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Abstract

Quantum hadrodynamics (QHD) is the formulation of the relativistic nuclear
many-body problem in terms of renormalizable quantum field theory based on
hadronic degrees of freedom. A model with neutral scalar and vector mesons (o,
w) has had significant phenomenological success {QHD-I). An extension to include
the isovector p through a Yang-Mills local gauge theory based on isospin, with the
vector meson mass generated through the Higgs mechanism, also exists (QHD-
II). Pions can be incorporated in a chiral-invariant fashion using the linear sigma
model. The low-mass scalar of QHD-I is then produced dynamically through
#x interactions in this chiral-invariant theory. The question arises whether one
can construct a chiral-invariant QHD lagrangian that incorporates the minimal

set of hadrons {N, w, =, p}, where N = (z ) is the nucleon. These are the

most important degrees of freedom for describing the low-energy nucleon-nucleon
interaction and nuclear structure physics.

In this paper we construct a chiral-invariant Yang-Mills theory based on the
local gauge symmetry SU(2); x SU(2);. The baryon mass is generated through
spontanecus symmetry breaking (as in the linear sigma model), and the vector
meson masses are produced through the Higgs mechanism. The theory is parity
conserving. Two baryon isodoublets with opposite hypercharge y are necessary to
eliminate chiral anomalies. The minimal set of hadrons required consists of {N, =;
o,w, T, p, a; 1, £}, where a is the chiral partner of the p (the a naturally obtains
a higher mass in the model), and the 5 and { represent scalar and pseudoscalar
Higgs particles. The parameters in this minimal theory comnsist of eight coupling
constants and one mass (g., gox + ¥G1xr o p?w, Avs BHy Ay ™), where u?
and A define the meson interaction potentials that lead to spontaneous symmetry
breaking.

PACS numbers: 11.15, 3.70, 21.30
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i. Introduction and Motivation

Two goals of modern nuclear physics are to study the properties of nuclear matter
under extreme conditions of temperature and density, of interest for example in con-
densed stellar objects, supernovae, and relativistic heavy ion collisions, and to study the
response of the nuclear system to large momentum transfers, of interest for example at
CEBAPF. In developing any theoretical extrapolation from existing empirical knowledge
of nuclear behavior, it is essential to incorporate general principles of physics: quantum
mechanics, special relativity, and microscopic causality. The only consistent theoretical
framework we have for describing such a relativistic, interacting many-body system is
relativistic quantum field theory based on a local lagrangian density. Such theories
based on hadronic degrees of freedom (baryons and mesons) have had significant phe-
nomenological success and have been the subject of numerous investigations in recent
years. [For reviews, see Refs. 1, 2, and 3.] .Renormalizable theories of this type are
known generically as quantum hadrodynamics (QHD).

A simple model* (QHD-I) based on baryons N = (1}: ), neutral scalar mesons o

coupled to the scalar baryon density 11, and neutral vector mesons w coupled to the
conserved baryon current 1,3 has been extensively studied and applied. It has been
extended to include the p field through a Yang-Mills theory based on local isospin
invariance (QHD-II);® the vector meson mass is generated by the Higgs mechanism.
Pions can be included in a chiral-invariant fashion through the linear sigma model.
The low-mass scalar meson of QHD-I is then generated dynamically through the =
interactions contained in the chiral-invariant lagrangian.®? Chiral invariance plays a
central role in low-energy pion physics.

One may ask whether the model can be extended so that the vector mesons are also
included in a chiral-invariant fashion. Our goal is to develop a QHD model with the
following properties:

e It is based on hadronic degrees of freedom and contains at least ¥, w, w, and p.
These hadrons are the most important for nuclear phenomenology and form the
basis for successful meson-exchange descriptions of the nucleon-nucleon interac-
tion.

e It is invariant under isospin and chiral transformations.
e It is renormalizable.
o It conserves parity.

A model with these properties is constructed in this paper. We start from the linear
o model with global SU(2), x SU(2), symmetry, which requires both & and = fields.
This model is converted into a locally invariant Yang-Mills theory, necessitating the
introduction of an axial-vector meson a, the chiral partner of the p. The baryon is
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exploring the consequences of the QCD lagrangian, the achievement of even a qualitative
description of the relativistic, interacting, nuclear many-body system through these
techniques appears to lie well in the future.

2. A Chiral QHD Model

2.1. The Linear Sigma Model

To construct a chirally invariant model that contains the desired hadronic degrees
of freedom (p, n, =, p, and w), we begin with the well-known linear sigma model.15-17
This model contains a pseudoscalar (7s) coupling between pions and nucleons, and an
auxiliary scalar field {denoted here by s) to implement the chiral symmetry. Since chiral
symmetry is only approximate in nature, we will include a “small” symmetry-violating
(SV) term to generate a mass for the pion.* We will also add a massive isoscalar
vector field (representing the w) to supply a repulsive nucleon—nucleon interaction, as
in QHD-I. The isovector vector mesons will be omitted for now and added in the next
subsection.

By demanding that the theory be local, Lorentz covariant, parity invariant, 1sosp1n
and chiral invariant, and renormalizable, one is led to the form

Low = Lopiral + Loy ) (2.1)
Lehiral = 1_/;[7;,(1'3“ — gy V¥) — ge(s + i'ys‘r-‘n')]v,b + %(3#.56““.5 + 8,7-3%x)

—1A(s? + & — ) — LELF® 4+ 1m3V,VE 4 6L (2.2)

Esv = €8 . (2.3)

Here ¢ = (1’1"’ ), 7, and s are the nucleon, isovector pion, and neutral scalar meson
n

fields, respectively, g is the pion—nucleon coupling constant, and T are the usual Pauli
matrices. The parameters A and v describe the strength of the meson self-interactions,
and € is a chiral-symmetry-violating parameter related to the pion mass; the exact
chiral limit is obtained by setting ¢ = 0. The form of the meson self-interactions
allows for spontaneous symmetry breaking, which is used to give the nucleon & mass,
as discussed below. The w meson field is denoted by V#, its field strength tensor is
F# = g#Vv — §*V*#, and its coupling to the nucleons is given by g,. Note that this ow
model is renormalizable, as it contains no derivative couplings and is at most quartic in
the meson fields; the counterterm contribution §£ will henceforth be suppressed. The
conventions used here are those of Refs. 1-3.

*Note that while the pion mass is small on the scale of hadronic masses, it is not small on the scale
of nuclear physics observables!



In terms of these new variables, Lcpira can be written (to within an additive constant)
as

Lopirad = Ly + Ly + £, , (2.14)
where
Ly = i($p1uD*Pr + P17 D Y1) — V20 (Prx'r + Brxvr) » (2.15)
Lo = 31(8,x10"x) — V{trxtx) , (2.16)
Ly ==3F F* 4+ ImlV, v+, (2.17)

Note the particularly simple form of the meson—nucleon interaction with these fields.

We have written the baryon derivative as D* = % + ig, V¥, which is a unit matrix in

spin and isospin, and defined the meson self-interactions as

—v3)
2

tr” denotes a trace over isospin indices only. Here we have defined

Virxtx) = 222 (trxty) + i‘- (trxtx)? - (2.18)

The lower-case “

2 — .3
p?=v32/2,

The transformation properties of the new fields are easily expressed by defining a
unitary SU(2) rotation matrix

Ulw) = exp(-::r-w) = cos{w/2) + ifieT sin{w/2) — 14 ér-w , (2.19)

where w = fiw denotes three real, constant parameters. There is one set of rotation ma-
trices for SU(2)r and another set for SU(2). It is now obvious that £y is separately
invariant under the right-handed isospin transformations

Yo U¥r, ¥r—/— ¥, x—Ux, vE— v, (2.20)

and the left-handed isospin transformations
YR ¥R, Yr—U¥r, Xx 5 xUt, v - V. (2.21)

One can verify that these transformations reproduce the infinitesimal isospin and chiral
rotations given above, if one identifies & = }(wr + wr) and B = }(wg ~ wy). Note
that a mass term for the baryons is not allowed in Leaa, since it is proportional to
Y = PrPr + Y ¥r, which is clearly not invariant. The baryon mass will be generated
by spontaneous symmetry breaking, which we shall discuss below.

What about the properties of £ under parity transformations? If we denote the
parity operator by P, the properties of scalar, pseudoscalar, vector, and spinor fields
lead to the transformation laws!8

Px(t,xyP-! = xH(t, —x), PVE(E,x)P ! = V.(t,—x),
Poo(t, x)P1 = 1%%a(t,—x),  Pya(t, )P = ys(t,—x).  (2.22)



Note in particular the ordering of factors in the last line. The covariant derivatives
transform exactly as the fields in Eqs. (2.20) and (2.21). It is now straightforward to
show that the lagrangian given by

‘C=£N+£‘l'+£ﬂ y (2-28)

where

Lo =L, — IR, R* — 11,1, (2.29)

and Ly, Ly, and £, are given by Egs. (2.15), (2.16), and (2.17), respectively, is locally
SU(2)z x SU(2), gauge invariant, provided that all derivatives are interpreted as the
covariant derivatives from Eq. (2.27). For example, the scalar-pion lagrangian now
reads

- L= %tr[(D,,x)fD“x] — Vitrxtx) . (2.30)

The parity invariance of the action § = fd*zL can also be verified using the relations
(2.22) together with

Pr(t, x)Pt = £,(t,—x),  PL(t,x)P! =ru(t,—x) . (2.31)

These last relations make it clear that the gauge coupling G must be the same for the
left and right vector fields if parity invariance is to be maintained.

2.3. The Higgs Sector

As noted above, local chiral gauge invariance precludes the addition of mass terms
for the isovector mesons. To give these mesons masses, we shall use spontaneous sym-
metry breaking and the Higgs mechanism, as in the standard model of electroweak
interactions.?** We therefore introduce two complex doublets of spinless fields:

wz(f), e (2), -

which transform as the fandamental representation under global SU(2) transformations
for each group:

qbﬂTU‘IbR, ¢L-;’¢'L:

PL -~ Udr , R - ¢r . (2.33)

Thus any meson~meson potential that depends on ‘ﬂt‘iﬁﬂ or ‘35}.‘351’- is invariant.
For the kinetic energies of these fields, we define the covariant derivatives

i 7
qubg = (8,‘ + EGT'I'“)Q‘SR s Du¢L = (6,, + EG T- “)tﬁL . (2.34)
Thus the combination [(D,¢.)t D*¢;] is locally gauge invariant, and similarly for ¢x.
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¢ Spontaneously break the local chiral symmetry to give the vector mesons mass
and rewrite the field variables in the so-called “unitary gauge.”

® Ensure that the resulting lagrangian contains no bilinear terms that mix fields.
This is necessary to define the appropriate noninteracting parts of the lagrangian
and the corresponding noninteracting propagators for use in the Feynman rules.

We now consider each of these procedures in turn.

Vector meson fields with well-defined parity can be constructed by taking linear
combinations of the left and right gauge fields. We will denote the p meson field by b,
and the a; field by a,, where

_ 1 _ 1
&, = E (rp —4), b, = _\/‘—2“ (ru+ L) . (3.1)

The overall factors of 1/4/2 imply that the jacobian of this transformation is unity, so
that the field-strength tensors become

R R* + Ly -L* = A, -A* + B,,-B* | (3.2)
where )

A =06,.8,—-0,a,—g(b,xa,+a,xb),

B,, =8,b,—8,b, —g,(b,xb,+a,xa). (3.3)
Here we have defined G = /2g, in terms of the physical p meson coupling constant.

Because of parity conservation, this single coupling defines the interactions of both the
p and a; mesons.

The properties of the b, and a, fields under parity transformations follow from
Eq. (2.31) as

Pbu(t,x)P~ = bH(t,—x),  Pa,(t,x)P! = —ak(t,—x) , (3.4)

and thus the p is a polar vector meson and the a, is an axial vector meson.! These
results also imply that the field strength tensors B*” and A* have well-defined parity
transformation properties. Moreover, the gauge transformations of the new fields can
be deduced from Eqs. (2.23) and (2.24):
a¥ — a¥ —axa* -3 xb“—g;la“ﬁ ;
b“——-—rb“—axb“—ﬁxa"—g;]‘a”‘a, (3.5)

where afz) = j[wg(z) + wi(z)] and B(z) = Hwr(z) — wr(z)]. We will postpone
rewriting the covariant derivatives in terms of the b* and a* fields.

Note that the a,(1260), not the b;(1235), is the chiral partner of the p(770), since the former has
the correct G-parity.
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After carrying out all of the above procedures, and after a slight reshuffling of mass
terms between parts of the lagrangian, one arrives at the desired result:

LIII:'CN‘l‘de'{'LG'*—LEg (3-11)

where the nucleon contribution is

—-T. . 1 .
Ly = ":L’{”"J'F [3:- +ige Vi + 5 gpf'(b# + 75*1#)] - (M - g.,c") - 7'91-'751"1"}'90 . (3'12)

The scalar and pion contribution is given by

1 1 |
Lox =3 (8.0 — g,m-8,) — mic?] + 5[(6,,.1:- + 9,78, + g X by)! — min?]
_(j_p)Ma#'(a““ + g,oa” + g, X b*) - V(o, =), (3.13)
m; —my . 2 2™y — My 212
V{o,m) = 9o ofo” + )+9:W"§—(C’ +=%)°, (3.14)

and the mass and kinetic terms for the vector fields are
Ls = —iFwa + %mﬂV’,V“ - %BW-B“" + %m:b,,,-b” - %AW-A“"

+3[m? + (ﬁf)’M’] a,ab | (3.15)

where the vector meson field tensors A, and B, are defined in Eq. (3.3). Finally, the
lagrangian for the Higgs sector is

La = H(8,m8"n — min®) + 3(8,88%€ — m3E?)
+‘;‘ [ngP" + %g:(’?z + Ez)] (byu-b* +a,-a") + (g,mpf + %9:776) b,-a*

3mig, 3migs s\, Tade 3 mgg: 4 ¢4
- - — . 3.16
( dm, + 16m3 )E 4m, K 32m? (" + &%) (3.16)

As discussed in Ref. 1, the Higgs mesons are to be given a large mass so that they
function as “regulators” that maintain renormalizability with minimal effects on the
low-energy predictions of the theory.

An examination of the final line in Eq. (3.13) reveals that our manipulations are not
yet complete, since there is still a bilinear term that mixes a, and d*w. This coupling,
which arises from the spontaneous symmetry breaking, can be removed by shifting the
a, field according to

M
9» 2) g% =a,+ aum , (3.17)

a, —r*a +(
@ 1
g“ a 3
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Moreover, since the lagrangian Ly, still obeys the (now hidden} local SU(2), x
SU(2), gauge invariance, and since all masses have been generated by spontaneous
symmetry breaking and the Higgs mechanism, it is tempting to conclude that the field
theory described by Ly, is renormalizable. There are, however, two problems with this
conclusion. First, because of the explicit violation of the chiral symmetry when m, # 0,
the axial current is not conserved and instead obeys the PCAC relation (3.23). Since
the proof of renormalizability in massive Yang-Mills theory relies on the conservation
of the relevant current, it is possible that this symmetry violation destroys the renor-
malizability. However, an examination of Eqs. (3.11)—(3.16) shows that the parameter
my enters fairly innocuously; it will appear only in the pion propagator and in the o7
self-interactions, whose strength is arbitrary, since m, is a free parameter. It is possible
that this “soft” violation of the symmetry will not destroy the required cancellations
between baryon, gauge boson, and ghost loops (when the theory is quantized) that are
necessary to maintain renormalizability. Nevertheless, we have no proof of this result.
To ensure renormalizability, it may be necessary to compute quantum loops in this
theory in the exact chiral limit, with m, = 0. (One can certainly retain a finite m, at
the tree level.)

Second, and much more important, is the possibility of chiral anomalies. These
are known to arise in chiral gauge theories, and one of the consequences is the loss of
renormalizability.? It is therefore necessary to address this question in some detail, and
we turn now to this point.

4. Cancellation of Chiral Anomalies

In the presence of both vector and axial-vector couplings to the mesons, it is pos-
sible that quantum loop corrections will modify the conservation of the axial current,
change the axial Ward identities, and destroy the renormalizability of the theory.*®:¢
More generally, as discussed below, the fermion measure in the quantum-mechanical
path integral may not be invariant under chiral gauge transformations, and physical
quantities then become gauge dependent.’®'.132¢ In other words, the symmetries of
the classical lagrangian may not remain when the theory is quantized.

As a simple introduction, and to provide some insight into both the problem and
the proposed solution, comsider first the fermion-loop triangle diagrams in QED, as
illustrated in Fig. 1. Wick’s theorem implies that these two diagrams provide separate
contributions to the S matrix, and the combined contribution is proportional to

Ly+ L= /d‘:nl d*z; d*zs Tr{Ge(z1 — z3)7.Gr(z3 — z3)7,Ge(22 — T1)7A
+Ge(21 — 22)7,Ge(z1 — 23)7uC(zs — T1)M} (4.1)

where Gp(z — y) is the noninteracting fermion propagator, and the upper-case “Tr”
denotes a trace over Dirac indices. Now make use of the existence of the Dirac (charge
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one generates a factor of (+1) at each vertex containing & 7,7s, instead of the factor
(—1) found above. Hence the contribution from the two triangle diagrams now add:

Ly=+1L, odd number of ¥s5’s . (4.8)

Thus the sum of these diagrams can produce an anomalous contribution to the axial-
vector current and its divergence.

Now suppose that the fermion is an isodoublet ¥ = (7’; ) , as in QHD, and that each

of the vertices has an isovector coupling proportional to r;. Then, since the isospin trace
factors out of each loop integral, the sum of those graphs with an odd number of vs5's
will again vanish:

tI(T,‘T‘J'Tk)Ll + tr(T,'ThTJ')Lg = tI(T;{Tj,Tk})Ll =0. (4.9)

Note that the sum of the loops vanishes here because the required trace of the T matrices
is zero. Loops with an even number of 4s’s can be shown not to produce anomalies.®
Thus, in this SU(2)g % SU(2),, theory, there are no anomalies at the triangle level.
What happens if the loop contains an odd number of 45 matrices, but there is a
coupling to an isoscalar vector meson at one vertex, so that the contributions of the two
loops do not cancel, and the trace of the 7 matrices does not vanish? This is the casein
QHD with one axial vector vertex (Ly = L) and two isovector vertices {tr(T;Te) # 0].
Now, however, one can arrange for the triangle loops to cancel by the following device.
Take the isoscalar vector meson to couple to a fermion charge, assumed for the w to
be the strong hypercharge y = B + S, with y = 1 for the pucleon; now add a second

fermion isodoublet to the theory with identical vector and axial-vector couplings, but
with opposite hypercharge, for example, the = = (;i) with y = —1. There are now four

triangle diagrams, as illustrated in Fig. 2. Although the loops do not cancel exactly
when the fermions have different masses, the anomalous contributions to the divergence
of the axial current are independent of the fermion mass,? and thus the anomaly from
the second set of loops with y = —1 cancels that from the first set with y = +1. This
model therefore eliminates chiral anomalies at the triangle level}

The preceding arguments apply only at the level of triangle loops. To investigate
the entire problem of potential chiral anomalies, one needs more powerful methods.
The chiral anomalies can be viewed as arising because the fermion measure in the
quantum-mechanical path integral is, in general, not invariant under chiral transforma-
tions. This implies that in any quantum field theory with fermions coupled to vector
or axial vector fields, it is impossible to satisfy simultaneously the vector and axial
Ward identities derived from the lagrangian through Noether’s theorem. When anoma-
lies are present, physical quantities will be gauge dependent and the quantum gauge
theory is ill-defined. However, if one can choose the particle content of the theory so

! Although we have not proved it, radiative corrections to the lowest-order loops do not change the
value of the anomaly.?
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where

A(z) = — g tr{,\A [EGLGL +3GA G,

4 6
+7 (44,65 + G, Auds + A,GY Ag) + %A,‘A,AGA,G]} .

3
(4.14)
The field tensors are defined as matrices in the intrinsic space:

G:u = a#Vv - avv:& - [Vm V,',] - [AH?AV] ’
GL =08.4, - 8,A,— [V, A) - [4,,V.] . (4.15)

The result (4.14) agrees with that of Bardeen® and thus obeys the consistency conditions
of Wess and Zumino.?” It also generates the minimal anomalous contributions, in that
any redefinition of the path integral (by adding counterterms to the lagrangian) will
either violate the Ward identity for the vecfor current or add more terms to the right-
hand side of (4.14).2

In the case at hand, the covariant derivative is given by [see Eq. (3.12)]

i

DFE F+ig'V#+2

i
9T -but ST Ay (4.16)

and Eq. (4.14) becomes

A*z) =

1671

™ (1
ghp tr(? {E(QVF.W + '}gpf'Bw)(ngaﬂ + ';1F9p1'°Baﬁ)

1 )
tos Q’: T'A'MVT'AQIS 2 g: T'a.u-T'av(ngaﬁ + %gpf'Baﬂ)
24 3

+(g'F‘“’ + %gFT.BP”)T'aaT'aﬁ + T'au(ngva + %gPT'Bva)T'a'G]

_% gt ,-.a“,-.ay,..aa,..aﬁ}) _ (4.17)

After some algebra, one can show that the change in measure under a local gauge
transformation in the gauge theory of Eq. (3.11) reduces to

dpg — dp exp {-—i %%/d‘z ﬁaﬁﬁ-Bzxﬁ} ) (4.18)
where FoP = leoPw P with F,, = 8,V, — 8,V,, and

B,, =3,b, —8,b, — g,(by.xb,) +g,(a, xa,). (4.19)

The result in Eq. (4.18) is indeed knear in the field and coupling constant of the w
meson, and thus the anomalies can be cancelled by the mechanism discussed above.
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species in the baryon sector is zero. The phenomenoclogy of this new model in the hy-
percharge y = 1 sector, for which it is specifically designed, should be little changed
by the addition of the second fermion, which only contributes at the loop level in that
sector.

Note also that since the (electromagnetic) charges of the baryons add to zero, this
theory will still be anomaly free if the local gauge group is extended to include electro-
magnetic interactions, as discussed in chapter 7 of Ref. 1.

Several comments are in order about our anomaly cancellation mechanism and the
mass generation for the new fermions. Note first that we cannot cancel the anomalies by
changing only the sign of the coupling to the axial vector meson a,. This corresponds
to switching the gauge fields £,, <> r,, in the covariant derivatives (2.27), which clearly
violates local gauge invariance. Moreover, we cannot generate a mass for the new
fermion by coupling it to the Higgs field (as is done, for example, in the standard
electroweak theory?®?3), because our fermions appear in both right- and left-handed
doublets, which cannot be combined with a Higgs doublet to produce an isoscalar
Yukawa coupling. We must generate the = mass by coupling it to the scalar and pion
fields, and we cannot introduce new scalar and pion fields, since the spontaneous chirel-
symmetry breaking would then produce another isovector of massless “pions”, which are
not observed. Thus the coupling-to-mass ratio g./M must be the same for the nucleon
and the Z [see Eq. (3.6)]. There is no advantage to making the = extremely massive,
since the = coupling must scale accordingly, and loop diagrams involving the = will
remain as large as those involving nucleons. In summary, we are essentially forced into
the mechanism described above, which we implement with a new fermion that has a
mass comparable to the other hadrons in the theory.

5. Discussion

The purpose of this paper is to construct a renormalizable quantum field theory
based on hadrons (quantum hadrodynamics) that is isospin invariant, chirally invariant,
parity conserving, and that contains p, n, , w, and p. These hadrons are the most
important low-mass degrees of freedom for describing the nucleon-nucleon force and
nuclear structure.

. We begin with the linear sigma-—omega model, which contains nucleons, pions, an
auxiliary scalar field to implement the chiral symmetry, and isoscalar, Lorentz vector w
mesons. This model is invariant under global isospin and chiral transformations. These
global symmetries are then elevated to local symmetries, which requires the addition
of vector and axial-vector gauge fields representing the p meson and its chiral partner,
the a;. To maintain the local SU(2), x SU(2), symmetry, the masses of the baryons
and vector mesons are generated by spontaneous symmetry breaking and the Higgs

$We remark that the usual argument for hadronic contributions to #® — ¢ decay no longer holds
in this model.
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QHD-III lagrangian should not be identified with the low-mass scalar field of QHD-L.
The o of QHD-III is instead to be assigned a large mass, and the mid-range scalar
attraction between nucleons must be generated dynamically from the exchange of two
correlated pions in the scalar-isoscalar channel.®” This correlated two-pion exchange
can be simulated by introducing an “effective” low-mass scalar field, which can then be
studied at the mean-field level. Moreover, the baryon, pion, and o fields must be re-
defined using a chiral transformation, so that the lagrangian can be rewritten in terms
of derivative couplings between the baryons and pions.! These procedures will pro-
duce a phenomenology resembling that of QHD-I (i.e., large isoscalar scalar and vector
interactions), while also including pions with derivative couplings to nucleons (which
guarantees the soft-pion theorems) as well as chiral-invariant interactions with isovec-
tor vector and axial-vector mesons. Another degree of freedom central to low-energy
nuclear dynamics, the A(1232) resonance, also arises dynamically in this model.?® The
effects of the additional (=) baryons will appear only through loop corrections in the
nonstrange sector, and hopefully these corrections will generate only modest changes to
successful QHD predictions. Finally, the Higgs mesons should also be assigned a large
mass, so that they serve only to implement the renormalizability of the theory, with
minirhal impact on low-energy predictions.

To obtain a renormalizable model, we must introduce a single degree of freedom
(denoted here as =) from outside the “nuclear domain.” Thus the present model is
not intended to correctly describe the physics of the strange sector. For example, in a
system with net hypercharge zero—equal! numbers of nucleons and cascades—the source
term for the w meson will vanish. Without this short-range repulsion, the properties
of the system will be sensitive to the details of the other short-range interactions. It
is clearly necessary to augment the QHD-III lagrangian to include additional strange
hadrons (K, A, £) with realistic interactions [for example, by using SU(3)x x SU(3),
symmetry| before meaningful results can be obtained in the strange sector.

In summary, the present model contains the important low-energy hadronic degrees
of freedom for describing physics in the nuclear domain of up and down quarks. It
manifests the isospin and chiral symmetry of the underlying QCD lagrangian. Moreover,
it incorporates hadronic resonances dynamically while respecting these symmetries. The
strong, mid-range, scalar attraction between nucleons, which is observed in nuclei and
suggested by QCD sum rules,’* is a dynamical consequence of this chirally invariant
model lagrangian. The investigation of relativistic nuclear many-body systems in a
hadronic model that respects the symmetries of QCD is an important area for future
research within the QHD framework.
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