4 = 1) which we denote
by Pj- I the case Q = ¢, these are the D and D* mesons, and in the case ) = b,
these are the B and B* mesons. In terms of the spin of the heavy quark and ihe
spin of the light degrees of freedom, the states (at rest) are

|PQ):-\/1-5{||1>—|m1, (25a)



- 1
176 = i+ 11, (25b)

where the state |F'Q > in eq. (25h) has zero component of total spin along the
quantization axis 7. In eqs. {25) the first arrow in a ket refers to the spin of the
heavy quark along the z-axis, while the second arrow in a ket refers to that of
the light degrees of freedom. Acting with the z-component of the heavy quark
epin then gives

1.
SglFg >= 1PG > . (25¢)

Since .é"Q commutes with the Hamiltonian, the P and P stales are degenerate
in mass.

Experimental tests on the spectroscopic consequences of heavy quark sym-
metry are, for the moment, very limited. The I)* — D splitting of ~ 145 MeV
is reduced to ~ 45 MeV in the B* — B multiplet. This is consistent with the
expected “1/mg" approach to the symmetry limit. There is, at present, no data
an excited systems containing a & quark, so the predicted equality between fiavor
sectors in the splittings cannot be compared with experiment. As we will now
discuss, the little information available on excited charmed-hadron spectroscopy
ia also consistent with the expected doublet degeneracy.

Since the heavy quark flavor symmetry applies to the complete set of n-
point functions of the theory, not only mnass splittings, but also all strong decay
amplitudes arising from the emission of light quanta like x, 9,5, 77, etc., are
independent of heavy quark flavor. For a given heavy quark flavor the spin
symmetry ensures that two states with spins s4 must have the same total widths.
This equality between tolal widths typically arises in a nontrivial way. The two
states of a given multiplet can decay to both states of every available multiplet
with distinct partial widths whose sum must be identical. The spin symmetry
determines ratios of these partial widths (see Fig. 4).

Consider the decays

HQ - {H('?h]LJI. '
where h is a light hadronic system with orbital angular momentum L (with
respect to Hé?) in a state of total angular momentum Jy, where j‘p, =L+ S";. and

& is the spin of k. The heavy quark acis as a static color source about which
the reaction s¢ -+ 9, + # occurs. Since the spin of the heavy quark decouples
from the light degrees of freedom, each such allowed partial wave amplitude for
the light degrees of frredom will determine the amplitudes for the four hadronic
level proresses sy -+ a', Fhoa, — s +hs_ o8 4+ hands. — ' +h The

amplitudes for these four transitions will be of the form'®

A(Hg — 1Huhla Y~ Z C(Jayme — my o' \my +my — mels,m,)"

nr

(Al g,y - mgle m, b my - me)”
O,y - mg s mp|an,me) - Clay,mpisg,m. — myla,m,) (26}

where (s,m,) and {a',m") are the $? and §° quantum numbers of Hg and Hy
and the (s are Clebsch-Gordan coefficients. Note that although the amph-
tude may depend on L via a reduced matrix element, the Clebsch-Gordon sum
depends only on J,.

It is simple to understand the origin of the four Clebsch-Gordon factors in eq.
(26). The first Clebsch-Gordon coeflicient arises from tolal angular mementum
conservation, and the third from conservation of the spin of the light degrees of
freedom. The second arises from a decomposition of the spin of Hg into the
spin of the light degrees of freedom and the spin of the heavy quark. The fourth
Clebsch~Gordon coefficient arises from an analogous decomposition of the spin
of HQ.

The heavy quark symmetry cannot, of course, tell us anything abont the
spectroscopy of the light degrees of {reedom. It can only predict relationships
between heavy quark systems involving given states of these degrees of freedom.
As we have mentioned for mesons with Q§ flavor quantuin numbers, both the
constituent quark model and experiment suggest that the ground states have
a7 =1/2" giving the 37 =0~ and 3] =17 states Pg and Pa. The constituent
quark model also suggests that the lowest lying excited states are likely to he
those which correspond to giving the spin 1/2 constituent anti-quark a unit of
orhital angular momentum resulting in s;" = 1/2% and 3/2% multiplets.

As an application of eq. (26), consider the decay of the a7* — 1/2% and /27
mltipiets to the stales PQ,Pé via emissior of a pion. In this case Jy, = L, =0
the pariial wave amplitude can be given a single subscript. Parity conservation

implies that L is even. Eq. {26) gives that the 3] = 27 state of the 57" = 3/2*

multiplet has decay amplitudes in the proportions /(2/5) : 1/(3/5) to the states
|Pgr]s=2 and [Pé'!r][,-_:p respectively. Its multiplet partner, with 2™ = 1+, decays
at the same total rale exclusively to [Pgx[;—>. Note that the s = 1* state does
not decay to [P5#]z—0 even though this is an allowed channel. Eq. (26) slso
implies that the s7 = 17 state of the a7’ = 1/2% inultiplet decays exclusively
to [PSm]r—0, and does not decay to [Péﬂ']L:g. Its s* = 0 state decays to
[Pgr|r—p with the same total rate.* These predictions are compatible with
existing experimental information on mesons containing a charm gquark. i one
interprets the two confirmed states D7 (2460) and I}y (2420) as members of
the a7* = 3/2% multiplet, then their mass difference is consistent with being

+

These results were first noted by Rosner’) who obtained them by taking
the mg —+ oo limit of a quark model calculation. Heavy quark syminetry allows
us to see that they are model independent consequences of QCD in that limit.



a Agep/m. correction to the limiting theory. Moreover, the [} — D and
D3 — D*r decay amplitndes are in the ratioc 0.8 + 0.1. (Here and in what
follows we quote amplitudes with a phase space and typical barrier penetration
factor of [p2i*Yerpl—p2 /1 GeV?))'/2 removed.”) This is very near the m, — oo
prediction of \/27‘1 The ratio of Dy — D*x and D5 — D*n decay amplitudes is
2.3+0.6. Although the error is large, this is not particularly close to the m, - oc
prediction of /5/3. It is itnportant to remember, however, that the I, decay
may be confaminated by an §-wave admixture from Agep/m, corrections. Even
though this S-wave amplitude vanishes as m, — oo it might be comparable in
size to the D-wave amplitude, because they are very different objects: a small
grapefruit can be larger than a typical apple. In fact, the quark model and light
hadron data suggest thal the S-wave decays of the s7* = 1/2% multiplet are
much stronger than the D-wave decays of the a;" = 3/2* multiplet.

There are obviously many other possible applications of eq. (26). It will, of
conrse, help in determining the s; quantum numbers of resonances containing a
singlte heavy quark. It is also amusing to note that it can in principle be uged to
determine the tolat spin of a heavy quark siate withoul measuring any angular
distributions.

4. TRANSITION MATRIX ELEMENTS

In this section we consider some matrix elements of operators in the effective
heavy quark theory. The matrix elements we {ocus on are those that are likely to
play an important role in determining the Cabibbo-Kobayashi-Maskawa matrix
elements ¥, and V.

Constder first the heavy meson-heavy meson transition matrix element**

(Pg, ()l vuk\" | Po (v)

- S A LR T S A O (27
3/ MPy, MPy,

Meson states in the full theory of QCD, denoted |AM(p, )}, are conventionally
normalized by

(M(p, s M(p,s)) = 2E6,0(2n) 835 — 7). {28)

* This amounts Lo including the kinematic effects of some 1/m, corrections
(see Ref. 13 for details). In particular, the importance of corrections to mass
differences is amiplified because, for example, the D* - D mass difference is not
negligible compared with p,. This effect is more significant the greater the value
of L.

** Mere we have labeled the states by their velocity rather than momentum.
This is convenient because the heavy quark flavor symmetry relates heavy quarks
wilh equal velocities. Also, it is understood that the operator i!t,flquh(..” is eval-
uated at the origin of space-time.

The factor of energy in the normalization leads to the NLRE L the de-
s .

nominator of (27) if one is 1o have a quantity that is independent of the heavy
quark mass in the eflective theory. It is appropriate to use the effective theory
for this matzrix element. In the initial hadron the light degrees of freedom have a
mementuin of order Aqepr and in the final hadron the light degrees of freedom
have a momentum of order Agept’, se the squared invariant momentuin transfer
felt by the light degrees of freedom is only of order

Ayeplr-v' 1) . (29)

For v - v' of order unity, this is much less than the heavy quark masses,

In eq. (27) f4 are functions of v - o' They have a tilde on them because the
more usual definition of form factors for transitions of this type is

(Pa, (VMR b P (o)) = fr(p + P )u + F (P— Pl . {30)

where p' = mp, v' and p = mp, v. A comparison of eqs. (27) and (30) implies

f+:%( fTLP:,_F fTﬂ)f* _-1(F&, }Ti)f_, (31)
mp, mp, 2 mp, mp,

P - A VST LA T
-T2 ﬁp} N mp, 1t 2 (Jm-p, + mp, f- (32)

Since fhs,” = hY? and frt,’..]ﬁ' = H(U{J contracting (v — ©')* with both sides of eq.
(27) yields

j--o. (33)

Finally, we note that at v = v’ the left side of eq. (27) is the matrix element of
a conserved current associated with heavy quark flavor symmetry. The p = 0
component is related to a generator for the symmetry and its matrix element is
known. This gives'®!

fully=1. (34)

The basic physics underlying these lorinulas can bhe visualized using Fig. 5.



Similar manipulations determine the other form factors. Thus, the form factors
characterizing the Fg, — Py, and Fg, P, matrix elements of the vector
and axial vector currents are expressible in lerms ol a single universal function
£(v - v') that is normalized to unity at zero recoil:

1) =1, (43)
Explicitly,®! ) i
fi=€6. f-=0, (44a)
f=0+v-v, {44b)
{4y ~a_)= €, (@4 +d-}=0, (44c)
g=¢. {44d)

The function § is truly universal: it doesn’t depend on the heavy quark’s mass
or spin, nor does it depend on the current which causes the @i — Q; transition.
The sae funciion would even play a role in the physics of hadrons containing
other heavy color triplet particles. Many exiensions of the standard model, {e.g.,
supersymmeliry and technicolor), contain such heavy spin zero color triplets.

Transition matrix elements involving the ground state (isospin-zero) baryons
with ;ud flavor quantum numbers are even easier to deduce than those involving
the ground state mesons. These baryons are denoted by Ag, and we assume that
they have s™ = 0% (this is suggested by the constituent quark model and in
the case ¢} = ¢ is consistent with experiment). The “interpolating field” that
destroys one of these baryons is

Ag v, a) = doiifv, 5)R | (45)

where ¢, is a scalar field that destroys the light degrees of freedomn. Note there
is no factor of VA, because in the full theory of QCD, the conventional nor-
malization for baryon states |B(p, s)) is

(BB = () Bur(2n 55 (46)

L]

With the “interpolating field” in eq. (57) it is straightforward to see that!%1®)
{Ag, (v, s )R2TRAg, (v, 8)) = na(e', o' NWufe, s) (47}

where 1 is a universal function of v - v’ independent of th e heavy quark masses.
The heavy quark flavor symmetry implies that at zero recoil

(ly=1. (48}

Apart from the overall factor of , eq. (5%) shows that the hadronic mairix
element is like a heavy quark matrix element. This occurs because in » Ag state
the spin of the hadron is carried by the heavy quark.

Transition matrix elements between heavy and light states can also be con-
sidered. Here, the heavy quark flavor symmetry can be used to relate matrix
elements involving different heavy quarks. For example,®®

(Oldvshl | Pg.(v)) _ (OlgrushV|Po, (v)) (19)

TPy, ‘/nTp";

Similar relations hold to light final states like 7 and p provided, in the rest frame
of the heavy quark, the final states have four-momenia small compared with the
heavy guark masses?’ (see helow).

5. RELATIONSHIP BETWEEN OPERATORS IN QCD AND OPERATORS
IN THE EFFECTIVE THEORY

In the previous section we wrote down matrix elements of operators in the
effective theory. Before we can relate these to physical matrix elements, we
must establish the relation beiween operators in the effective theory and full
QCD. This relationship is of course nontrivial because in the low energy eflective
theory we have ignored high momentum virtual states of the heavy quark in its
rest frame. Consider for example the relationship between the vector current in
the full theory

Vo = §ireC - (50)

and the renormalized vector current in the effeclive theory
0, = qj-y,,h‘!,") + counter term . {51}

In eqs. (50} and (51) the operators are evaluated at the origin of space-time.
Naively the relationship between the two is the tree level one, V, = O,, . However,
this relationship cannot survive beyond the tree level, because O, depends on
the subtraction point p while V, doesn’t. The subtraction point u determines how
much of a matrix element is put in the infinite part and subtracted away and how
much remains in the finite value of the matrix element. Crudely speaking, virtual
loop momenta greater than u are subtracted away, and virtual loop momenta less
than p remain in the finite part. Consequently, if we choose u = mg, then the

relationship
V, = 0,,(mq,) + Oa,(mg,)) (52)

holds. The finite parts of matrix clements have logarithmic depeudence on the
subtraction point. Consequently al g = mg,, the operator O, (mg,) has large



FIG. 5: (}; — Q; is related to the elastic transition Q; — Q; by the symmetry

The manipulations leading to eqs. (33) and (34) bear a striking resemblance
to the nethod for deriving the predictions of light quark SU(3)v symmetry for
form factors in the K — = matrix element of the cutrent §y,d. However, we see
from eqs. (31) and {32) that heavy quark symmetry does not predict f_ to be
zero and it provides a normalization, not at ¢> = (p' — p)? = 0, but rather at the
maximum value ¢2,,. = (mp, — mp,)* where both the initial and final hadrons
have the same four-velocity. We call this kinematic point zero recoil, since in the
rest frame of the initial hadron the final hadron is also at rest,

FIG. 8: ...even if a spin flips

The P, and Fj states are related hy the spin symmetry {see Fig. ). This
¥ ]

allows us to get information on the transition matrix elements

(P, (0 e MR skl | P () .
VR = fep e olar(n b o), Hao(r—n')] L (35)

and
0 .
(g, (v, MR b Py (a)
In eqs. (35) and (36), € is the polarization vector for Pé]. Eqs. (35) and (36)
give the most general form of these matrix elements consistent with Lorentz
invariance and the parity conservation of the strong intcractions. Since we arc in
the effective theory f,i+ and § are functions of v - +*, independent of the heavy

quark masses. Using the spin symmetry, all of these form factors can be related
to f,. Consider, for example, the relation (see eq. (25c))

= i§€ a0 0 (36)

(P, KM s 15kl P, (v)) = 255, Po, ' ' vyys ki MPg,(v)) . (37)

In eq. (37} the final states are at rest and PZ?;’ has zero component of spin along
the z axis (this corresponds to & polarization vector ¢# = (11,0,0,1}); by omitting
the fout-velocity subscript on ’—'!-:,{]
are implying that »* = (1,0). Since 55, 18 n hermitian operator and the initial
siate contains no heavy quarks of 1ype (i)J,

(and the velocity argument on the states) we

(Po, IR 13 vshl M Pg () = 2(Pg, (S5, A yaashi [ FPg.(r)) . (38)
Using the commutation relation
185, F P 7eht?] = — B p0hS) (39)
we have that
(P, IR ys7sh 01 P (0)) = — (P, IR0k | Po,(0)) - (40)
Eqs. {27), (33}, (35), and (40) imply
Frla+a o’y = fult +0%, (41)
in the frame where v' = (l,ﬁ). Eg. (41) yields, in a general frame,

dpta =0, f=(+u 1, . (42)



logarithms of {mg, /Agen) in its matsix elements. These can be traneferred from
the mialrix elrments of the operator to a coeficient by scaling g down from mg,
to the QU scale. In the leading logarithmic approximation, the relationship
between ¥V, and O, {p} has the form

V. = Cp)O,. (1) . (53)

where the p dependence of (7; cancels that of O, . According to eq. (52} , C;
oheys the matching condition

Cilmg, ) = 1 + O(a,{mg,)) - (54)
Detailed caleutations? ! give that
-8/{33-2N)
Culp) = [M_) ] (55)
alfr)

where N is the number of light flavers appropriate to the momentum interval
between mg, and u. Simitar relationships hold for other operators §;I'@;.

As another example, relevant to the matrix elements discussed in Section 4,
we consider the relation between the operator V, = @;7.Q; in the full theory of
QUD, and the operator T, = E‘l,’.’-y.,h.ﬁ,'“r counter term in the effective theory.
We imagine thal mg, >> mg,. In this case one finds'7'*} that, for p < mg,

Q7@ = Couly) Ty (1} (56}

where T, = k' 4,807 3 counter term, and

) — ﬂ'.'(_mQ_-)]*n/raasz) [m]”(‘..‘n, i
CJI(”) - [QQ(HIQ.) (_‘!,(‘(,) ' ( )
where .

ap(v-v) = (:l—.z_—m[tr-v o'y —1]. (58)

In eq. (58), N is the number of light quarks approptiate to the momentum
interval between mg, and p. An identical formula, with the same coeflicient,
holds for the relationship hetween the axial current Qv v5Q; and T, 4.

The results of thiz section and those of Section 4 can be combined to give ma-
trix elements that are relevant for experiment. The exclusive decays B - Dev,

and B —— D*¢5, are determined by the V.y elenment of the (‘ahibho-Kohayashi-
Maskawa matrix and by the hadronic matrix elements

(D(v" Yevebl Ble)y
Jmpmp -
(_D%Z‘;—Eﬂﬁ{})} = Colv - )(1 + v '), ~ (e v)el],  (60)
(D (=", e}ley, b1 B(r))
Vmpmp:

The subtraction point dependence of £ cancels that of (.. At zero recoil
g1y =1. (62)

The present data on semileptonic B — Dei, and B — D" eis, decays are consis-
tent with the predictions in eqgs. (59)-(62). The exclusive decay Ay — Aeb, is
determined by the V,y element of the Cabibbo-Kobayashi-Maskawa matrix and
the matrix element

Copblv - o) e +07), , {59)

= b0 - 0 e ppaae v 07 (61)

(A", " )erul(l — 15 )8lAs(v, ) = Canlv - ¢ Ji(e', a1 (1 — ysdule,8) . (63)

Again, the subtraction point dependence of 5 cancels that of ’.;, and at zero
recoil the flavor symmetry of the effective theory implies the normalization

(1) =1. {64)

The predictions in eqs. (59)-(64) can be used to exiract the value of |¥,] from
experimental data on exclusive semileptonic B and A, decay.
The decay constant fp, of the heavy @.§ meson Fg, is defined by

Ol§7. 15 Qi Po,(p)) = fry.po - (65
Using eqs. {49) and (55) one has the relationship
—8/28
PR [:(L») fn. (66)
mg |a,(m}

The decay constant of the I? meson, fp, should be measured in the future from
the leptonic I} decay, I} — jiv,. At present the limit is fp < 200 MeV.

The heavy quark methods open an interesting avenue for determining the
magnitude of the V., element of the Cabibbo-Kobayashi-Maskawa matrix.*'
Ordinaty isospin symmetry plus heavy quark symmetry implies that, for example,

{o(k, e)lEv,(1 - 75 )b B(v))



a(my)}

St {ptk.e)ldr, (1 - 7s)elD{z)) . (67)

g 172
B (T"D) y(m.)
Eq. (67) is valid in the rest frame of the B and D for momentum k small com-
pared with the heavy quark masses.” Since in the Cabibbo-suppressed semilep-
tonic decay I} — pér, the weak mixing angles are known, the right side of eq.
(67) can be determined experimentally. With this information, experimental
date on B - per, will sllow a determination of |V, (see Fig. 7). If one uses
light quark SU{3)y flavor symmetry instead of isospin, then the Cabibbo allowed
semileptonic decay D — K*év, can be used. The form factors for this decay have
already been determined experimentally.?™ Of course this strategy can be used
for any convenient light hadronic final state.

purs brown muck

FIG. T: heavy-to-light transitions are also related by the symmetry

It is possible to systematically improve order by order in a,(m,) and a,{m;)
the matching between operators in the full theory of QCD and operators in the
effective theory.!™?!) This gives calculable perturbative corrections and does not
cause any loss of predictive power. (For example, the matrix elements for the
decays B — Dep, and B — I} b, are still expressed in terms of a single universal
function, £(r-v"), that is normalized to unity at zero recoil: £(1} = 1). The leading
perlurbative corrections have been calculated and are typically of order 10%. In
this Section we have for pedagogical reasons treated m./m,; as a small quantity.
It has been argued®?! that it is more accuraie to go over to the effective theory
in one step in which both the b and ¢ quarks are treated as heavy, keeping in the

* Model calculations suggest thai eq. (67} holds, even for & comparable with
the heavy charn quark mass.!?!

perturhative a,(m}) corrections to the matching conditions the full dependence
on mcj/n.

6. STATUS AND PROSPECTS

In this briel introduction, I have not had time to mention many of the
important developments that have taken place in this subject in the last year.
Foremost among these must be the study of 1/mg effects?*~2%?, which has, among
other things, revealed that some predictions of heavy quark symmetry receive no
1/mg corrections (“Luke’s Theorem™). Bjorken's sum rule'®??) for the slope
of ¢ and the work of Dugan and Grinstein on factorization ***!)ghould also he
singled out for mention. In addition, the recent literature contains applications of
the heavy quark methods to inclusive semileptonic decays,'®?*} gemileptonic Ay
decays to excited charmed baryons®?’', nonleptonic B (and A,) decays™3'21:35),
semileptonic A, decay®®, heavy meson pair production in e¥e™ annibilation®™?,
and rare B meson decays®®,

The ultimate utility of the ideas presented here will depend largely on the size
of the Aqep/m. cotrections =. The experimental successes we have found suggest
that, in at least some cases, they are not anomalously large. Theoretically, we
know that certain zero recoit predictions are uncorrected in leading order in
Agcep/mc. In the case of Ay — Aceb, decay, it is remarkable that most of
the predictive power over all momentum transfers is retained when Agep/m.
corrections are included. Nevertheless, we musi expect that, as was the case
for light flavor STU(3), it will require some experience before we can gauge the
reliability and range of applicability of heavy quark symumetry.
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logarithms of (mg, /Agen ) in its matrix elements. These can be transferred from
the mintrix elrments of the operator ta a caefficient by scaling p down from mg,
te the QCD scale. In the leading Ingarithmic approximation, the relationship
bhelween V¥, and (7, _(yr) has the form

Ve = GOy (i), (53)

where the p dependence of (7; cancels that of O, . According to eq. (52) , C
obeys the matching condition

Cilmg,) =1 + Ofa,lmg,)} . {54)

Detailed calculations®-®! give that

Cilp) = [ :me.) (55)

) 8/138-2N)
ﬂl(ﬂ) ]

where N is the number of light flavors appropriate to the momentum interval
between mg, and x. Similar reiationships hold for other operators §T'Q:.

As another example, relevant to the matrix elements discussed in Section 4,
we consider the relation between the operator ¥, = @;7.Q; in the full theory of
QCD, and the operator T, = B:,‘f’-y,h(.,i) + counter term in the effective theory.
We imagine that mg, >> mg,. In this case one finds!™1* that, for p < mq,

Q@i = Codi) Ty (1), (56)
where T, = h“."y.,h{,“ir counter term, and
_6/631-2N) ag(ee’)
- [edtmed] " amo,) .
o) = [“s("'o, a] l 1) (57)
wherte .
ap(v-v") = im—-j[v-v'r(v -’y - 1] . {58)

In eg. (58), N is the number of light quarks appropriate to the momentum
interval hetween mg, and g, An identical formula, with the same coefficient,
holds for the relationship hetween the axial current Qj'y.-‘:fsQ. and T., .

The reaults of this section and those of Section 4 can be combined to give ma-
trix elements thal are relevant for experiment. The exclusive decays B — Dei,

and  — D¢, are determined by the ¥, element of the Cabibbo- Kobryashi-
Maskawa matrix and hy the hadronic matrix elements

(DU Ve bl Ble))
JREMD
(D* (2", €)|evpyshl Blr))
JmBm.
(D" (", e)|e7, bl B(r))

Mpmp-

= Cwblv - 0" Yo + 2y {59)

= Copblv -1+ v o), — (e -vhrl], (60}

= 0480 - v )eppoge v 00 (61)

The subtraction point dependence of £ cancels that of (. At zero recoil

f{1y=1. (62)

The present data on semileptonic B — Dei, and B — D*ei, decays are consis-
tent with the predictions in eqs. (59)-(62). The exclusive decay Ay — Aceb, is
determined by ihe V y element of the Cabibbo-Kobayashi-Maskawa matrix and
the matrix element

(Ac(e', 8" )evu(1 — 15 blAb{r, 8)) = Copnlv - 0")ia(v", a)7x (1 - ys)ulr,8) . {63)

Aguin, the subtraction point dependence of 1 cancels that of .y, and at zero
recoil the flavor symmetry of the effective theory implies the norinalization

a)=1. {64)

The predictions in eqs. (59)-(64) can be used to extract the value of |Vp| from
experimental data on exclusive semileptonic B and Ap decay.
The decay constant fp, of the heavy @, meson g, is defined by

(ul'ﬁ"v?’&QthQ.(p” = qu|Pu - (65)
Using egs. (49) and (55) one has the relationship

—8/25
fo = 22 [:}:“; fo . (66)

The decay constant of the 2 meson, fp, should be measured in the future from
the leptonic I} decay, I — fiv,. At present the limit is fp < 200 MeV.

The heavy quark methods open an interesting avenue for deternmining the
magnitnde of the V,, element of the Cabibbo-Kobayashi-Maskawa matrix.*’
Ordinary isospin symmetry plus heavy quark symmetry implies that, for example,

{plk, e)lTv.fl — vs)b|Blv))
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