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Predictions are made for the photoproduction amplitudes of low-lying N;—+ {P1) and
A§+ {Py3) resonances, using a quark model with relativistic corrections to the transition
operator, and mixed nonrelativistic wavefunctions which are correctly orthogonal to the
ground states. These amplitudes are also calculated using relativited model wavefunc-
tions. The resuits for the Roper resonance N(1440) are in marked disagreement with

the data.



L INTRODUCTION

Recently Close and Li [1] and Warns, Schréder, Pfeil, and Rollnik [2] have cal-
culated the photoproduction (and electroproduction) amplitudes of the nucleon
and delta baryon resonances in models which use the Isgur-Karl (IK) model [3-5|
wavefunctions for the resonances, and which add relativistic corrections to the
transition operator. One of these corrections had been applied to the calcula-
tion of photoproduction amplitudes with unmixed oscillator wavefunctions by
Kubota and Ohta [6]. The effects of hyperfine mixings on these amplitudes,
calculated with the non-relativistic operator, were calculated by Koniuk and Is-
gur [7]. Forsyth and Cutkosky [8] also performed a similar calculation using a
more general operator, and Sartor and Stancu[9] have calculated with the non-
relativistic operator but with a more sophisticated basis for the wavefunctions.
Refs. {7-9] used wavefunctions for the ground states N(938) and A(1232) and
their excited states which include mixings between the N = 0 and N = 2 baunds
brought about by color-hypetfine interactions. Note that the previously pub-
lished Isgur-Karl model [4] wavefunctions for the N = 2 band excited states with
Jr = %+ and JP = %+ do not include mixings with the N = 0 band, and so are
not orthogonal to the ground states. It is therefore incorrect to use the mixed
ground states [5] and these excited states in the same calculation, as is done in
Refs. [1, 2], and doing so leads to erroneous results for these excited states.

In this paper the Isgur-Karl model wavefunctions of the ground and excited
N%+ and A%+ states are formed by diagonalising an energy matrix which in-
cludes the hyperfine terms. The resulting corrected predictions with 1K model
wavefunctions and using Close and Li’s transition operator are calculated. An-
other possible source of error is that this model ignores mixings between the
ground states and the radially excited states, brought about by the presence of
anharmeoenicities in the spin-independent potential. For example, the TK model
Roper resonance has a large negative anharmonic perturbation on its mass, but
its wavefunction is unaflected; this might lead to erroneous results. This pos-
sibility is examiined here by estimating these couplings using the wavefunctions

which result from a relativized spectroscopic model [lﬂ], along with Close and Li’s
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transition operator. In the relativized model the wavefunctions are expanded in
a large oscillator basis and the resulting Hamiltonian matrix is diagonalized, with
the result that (apart from basis truncation beyond N = 6) the spin-independent
potential is treated without wavefunction perturbation theory.

There has been a lot of interest in two of the states considered here, the Roper
resonance N(1440) and the A(1600), becanse of their relatively poor description
in spectroscopic models [4, 8-11]. There has also been some controversy about
whether or not there are two states in the partial wave analyses {12] at the mass
of the Roper resonance, which now appears unlikely [13]. Models exist which
describe one or both of these states as hybrid baryons [14]. For this reason it is
ctucial to see whether or not their photocouplings calculated in the conventional
quark model are compatible with the data.

Ohta [15] has calculated the photocouplings of the Roper resonance and the
4A(1600), along with those of the A(1232) to normalize some of the parameters,
and gets good agreement with the data for the Roper and A(1232). The results
for the A(1600) are large and incompatible with the recent data [16]. The model
is similar to that of Ref. [1], except that it carries out an expansion to one higher
order in p/m, and includes explicit contributions from the vector potential. The
effects of interband mixing on the amplitudes are neglected. It has not been ex-
tended to the other measured photocouplings, so there remains a question about
whether the agreement for the Roper resonance survives in a model confronted
with all of the data. Gavela et al. {17] have also calculated the size of the two
Pyy resonance photocouplings using a 2P, quark-pair-czeation model to create
p and w mesons, which then couple to the photon {vector dominance). Their
model also gives good agreement for the Roper photocouplings, although their
other prediction (for the N{1710)} is not as good when compared to recent data.
Similar questions remain about the model’s global applicability.

The next two sections describe the Isgur-Karl and relativized-model wave-
functions used here, and Close and Li’s corrected transition operator. These
are followed by a description of the results, and a section discussing these and

drawing conclusions.



Il. WAVEFUNCTIONS

A. Nonrelalivistic wavefunctions

To generate the mixed wavefunctions for the ,_‘;+ nucleon and %+ delta reso-

nances we must diagonalise the color hyperfine interaction matrix in these sectors.
There are five nucleon states with J? = §+ up to N = 2 in the nonzelativis-
tic model, which we label N7S51" (the N = 0 state), N?S5 1", W25y Lt
NiDy %+, and NEPA§+. Here the notation and conventions of Isgur and Kail's
paper on the positive-parity excited states [4] are used. The hyperfine energy

matrix which results [4, 5] is,
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where the matrix elements are in units of

4a,a’

6= m, {2)
and the matrix is symmetric. The off-diagonal matrix elements involving the
L = 2 state N‘DM%+ {and the second part of its diagonal matrix element)
are due to the tensor interaction, whereas all the others arise from the contact
interaction. Similarly there are four delta states with J¥ = %+ up to N = 2,
which are A“S_g%+ {the N = O state), A“Ssr%+, A*DS%+, and AZDM%+, with
the hyperfine energy matrix

A1ss3T Atse 3t ADs2T ATDy R
a's ' Poe 4 2
82Dyt a
1

Again the off-diagonal terms involving the D states are tensor interactions and
all the others are contact interactions. In order to extract the wavefunctions
for these states we must also add in the diagonal energies which result in the
model from harmonic oscillator energies plus anharmonic perturbations. Since
the original spectroscopy was done [4] without the hyperfine mixings between Lhe
N =0 and N = 2 band states, the resulting energies would differ from the resuits
of Isgur and Kail. In order to obtain the best estimate of the hyperfine mixings
in the wavefunctions the following procedure is adopted here: the N %+ matrix
is diagonalised iteratively with floating diagonal entries for the first threc states,
subject to the requirement that the lowest energy eigenvalues turn out to be 938
MeV, 1440 MeV and 1710 MeV, the physical masses of the states they represent.
The last two diagonal entries are set at F(70,2%)+(1/8~-9/40)§ = 1905 MeV and
E(20,1%) = 2020 MeV, where E(70,2%) and E(20, 1) are the spin-independent
model energies of these last two states which couple weakly to *N and so have

no experimental counterparts. The result 1s the eigenvector matnix
938 1440 1710 1898 2058

[ 0.9246 0.2958 0.2035 0.1218 —0.0423] NS5

—0.2901 0.9551 —0.0491 —0.6319 0.0114 N255'§+

—0.2426 —0.0147 0.9015 0.3445 —0.0979{ N Sy 1

— 0.0459 —0.0006 —0.3697 0.8030 —0.4651 | N1 Dy 1"

— 0.0030 —0.0001 —0.0849 0.4697 0.8787) N2P4x1"
1029 1399 1690 (1905) (2020)

whete the first row gives the eigenvalues, the eigenvectors are listed by columns
and the last row gives the final diagonal entries. The resulting masses for the
heaviest iwo siates, and the N{938) wavefunction, are quite similar to those of
Refs. {4, 5]. The mixings of N?Sy 1" into N(1440) and of N?S5 1Y into N{1710)
have changed substantially (the former changing sign) relative to Ref. [4], due to
mnterband mixings.

A similar process is carried out for the A§+ matrix, with a flcating first
diagonal entry constrained by the requirement that the lowest eigenvalue is 1232

MeV. Since quark model values for the mass of the first excited A%+ stale are



consistently higher [4,8-10} than the mass of the two-star state A(1600), and it is

not possible to constrain the third eigenvalue to its physical value (1920 MeV), the

remaining diagonal entries are taken at their model values, E(56/,0%) + 56/8 =

1788 MeV, E(56,2%) +6/4 = 1925 MeV, and E(70,2%) + §/8 = 1972 MeV. The

corresponding eigenvector matrix is

1232 1799 1946 1983

0.9667 —0.1601 0.1844 —0.0765] ASs2*

0.2192 0.9205-0.3043 0.1098{ A*Ss 37

~0.1094 0.3076 0.9238 0.2002| A*Ds2*

0.0740 —0.1802 —0.1416 0.9706 A2D,, 3t

1275 (1788) (1925) (1972) )

(5)

with masses and the A(1232) wavefunction similar to those of Refs. [4, 5].

B. Relativized model wavefunctions

Detatls of determining the wavefunctions for these states from the relativized
model, and a description of the model, can be found in Ref. [10]. The important
difference between this model and the Isgur-Karl model, for the parposes of
this work, is the meore realistic treatment of the spin-independent potential. The
successful spectroscopy of the nonrelativistic model in light quark systems can be
rationalized (given the obvious importance of relativistic eflects in systems with
p/m = 1) by noting that the model uses effective values of the parameters, which
are able to make up for some of the deficiencies of a nonrelativistic trcatment.
An example is the {constitnent) gquark mass which in the nonrelativistic model is
an effective mass containing some of the kinetic energy of the quark {as well as
‘dressing’ of the current quark mass from QCD). Another is the strong coupling
constant, which has a large size to compensate for deficiencies in the treatment
of the relativistic dynamics of bonnd spinors and the perturbative solution of the
dynamical problem. In the K model [4] the spectroscopy of the states considered
here is driven mainly by the spin-independent potential. This splits the N = 2

band states into a pattern independent of the form of the potential, in first

order in its anharmonic part. The next most important effect is the hyperfine
interaction.

The effects on the wavefunction from the anharmonic terms are not included
in the IK model, although the effects of the hyperfine interaction (as calculated
above) are. The size of the anharmonic ‘perturbations’ on the spectroscopy,
which for the Roper resonance, for example, are larger than the zeroth-order
oscillator splitting, should warn us that the effects on the wavefunctions may
be large. The relativized model deals with these effects by diagonalizing the full
potential in a large harmonic oscillator basis (three bands above the ground state).
The spin-independent potential is that which results from adding the lengths
of a minimum-length Y-shaped string between the quarks, and multiplying by
(roughly) the meson string tension. The hyperfine interaction is also dealt with
differently. For details see Ref. [10].

The spectiroscopy that results from this process is comparable to that of the
IK model, which is encouraging given the lack of freedom to fit band centers
of mass, eic. The spectroscopy of iwo of the states consideted here (compared
to other non-strange states in this band) is perhaps the most problematic in
both nenrelativistic and relativized models. The Roper resonance is predicted to
be about 100 MeV heavier than experiment, although it fits quite well into the
pattern of splitting of the states in its band (whose centre of mass is about 40
MeV too high). Also the mass of the lightest excited A2" is abont 190 MeV too
high {or it needs to drop another 150 MeV out of its band), as in nonrelativistic
models [4, 8]. Recent partial wave analyses by Arndt, Li, Roper, Workman, and
Ford at VPI [18] and Manley and Saleski at Kent State [19] have confirmed the
existence of the latter state, so it remains a problem for the quark model. This
work is motivated, in part, by noting that the study of the photocouplings of
these states is a particularly sensitive way to determine if new physics is needed

to explain their nature.

III. TRANSITION OPERATCR

The photon transition operator used hete builds upon the nonrelativistic oper-



ator by the addition of terms which must be included in an expansion to O{p/m)?,
which supplement the usual orbit-flip (or convection) plus spin-flip terms with
spin-orbit [20, 6] and two-body[20, 15, 1] terms. The coavection term is also
rewritten in order to avoid explicit dependence of the transition operator on the
vector-exchange part of the binding potential [21, 1]. Similarly, explicit depen-
dence on the scalar part of the binding potential can be avoided by including
kinetic and scalar-binding energies in the effective quark mass m*. The resulting

transition operator

3
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is then expanded to the same order as the spectroscopic Hamiltonian in the IK
model. Here m* is the the effective light-quark mass, e,, o,/2, and u; = ge;/2m"
are the charge, spin, and magnetic momeat of the qﬁark i, and A, := A(r,). The
baryon system recoils with mass Mp. Close and Li argue that it is necessary to
add these terms if one also considers the mixings in the wavefunctions brought
about by the strong-hyperfine interaction, which is itself of O(p/m)*. They are
also necessary [20] if the electromagnetic interaction is to satisfy the low-energy
theorems in Compton scattering, and the Drell-Hearn-Gerasimov sum rule.

For ease of calculation 1t is useful to write the transition operators to be ased
between quark model states in a slightly diffecent form from those of Ref. [1]. By
insertion of the usual radiation field for the absorption of a photon into Eq. 6,
and then integrating over the baryon center of mass coordinate, the transverse
photo-excitation amplitudes can be written as simple éxpectation values over

flavot, spin, and spatial internal coordinates
AY = (X IMHS|N LA - 1), (7)

Here the imtial photon has a momentum kjjz, the initial nucleon has a momentum

P.[|z, and the angular momenta are quantized along . The exchange symmetry

of the IK model wavefunctions has been used to replace a sum over quarks with
three times the third-quark expectation value [22]. The operator Hj; can be
writlen in the form Hy = HS" + H3" + H + H}}, with the nonrelativistic (nr)

operator
€3 1 i f T34 _ kﬁ.\
oo = — gk —% . CReLi 8
H, me \/i %o ( SPA+ g 2 € (8)

Here ko is the 0-component of the photon four-momentum (equal to k& = |k{ for
real photons), and the momenta p, and p, are conjugate to the Jacobi three-
body coordinates p = (r; — rg)/\/‘z and A = (r; +r; ~ 21'3)/\/(_5. The derivative
operator here is that which arises from the usual convection Hamiltonian

3

e
Hcon':__ — A.+A, i) 9
; 2m- {p: P:) {9)
The difference H"? between the rewritten couvection term, (the first two terms
in Eq. 6} and H"™, is a reiativistic correction {o the transition Hamiltonjan due
to the presence of the vector-exchange part of the binding potential; it can be

written in the form

2r /2 -t k 2 E P
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where P, = |P,|. Similarly the spin-otbit (s0) operator may be written
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and the two-body (2b) operator has the form
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where o, = (o) ~ Ug)/\/i‘ and oy = (o, + 2 — 203)/\/5.

The explicit appearance of P; in Eq. 10, Eq. 11 and Eq. 12, and the non-
relativistic kinematics (the simple dependence on k = |k|) demonstrate that
amplitudes caclulated with these terms are frame dependent. Accordingly they
are calculated in both the centre-of-momentum {cm) frame (where P, = —k) and
in the Breit {Br}) frame (where P, = ~k/2) to estimate the error introduced by
this lack of relativistic invariance, although the results in the Breit frame are
theoretically preferable. For photoproduction we have

My-M}
.- cm frame
- X

Mi_M? .
Breit frame.
AMI M2

IV. RESULTS

ky=Fk= (13)

Table | shows the results of this calculation using Isgur-Kar! model wavefunc-
tions, in both the centre of momentum and Breit frames. In all cases the results
are for mixed initial and final state wavefunctions from Eqs. 4 and 5. The Breit
frame results are shown decomposed into the pieces arising from H™ (expressed
as the sum of two terms: the convection term and the spin-flip term), H™P, H*,
and H?®. The signs of the photoproduction amplitudes for each resonance are de-
termined by taking the product of the sign of the amplitude in Eq. 7 and the sign
of the X — Nw decay amplitude. There is also an extra conventional sign in the
experimental amplitudes [16, 7| of -1{+1) for the photoproduction of an N"(A*).
The simplest way to avoid miscalculating these signs is to calculate the * N am-
plitudes in some model using exactly the same wavefunctions used as input to
the photoproduction calculation. This calculation has been done [23] here using
the ? P, (quark-pair-creation} model and the above wavefunctions. The signs of
the resulting #N amplitudes are stable to changes in the parameters away from
those which best fit the pion partial-wave data. Table | also includes predictions
for the photocouplings of states in Eq. 4 and 5 predicted by the quark model,
which are unseen in the 7N and photoproduction analyses (‘missing’ states). Tt
is possible that evidence for them will be discovered at CEBAF. The results here
indicate that they have rather small photocouplings and so should be difficult to
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see in single-pion photoproduction (given their implicitly small =V coupling).
but they may be visible in multi-pion final states like 7A, pN, and w/N.

As a test of the computer program used to calculate these amplitudes, the
calculation of Ref. {1} has been reproduced, for the case of unmized TK model
wavefunctions in the cm frame, for every resonance for which there exists data.
The results agree in magnitude for all states, and in sign (apart from the overall
sign of the N%+(1720) amplitudes [24]) in the case of all states not considered
here. The signs of the N(1440), N(1710), A(1600) and A(1920) unmixed ampli-
tudes all differ [17, 25} from those of Koniuk and Isgur. In their work 7] the signs
of three of these amplitudes are fit by the sign of a reduced (7 N) amplitude P!;
in Ref. [23] there is no such freedom, and the signs are predicted. In the case of
the A(1600} the situation is complicated by a * N amplitude which changes sign
(in the P, model of Ref. [23]) when the initial and final states are mixed as in
Eqs. 4 and 5. None of the other signs arising from the ¥ r vertex change because
of mixing.

The amplitudes for the Roper resonance N(1440} show a cancellation between
a small nonrelativistic term and the sum of the spin-orbit and two-body terms.
The resuiting small amplitudes ate quite insensitive to changes in the parame-
ters of the model, and significantly far from the data. Kubota and Ohta's [6]
calculation shows a similar cancellation, as does that of Ohta [15] [in his ampli-
tudes calculated to O(m~?)|, although all of his amplitudes are larger due to a
large quark anomalous moment. Similar small results (with the opposite sign)

for A"} have been found in a light-cone model at Q7 = 0 for radial excitations by

Webe: [26]. The situation for the N(1710) is somewhat better, given the errors
in the data. However the N{1710) amplitudes are sensitive to changes in the
wavefunction due to the mixings of higher bands into the wavefunctions, and are
in better agreement with the data in the relativized model {as shown below).
The amplitudes for the ground state A(1232) are essentially unchanged from
Ref. [1], as expected; those of the first excited state A(1600) arc larger and in
poorer agreement with the data. This is due to a large nonrelativistic term
from mixing [9] with the A(1232) (not calculated in Ref. [7]}, and spin-orbit and

11



two-body terms which approximately cancel. The situation for the A(1920) is
improved, and agrees well with the data, for which no etrors ate guoted {16).

Table II shows the amplitudes for these states calculated in the Breit frame
with relativised model wavefunctions [27]. The process of relativisation, generally
speaking, replaces quatk masscs in operators with simple functions of their kinetic
encrgics, and smears the quark coordimates. Since the photocouplings dealt with
here are all for light-quatk states which are mot highly excited, it should be a
reasonable approximation to replace the quark kinetic energy with a constant.
This corresponds, up to the addition of an average scalar-binding energy [1], to
the effective mass m* in Eq. 6. There is no reason, however, for this effactive mass
o be the same as that which appears in the model {7] with IK wavefunctions.
Quark smearing has the effect of multiplying the photocoupling amplitudes by a
nonrelativistic form factor which falls off as the three-momentum transferred to
the quark increases, With the light quarks smeated wiith a Gaussian distribution
of the same size as that used in the relativised model speciroscopy {10}, this form
factor falls off only a few percent over the rtange of My values considered here, and
so will not affect the photocouplings. Accordingly the measured photocouplings
bave been fit [28] by varying the quark effective mass. The quark magnetic
momnents are maintained at the values needed for a simple additive explanation
of the nucleon moments by co-variation of g, and the recoil mass in Eq. 12 is
kept as My = 3m®. The amplifudes in Table II are calculated with a modestiy
increased value of m* which yields the best global fit to all of the measured
photocouplings.

The canceliation which leads to smail couplings for the N{1440} persists. The
N(1710) amplitudes maintain their signs and are reduced, and are now in quite
good agreement with the (rather umcertain) data. Since this simpic fit does
not change the quark magnetic moments, the amplitudes for the A(1232) are
largely unchanged, although there has been some improvement arising from the
telativized model wavefunctions [29]. The A(1600) amplitudes have been reduced
in size, and {due to a change in sign of the * N amplitude) have changed sign.
Because of the obvious sensitivity of the magnitude and sign of the A(1600)

amplitudes to mixings, those arising from the relaiiviked wavefunctlions may be
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the most trusiworthy as they allow the wavefunctions of the initial and fiaal
states the most freedom to mix vig the interactions. The photacouplings of the
A(1920) are smaller but still positive. These results are summarised in Fig. 1,
where Ay, and the total amplitudes from Table I {in the Breit frame) are plotted,
along with the total amplitudes from Table II, and the data.

V. DISCUSSION AND CONCLUSIONS

It appears that this model is incapable of explaining the measured photocou-
plings of the Roper resonance N{1440). Comparison of Tables I and Il show that
the cancellation between the H®® terms and the sum of the H*° and H*P terms is
independent of details of initial and final wavefunctions (as long as they remain
orthogonal). The sise of these relativistic corrections relative to the H™ terma
in this case might call into question the coavergence of such a p/m expansion.
However the average sise of the expectation of H™  is significantly larger than
that of H*P + H*™ + H™, when the photocouplings of all of the resonances are
considered. The point of view taken here is that Eq. 6 represents a minimum set
of tensor terms required by gauge invariance {20, 1], and so if their coefficients are
viewed as free (subject to other constraints like the nucleon magnetic moments)
the physics of the transition operator will have been efficiently parametrised. This
appears to be boine out by an improvement of the fit to all of the photocoupling
data upon addition of these terms with suitably adjusted parameters [1,28]. As
a consequence it would appear that, in this model, a conventional picture of the
Roper resonance and its photocouplings is incompatible with the current data.

For the other states dealt with here the situation is less clear. The A(1600)
amplitudes appear to be poorly described in the model with Isgur-Karl model
wavefunctions, but the discrepancy diminishes when the relativised model wave-
functions are used. The other states for which which data exists seem to fit fairly
well, given the rather uncertain data.

It is significant that, like the A(1232), the Roper resonance is a light siate
with a large [13] coupling to xN. It is therefore possible that virtual nucleon-
pion loops [30] renormalize the photocouplings of these states. The absolute

13



sizes of the error in the two cases are similar. It seems rather unlikely, given
the lack of many such discrepant states below 2 GeV, that the Roper resonance
and the A(1600) are pure hybrids. The next highest ezperimenial states with
these quantum numbers [N(1710) and A(1920)] are quite well described in the
conventional quark model and are too heavy to be assigned the lightest quark-
model states. They could, however, be mixed [14] with relatively light hybrid
states with these quantum numbers. Mote precise data on the phote- and electro-
production of the resonances considered here will be crucial in deciding among
these possibilities,
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TABLES TABLE II. Photoproduction amplitudes with the relativized model wavefunctions
of Ref. [10] calculated in the Breit frame with the transition operators H®', H™", H*",
and H? with ¢ = 1.3, m* = 437 MeV, M7 = 3m", and a = 0.5 GeV. Units are as in
TABLE 1. Photoproduction amplitudes with the mixed Isgur-Katl model wavefunc- Table I.
tions of Eqs. 4 and 5 calculated with the transition operators H*, H'F, H'*, and H?",

with ¢ = 1, m" = 336 MeV, M7y = 3m™, and & = 410 MeV. Amplitudes are in units of State A-f A Avwp Au Az total expt.
1077 Gev©3, (Baerey)
N1*(1440) A5 0431 0 -33 6 1 -69+ 7
State AY Au  Ap An A total expt.  total 3
(Energy) (Br) (Br) (Br) (Br) (Br) (cm) A1 0-20 o 20 6 -6 TEL
NiT(1a0) AT 0126 0 32 11 " 69+T 4 NiT(1T0) A'% 1+32 0 .22 1 13 5% 16
at 0-15 0 2 -1 -4 37419 -3 A1 0-18 0 8 -2 -1 5+ 23
NLt(1T10) .4{ 0+67 0 -20 6 43 5416 53 N3 *(1880) A% -1+16 0 S 0
A% 1-45 0o 16 .7 .35 -5:+23 -46 Al 141 o -2 12 -$
N1 (1898) A’E 2+42 0 .10 .13 22 34 N4*(1975) A:L -4+13 0 I 12
at -4-18 0 a1 12 -2 -32 A1 3-4 0 -3 12 8
N1*(2058) A,i A116 0 6 .19 a7 .15 ai*(1232) A'%"‘ 0-107 0 -2 0 -108 -141t 5
A.E 8.4 0 9 20 14 12 AE-" 0-185 0 -1 1 -186 -2584 19
A2*(1232) A'f“ -1.90 L 8 3 .01 14145 _98 a2*(1600) A';“ 0441 0 15 5 30 -224 29
A5 s 0 -7 5 -159 258419 -170 A:;'" 0+T o -28 8 51 1+ 22
A2*(1600) A'i" 7-58 -8 15 -1 -55 -22429 -69 A3%(1920) A';" -14-+4-26 9 -23 14 13 4317
At s ¢ 4 1 . 1422 -114 437 6-24 -5 0 -4 Tl BL?
a3t (1920) A'i'“ 5448 D .15 2 41 4347 55 A7 (1985) A';L'" 29+4 17 1z -z 6
AL -5430 0 4 -2 44 2347 69 A'%'" -18-7 10 3 -14 3
A2%(1983) A'i’" 49 6 20 34 24 13
AN ~21+27 4 -7 -3 -1 8
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FIG. 1. Breit frame photoproduction amplitudes with mixed-nonrelativistic and
relativised-model wavefunctions. Diamonds and aquares are the A., and ‘total’ am-
plitudes from Table [, respectively; octagons arc the ‘total’ amplitudes from Tabie II.

Amplitudes are plotted in the order A';, A3, A'!. and A].
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