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1 INTRODUCTION

In their dreams, Iattice calculators of matrix elements imagine presenting their experimental
colleagues with results having small and reliably known ercors. While the progress towards
this goal has been slow, some of the sources of error are small and more-or-less understood.
In this talk I will focus on scaling violations, i.c. errors arising from the fnite lattice spacing,
a.

Two matrix elements of particular interest are the kaon B-parameter, By, and Lhe B-
meson decay constant, fg. If we could calculate these with small errors then we could use
existing data on CP violation in & — K mixing (¢}, and on B — B mixing, to pin down the
parameters of the Cabibbo-Kobayashi-Maskawa matrix. For a discussion of the present state
of the phenomenological applications of lattice resulta see the talke of Lepage and Martinelli
[

I will concentrate in this talk on By,

(K159.(0 + 1) 3v,(1 + 1)d|K)
Ix 157, 70} (0] 3 v, 75| K}

Byla) = n

It is worth stressing why we expend so much effort on this quantity. This is, first, because,
with the methods we have developed, By has much smaller atatistical errors than other
dimensionless quantities. (The numerical values of the pion masses in lattice units are more
accurale, but they are nol, by themselves, useful.} Second, the calculation of 8y makes
full use of the residuat chiral symmetry of staggered fermions. This more than offseta the
complications due to having four flavors of continuum fermion for every lattice staggered
fermicn. For more discussion of these points see Refs. [2, 3, 4] and particularly |5]. These
references also explain technical details of Lhe calculations which are not given here. Let
me also mention that the Kyote/Taukuba group has begun calculating By using staggered
fermions [6], and finds results in agreement with ours. -

To dale, there have been few calculations using staggered fermions of matrix elements
involving heavy quarks, such as fp. Here, chiral symmetry does not play an impaortant role,
s0 Lhat there is nolhing to offset the complications arising from the quadrupling of Havors.
Given the tantalizing status of the caleulation of this quantity [I}, however, it is interesting
to atlempt the staggered calculation. We have begun to do so.

Our calculations are part of the weak matrix element Grand Challenge. Last year we
shared about 12000 Cray-2 houra wilh Claude Bernard and Amarjit Soni, who use Wilson
ferenions.

2 FLAVOR SYMMETRY BREAKING

If we are to understand scaling violations in matrix elements, we had better first understand
these violations in the spectrum itsell. For quantities such as my/m, this is, however, very
difficult. We would have to observe the dependence of such ralios vn the lattice spacing,
bul the large atatistical errors mask any such dependence |7]. In addition, if we work in the
guenched approximation, as we do here, Lhen we du not know whal the “correct™ answer is
i the continuum lEmit

For staggered fermions, we can study scaling violationa by making a virlue oul of the vice
of doubling. In the continuum limit, a single staggered fermion represents four degenerate
flavora, and the spectrum has an SU/(4} flavor symmetry. At finite laitice spacing this flavor
aymmelry is broken down 10 a discrete subgroup. For example, the continuum pions lie in a
15 + 1, while on Lhe latlice the 18 breaks down into four 3-d and three i-d representations
[8]. The mass splitting between these latiice representations shoutd vanish in the continuum
limit. Since one can calculate all the pion masses with good accuracy, the approach to the
continuum limit can be studied quantitatively.

In previous work [9] we calculated the masses of pions in four of the representations
which are contained in the 15 in the continuum limit: the Goldstone pion z, & member
of a 3-d representation x3, and \wo others. We found that, to good approximation, all
the non-Goldstone pions were roughly degenerate, all being somewhat heavier than the
Goldstone pion. Thus the difference between the Goldstone pion mass, m,, and that of the
non-Goldstone x3, my, is representative of Havor symmetry breaking, and | focus on this
difference here. At this conference the Kyoto/Taukuba group presented beautiful results for
the masses of the pions in all representations [10]. They find that all but the Goldstone are
close to degenerate. They have also calculated the masses of all rhoa, nucleons and Deltas,
but the statistical errora are too large to study flavor breaking using these states.

How rapidly is the continuum limil approached with staggered fermions? The standard
lore is that the corrections are of Ofa?), smaller than those for Wilson fermiona which are of
O{a). (This is up to factors of feg(a), which [ will ignore.) The iesues were discussed in Refs.

111] and [12], but have not excited much intereat for a decade. Since the question is now of

practical importance for matrix elements, it is of interest to tighten up the arguments. The
following discussion is presented in the hope that it will stimulate further work.

The best that one can hope to do is give a proof in perturbation theory. The goa!
would be to show that correlators having external quarks and gluons with physical momenia
(ga << 1) differ from their continuum counterparts by terms starting at J{a®). A naive
argument for this is as follows. It is easy to see that propagators and vertices differ from
those of the continuum only by even powens of a [I1, 12]. Thus our desired result is true at
tree-level. In loops, factors of a™ in vertices can be compensated by loop integrals, which
can have arbitrarily high order of divergence, [*/* d*kk'~%. But since integrals of odd pawers
of k vanish by aymmetry, ! must be even, 8o the integrals produce only even (inverse) powers
of a. All in all, one arrives at corrections proportional to powers a?. By power counting
these must be positive powers.

Thia argument leaves open the possibility that flavor breaking enters at (1) rather than
O{a*). This might occur because in loope the gluons can have momenta of O(l/a), and the
vertices of such gluons break flavor at O(1). It was shown in Ref. [11], however, that the
flavor breaking “cancels”, and is absent at ({1). Since there are no terms of O{a), flavor
breaking (and other correctiona) must be of O{a?).

Whatever one thinks of this argument, it is clearly of interest to do a numerical sludy to
test it. We can now do this, for we have results from 8 = 5.7— 6.4, a range over which a falls
by roughly {our. Our main emphasis over the last year has been to improve the statistics at
A = 6.2 and 6.4; Table 1 shows our present sample of lattices. All results at # = 6.2 and
6.4 in this talk are preliminary; in particular the errars are likely to be underestimates. The
new data at 8 = 6.2 supercedes our earlier resufts on a 18% x 42 lattice |9 More details will



8 57 60 6.2 6.4

. 16 1 12 32

L 32 0 48 48
Sample 13 15 12411 84747
o '(f) 08(1) LT(1) 26(1) 34(2)
e m,n) LO(1) 1.8(1) 25(1) 3.4(3)

Table i: Quenched lattices. a~! is given in GeV.

be given elsewhere [13]. Based on the comparison between 16® and 247 lattices at B=06, we
conclude that all the lattices listed in the Table are large enough (L > 1.6fm) that finite
volume eflects are smaller than our statistical errocs [9].

In terms of the physical strange quark masa, the quark masaes we usc are roughly in the
range m,f3 — m, for all lattices. We also use much smalier masses at 8 =57 Our results
for the spectrum are included in the summary talk of Toussaint [7).

In vrder 10 study the approach 10 the continuem limit we need to know Lhe lattice apacing
for each #. We determine these by extrapoiating f,, m,, and my to the chiral himit. We
quole the values resulting from f,, and from the average of m, and my. In the quenched
approximalion there is no need for different determinations of a Lo agree. That they do
agree, albeit within the rather large errors, shows that the quenched latlices are giving
reasonable approximation to the real world.

Figure | shows our results for flavor symmelry restoration, using a~*{ f,). According Lo
the arguments given above, the dimensioniess quantity R = (m3 — m2)/m? should vanish
like a?, if one worka al fixed physical m,. Thus R/a? should be a universal function of the
physical m?, up to corrections of O(a?). This is tested in Fig. 1, and the results confirm the
expeclations reasonably well. The points at § = 6.2 lis alightly above the others, but this
could easily be due Lo an incorrect choice of a. A scale of ifa = 24GeV at § = 6.2 brings
all the curves together. Since o varies by a factor of four, it is quite clear that a dominant
correction proportional 16 a rather than a? is ruled out. Thus the lore is supported by our
numnerical results.

The shape of the curves can be understood as follows. Chiral symmetry predicls

{m.a)’ = (A.a){ma) + O(m}, (2)
while we expect for a non-Cloldstone that
(msa)! =& fa)’ + (1 + 6)(Ara)(ma) + O(m?), (3)

where all masses and amplitudes are in physical units, and Lhe dimensions of the intercepl
of m3 have been arbitzarily set by f = f(m, = 0). The dimensionless quantities & and &)
characlerize Bavor breaking, and should thus vanish like o3

bo = (Aoa)’ + Ofa"); & = (Mra)® + O(aY), (1)
In terms of these, Lhe quantily we plot is -
R/a’::\;f’/rns + Af +O(m',az). 3]
J
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Figure 1: Flavor symmetry restoration. 1fa is given in GeV.

This is a funclion which blows up as 13 — 0, as is seen in Fig. 1.

It is interesting to extract the scales characterizing the ({a?) terms. From the figure,
we find A % 2.3 GeV and Ay & 0.6 GeV. If we scl the acale of the intercept of m? using
m, instead of f,, we would find Ay = 0.4 GeV. These are typical hadronic scales, so the
violalions of scaling are of the expected size.

3 SCALING OF QUENCHED B,

Armed with this understanding of scaling violations in the staggered speclrum, we now turn
lo Bx. The results we presented al last year's meeting [4] are shown again in Fig. 2, using
the new values for a. Here and below we do not include perturbative corrections in By.
They are small (1 —2%), with an uncertainty of about the same size. The figure shows a
significant drop in By from § =6 1o 6.4, suggesting large scaling violationa. This is not
conclusive, for there are various unsatisfactory features of the data. First, the results at
£ =6.2 and 6.4 have large errora. Second, the 6.2 data is not amooth as a functivo of m}.
And, third, the results at =57 have the opposite siope from those at higher .

To clarify ihe situation, we have foliowed the plan suggesled in last year's lalk The
present stalus (based on the sample in Table 1} is shown in Fig. 3. There are sotne significant
changea from last year, which { describe in turn.

{A) As explained in Ref. [4], we use slightly different methods on the 327 x 48 Jaltces than
our previous work. In particular we use wall sources in Landau rather than Coulouils gauge.
Io order to check that the new methods are not responsible fur the difference belween the
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Figure 2: Reaults for B at Lattice 90, using a~'(m,, N).
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Figure 4: Byg™*" vo. a. Scales from m, ».

results at § = 6 and 6.4, we have repeated the calculation at # = 6 using the new methods.
This we have done on 167 x 24 lattices, 40 in all, a size chosen to have physical dimensions
close to that of the lattices at § = 6.4. The new and old results are in good agreement
giving us confidence in the new methods.
{B) We have doubled the sample at # = 6.4. The central values moved up by nearly |
standard deviation, and the ctror is now a little amatler. Thua the scaling violationa are
slightly reduced in size, but have about the same significance.
{C) We have repeated the analysis on a newly generated sample of 32° lattices at 7 = 6.2.
As at A = 6.4, these are scparated by 800 overrelaxed and 200 Metropolis sweeps. These
are almoat the same physical size as the 24 lattices at 4 = 6, and are much larger than our
old 18 lattices at # = 6.2. There are small differences in the results for pions between large
and small lattices. The pion masses are smaller on the large lattices, and, as can be seen by
comparing Figs. 2 and 3, By is smaller too. These differences are of marginal significance,
and need further study. | will simply use the results from the large latlices, which have
much smaller errora. Figure 3 showa that these results confirm the scaling violations, and
considerably strengthen their significance.
{D}) We extended the calculation at § = 5.7 to larger quark masses. ln the process we found
an ertor in our analysis, which, fortunately, only affects the results at # = 5.7. The § = 5.7
result quoted in [2] is thus wrong. The correct reaults, shown in Fig. 3, do have the same
slope as at larger §, but still show very large scaling violations.

Figure 4 shows a vertical slice through Fig. 3 al the physical kaon mass, plotted againat
lattice apacing. We include the factor ¢*/* to make a quantity which, for sinall enough ¢,



Fit Lincar Quadratic
Bxg™"  044{d) 0.54(2)

Byx  o0s6(6) 0.78(3)
An(GeV) 1.1 1.0

Table 2: Extrapolated results for quenched By. Scales from m, .

in independent of a, and thus has & smooth continyum limil. The value we wish to present
Lo the experimentaliats is that exirapolated to a = 0. We thus need 10 know whether the
dependence on a is linear or quadratic. To investigate this, we make lincar and quadralic
fits 1o the first Lhree points, i.e. we fit to

Bxg ™ = X(1 +(aAp)"); n=1,2. (6}

We do not include the point at # = 5.7, since the correction there is so large (80 — 100%)
that it makes no sense to Lruncate the series in a. The results are shown in the figure. The
quadralic fit is better (x* = 0.5 va. x? = 1.2), but both fits are reasonable. Thua our dala
are not good encugh to decide belween linear and quadratic dependence on a.

We quote in Table 2 the extrapolated results for Byg~/*. (Very similar results are
oblained using a~'(f.).) These results are for lattice kaons composed of two degenerate
quarks of mass m, /2. In the physical kaon, however, the quarkn are {ar from degenerate.
From our resulta at § = 6 we estimate that this increases Hy by about 3% (Ref. (15, 4]).

Phenomenological analyses use By = Byxa[¥®, which we also quote in Table 2. These
values are for phyaical kaonas, i.e. they include the 3% increase in By due Lo the extrapotation
from degenerate to non-degenerate quarks, Following Ref. [14] we take o= 1M f=46

There are various uncertainties in Bx. That due to the extrapolation to the continuum
lianit is roughly £0.06, and is perhaps the largeat. Others are: (A) Perturbative correclions,
which introduce a 1-2% uncertainty {5]; {B) Uncertainty in the extrapolation to the chiral
limit, perhaps half of the 3% upward shift. (C) Extrapolation to infinite volume. Any effect
appears to be smaller than the statistical errora [2}; (D) Quenching. Dyoamical fermions of
mass ~ m,f3 have little effect on By [16], but this needs further study. (E) Finally, there ia
roughly a 10% uncertainty in the value of o, to use. This is a problem common Lo all model
calculations of By.

To reduce the uncertainly in the extrapolation to a = 0 requirea, at the very least,
accurale results up to 8 = 6.4. It is very imporlant Lo know whether By is typical, ic.
whether all matrix eternents will have scaling violations of this size, and require calculations
out 1o § = 6.4 Lo oblain few percent accuracy. Martinelli {1} has suggested that By,
calculated using our methods, might have abnormally large corrections. This is because
we use quasi-local operators, with quark and antiquark fields at different points in a 24
hypercube, which we make gauge invariant by fixing to Landau gauge [3, 5]. Thus there are
gauge artifacts (related to the lack of a transfer matrix, and to Gribov copies), which vanish
when a — 0. To Lest Martinelli’s suggestion we must repeat the calculation with operators
made gauge invariant by the introduction of gauge links. 1L is by no means clear, however,
that his suggestion is correct, lor the scales characterizing the corrections {given in Tabie 2}

7

are not abnormally large. They are of similar size to those obtained from the Hlavor breaking
in the apectrum.

4 IMPROVED OPERATORS

1 close thie Lalk wilh a brief description of work in progress Lo reduce the extrapolation error.

Since the data cannot Lell us how Lo extrapolate 1o the continuum limit, we are forced
10 see if we can predict the dependence analylically. Although | have argued that correc-
tions to quantities calculated with the staggered action alone (such as the specirum) are of
0O{a?), there can be O{a) corrections in matrix elements induced by Lhe external vperalors.
lodeed, in perturbation theory, our four-fermion operators do have O(a) lerms in Lheir ma-
irix elements, slarting at tree level [5]. It is not yet clear, however, whether or not these
terms contribute to Hy. It might be that the projection onto exiernal stales of a definite
flavor, here that of the Goldatone pion, removes the O{a) term. This is true at tree-level in
perturbation theory.

In the absence of an analylic prediction, a fall-back posilion is to remove the (J{a) term
whether it is present or not! More precisely, we can improve Lhe operator so that it- has no
O{a) terms in ita tree-level matrix elemeats. It will still have terms of ({a®), which, when
combined with loop divergences, can give nse to ((g'a) corrections. But Lypically such
corrections will be smaller by g?/i6x7, i.e. an order of maguitude. Thus either {A) the ({a)
corrections Lo our matrix elements are lasge, in which case they should be greatly reduced
by the improvement of the operators; or (B) the O(a} corrections are amall or absent, in
which case the improvement will bave little effect. This improvement program is similar to
that with Wilson fermiona, excepl that we do not need to improve the staggered action.

It turne out 1o be simple Lo improve our operators at tree level {5]: each field is replaced
by & smeared field, the pet effect being that the entire operator lives on a 4* hypercube.
Furthermore, since we use wall sources, it is simple to repeat the analysis using the new
operator, for we need no additional propagators. The sub-sample that has been improved
o date is shown in Table 3.

We have not, however, completed the calculation of the finile perturbative corrections to
the relation between cur improved operators and the original operators. Neveriheless, we
can slill glean something from 1he uncorrected resuits, because Lhe perturbalive corrections
should vary very little in our range of 8. The resuils are shown (for the physical kaon mass,
but not including the exirapolation Lo the chiral limit) in Table 3. Smearing has caused
a significant increase in By, but this could be due 1o the lack of perturbative corrections.
What ia perhaps more significant is that the drop in Hx from A =6 Lo 6.2 is smaller. This
might indicate the improvement of ap ({a) term.

Clearly much more work, both Lheoretical and numerical is needed. But | think we can
take heart from the level of detail under study.
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8 3.7 6.0 6.2
Sample 13 13 2411
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Table 3: Results for quenched By g=*/°. Scales from m, y.
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