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We ohtain & mesn field snbution for the nucleon as & quark meson soliten obtained
from the action of the Globat Color-symumetry Model of QUD AH dynamice is
generated from an effective interaction of quark currents At the quark-ineren
leve] thete are two novel features 1) absclute confinement is produced from the
space-time structure of the dynamical self-energy in the vacuum quark propa-
gator; and 2) the related scalar meson field is an extended §¢ composite that
touples nonlocally to quarks The influence of these features upon the nucleon
msas contributions and other nucleon properties is presented.



I. INTRODUCTION

A description of hadrons and their interactions directly from QCD is at the
present time inaccessable. Quark-meson models in a non-topological soliton for-
mat have been widely used to describe baryon structure and the consequent
meson-baryon coupling.[1] Because of the importance of chiral symmetry in low
energy modeling of QCD, the linear sigma model of Gell-Mann and Levy has
formed the basis for many studies of the nucleon, usually at the mean field
level.[2] From the viewpoint of QCD the local effective meson fields (o, %) should
be considered as the representatives of the Goldstone §g collective modes from
the flavor SU{2) sector. Given the evident success of chiral soliton models of the
linear sigma variety for describing many nucleon properties, two questions imme-
diately arise. First, are there important corrections due to the spatially extended
nature of the meson-like §q¢ modes? Apart from the possibility of modeling the
Dirac sea component of baryon structure functions, an extended meson structure
may have a non-trivial effect on the valence quark states through the consequent
distributed coupling vertex. Second, how should quantum fluctuation corrections
to the mean ficld treatment be viewed if the meson fields already represent gg
fluctuations? To deal with these issues it is necessary to begin with something
like a Nambu-Jona-Lasinio[3] (NJL) model where the Jg meson modes can be de-
rived through bosonization techniques.[4] However the standard NJL four-quark
contact interaction produces point meson fields locally coupled to the quarks, and
the effect of meson size cannot be addressed. The derived meson parameters and
quark self-encrgy are divergent vacuum quark loop integrals and an additional
parameter in the form of a cut-off must be introduced.

Extended meson ficlds can be produced through bosonization of a quark action
if the current-current interaction is mediated by an effective gluon propagator
with finite range.|{5, 6] It is then necessary to work with a nonlocal quark-meson
action. However the nonlocality from gluon dressing of the gquarks produces
convergent loop integrals for the derived meson parameters. In this work we
present sclf-consistent numerical results for the nucleon as a mean field solution
of such a nonlocal linear sigma model in the form derived previously.[T} The
dynamically generated quark self-energy T arises from the vacuum condensate
of Bose ficlds constructed from bilocal combinations of § and ¢ fields. T is a
translationally invariant function whose Dirac scalar component plays the dual
toles of the internal form factor for the finite sive Goldstone §q mode in the (o, #)
channel, and the vertex for the coupling of that mode to quarks. This economy
is guaranteed by chiral symmetry and the axial Ward identity. We explore the
consequences of an absolutely confining ansats for the time-like behavior of I(p)
so that the vacuum quark propagator has no mass-shell pole. This is one of

the proposed realizations of confinement in QCD[9] but has not before bheen
employed in solutions of a guark-meson soliton due to the intrinsic non-locality
of the mechanism.

Soliton models often implement dynamical confinement in terms of a color
dielectric function mediated by an auxiliary local scalar field attributed to a gluon
condensate.[10] In contrast, the dynamical confinement in the present approach
has its origin in the space-time structure of the quark condensate < §(z)q(y) >
and the associated scalar fluctuation field is the chiral partner of the §g pion. No
other field need be introduced to obtain a self-confining chiral soliton. Oune of
our principal results is that the valence quark wave functions and nucleon mass
produced from the simplest application of this mechanism are quite acceptable,

Although the effective quark-meson action we employ is nonlocal, there are
no difficulties or ambiguities for quantization because of the well defined relation-
ship, through path-integral techniques, to an underlying model action containing
ouly local quark fields. The definitions of the composite meson field, its mass,
decay constant, self interactions and equation of motion are made through the
path-integral and functional techniques that implicitly impose quantization. The
underlying model is taken to be the Global Color-symmetry Model (GCM}[5] of
QCD based on a finite range current-current interaction. This has the hidden chi-
ral symmetry property of NJL-type models but can also accommodate dynamical
confinement. A quark-meson soliton model ansing from the bosonization of the
GCM was put forward some time ago.[5] However no previous attempt has been
made to obtain numerical solutions that retain the intrinsic ronlocalities. We
recently explored[7] the formal development of such a generalized soliton model
by identifying the meson loop expansion that produces the mean field approxima-
tion as the lowest term. There arguments are made for the mechanism whereby
a confining vacuum quark propagator withont a mass-shell combines with a con-
stant classical scalar meson field to create a constituent mass-shell and thus well
defined quark cigenstates and energies. In a subsequent work[11] we confirmed
this mechanism through numerical results for the confining solutions of the cor-
responding Dirac equation that contains a monlocal coupling to a finite range
scalat field of Gaussian form. The fully self-consistent, non-linear case in which
the meson field is obtained from the valence quark source is the subject of the
present work.

In this numerical wotk, we ignore the pion degree of freedom so that, with
good quark isospin, we may develop solution methods that handle the intrinsic
nonlocalities in the simplest possible setting. The case which is solved is that of
three 15}, quarks in the lowest energy baryon state (average of the nucleon and
delta), interacting with a §g composite, static, scalar mean field generated self-



consistently by the quarks. The quark self-energy in the absence of the scalar
field is modeled to provide confinement, and the associated single parameter
of the model characterixes the sirength of the effective gluon propagator. In
Section 2 a brief review of this generalized soliton model and of the employed
confinement mechanism is given along with the equations of motion to be solved.
Detailed derivations occur elsewhere[5, 7, 11, 12] and will not be repeated. The
numerical methods employed in obtaining the solutions are described in Section
3. In Section 4 the results are presented along with a discussion of the effects of
the confinement and the related nonlocal quark-meson vertex. In Section 5 we
summarize our findings.

Ii. THE GCM AND QUARK-MESON MODELS

A. Chiral model

The underlying action is taken o be the GCM([6] given in Euclidean space as
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(1)

where the quark current is j;(z) = tj(z)"{-‘y,,q(z). In the limit of zero current
quark mass m, the GCM has SU (2}, ® SU(2)g chiral symmetry in the two faver
version considered here. The GCM implements only a global SU(3) color symme-
try. With phenomenology entering through the effective gluon two point function
Dy, this action has provided a successful modeling of meson properties and dy-
namics.[5, 6] Here we wish to see whether the model admits acceptible valence
quark states for baryons. For convenience we take D,.(z — y) = ., D(z ~ y).
In what follows the function D(z — y) will be parameterized to give a convenient
confining form for the dynamical vacuum self-energy of quarks. Chiral symmetry
dictates that the Goldstone meson modes will have to couple with a vertex largely
fixed by the self-energy dynamics.

The meson modes of the model are produced through the bosonisation pro-
ceduref5, 13] in which the quartic term in quark fields is exactly reformulated
as a functional integration over auriliary bilocal Bose fields B*(z, y) having the
transformation properties of §{y)A?q(z). Here A” are various direct product com-
binations of coler, flavor and spin matrices resulting from the Fierz reordering of
the current-current term of the action in Eq.(1}. Fluctuations in these fields will
be interpreted as effective meson fields. For the fluctuations we will ignore the
volor octet sector and deal only with color singlet effective meson fields. At this

level, the Fierz reordered form of (1) is essentially a nonlocal version of the NJL
model. The limit D(x — y) o 6(z — y) recovers the local NJL model. With the
quartic quark terms replaced by Bose field integrations, the remaining bilinear
quatk field term can be handled by Grassmann integration in the standard way.
To obtain a mean field model for a baryon one can[7] use a canonical transforna-
tion to introduce chemical potentials 4 to fix the baryon number and flaver. Then
integration over Grassmann fields with the appropriate adjustment of boundary
condition produces the grand partition function Z given by

Z= N/DB"ea:p{—S[p,B"l} (2)

where the bosonized action is
S[p, B%) = =Tr [LnG~'[u, B*] - LnG~'[u = 0,B"]| + 5[B"] (3)
with the vacuum action given by
B(z,y)B°(y, 7)
g*D(z - y)

The separation in Eq.(3) isolates the valence quark contribution and requires
that meson modes be produced from the vacuum action. The inverse propagator
appeating in {3) is[7)

S[B"] = -TrLnG 'u =0, Be] + %/dixdiy (4)

G iz, y) =7 G (z, y)e Y
=(y-0+ m— v}z — y) +e'”‘AHBa(z,y)e_“y‘. (5)

The quarks are Yukawa coupled to the auxiliary Bose field variables of integra-
tion with bare vertices A?. Besides the familiar shift of the time derivative, the
additional u dependence in {5) is due to the nonlocality of the Bose fields. With
appropriate boundary conditions, the u dependence of G will serve to shift the
pole structure in the momentum component conjugate to 4 — y4 so that valence
and vacuum configurations are treated together in the usual way. The saddlepoint
or classical vacuum configuration B, defined by f—&% = 0, produces a translation
invariant quark self-energy L(z — y) = A?Bf(z — y) which in momentum space
satisfies

B(p) = iv - plA(p*) - 1} + B(p")

. [ diq A 1 A4
=g Dip - q)— - 5
g / 2r)7 p—9)5 et miSg 2™ (6)




an equation of Schwinger-Dyson form, where D(p) is the Fourier transform of
Diz —y). )

The propagating Bose fields are identified as the fluctuations B*(z,y) =
B?(z, y) — Bi(z — y). We retain only color singlet (o, ¥) propagating modes in
the expansion of S{B*] about the saddle point configuration.[5, 7] Quantum leop
effects from all the auxiliary Bose modes can presumably give the quark-gluon
vertex structure that is missing from (6). We do not do this but leok for classi-
cal solutions in the selected B? induced by the valence quark source within the
baryon. At this level in the m — 0 limit, which we employ from this point for-
ward, dynamical chiral symmetry breaking in the QCD vacuum is attributed to
B(p®) # 0. The same amplitude B(p®) is identifiable, through the Ward identity
for the axial vector vertex,[8] as the on-mass-shell vertex (internal meson form
factor) for quark coupling to the massless pion and its scalar partner. This re-
sult can also be obtained direcily by considering the eigenfunctions of the inverse
propagator for the 8* ficlds{14], which are solutions of the ladder Bethe-Salpeter
equation consistent with the self-energy L. These cigenfunctions define the off-
mass-shell vertices and the pion vertex reduces to the scalar portion B of the
quark self-energy when the on-mass-shell condition is invoked. The color singlet
scalar-isoscalar and pseudoscalar-isovector fluctuations that are retained for the
chiral model can be written as(5, 6]

B(r) x(R)e i ¥ 'ﬂﬂ}l!- (7)
fx

where r = 2 -y and R = ﬁ,_,:"‘, and we have approximated the off-mass-shell
vertex with the on-shell form factor B.

A chirally symmetric derivative expansion of the vacuum action {4) to leading

order in derivatives of the fields o = xcos(/f,] and 7 = $xsin[¢/ f.] can finally

be written as

Stor) - sfe0) = [ d‘n{ ((8u0)” + (5, r)]+U(x=(Rn} (8)

A'B%(z,y) =

where UF{x?) is the effeclive potential (meson self-interactions) given by

¢ A%*) + B/ fa)]  BUE)(x/fe): - 1)
vty=-n [t (o [ s o] ~ ey 5 |
(9)
and where f, is the pton decay constant given by
- d‘q B4 %q’.’[(Bl)z + BB"]+ BB')
fe= 12/ (27)* ([quz + B)? - q2A® + B? : (10)

Here the argument of 4 and B is ¢° and primes denote differentation with respect
that argument. The logarithim term in (9} is the sum of single quark vacuum
loops with all possible insertions of chiral meson fields to zeroth order in their
derivatives. The expression for f comes as usual from the quark loop with
two insertations. All integrals are finite due to the natural regulation provided
by the amplitude B(p®). The potential U{x*) has turning points at x> = 0
and at the degenerate vacuum configuration x*> = f> corresponding to a local
maximum and absolute minima respectively. The obtained mexican hat structure
is displayed later. The meson masses can be obtained from the second derivative
of the potential U(x’} with respect to the corresponding field at the absolute
minimum. The pion mass is sero in the exact chiral limit of zero current quark
mass, while the mass of the scalar is finite and is given by

_ 48 [ dY BY(g?)
- f-?/ (n) [P A% + B (11)

Numerical valoes obtained for the pion decay constant f, and the scalar field
mass rm, are given in Section 4.

m

B. Scalar model

In this initial numerical work we focus upon treatment of the nonlocalities
from the quark self-energy and quark-meson coupling. We therefore truncate to
¢ = 0 thus giving up explicit chiral symmetry for the convenience of good quark
isospin. This amounts to keeping only radial fluctuations away from the chiral
circle at the vacuum point ¢ = 0, where x is the radial field. When the constant
vacuum value of the action is discarded, the complete action for the scalar soliton
model can be written

Sl x] = =Tr [InG ™ {u, x) — InG~(0, x)] +fd‘R [%(a,,x)‘-' + U(xz)] }

(12)

The chemical potential dependence of the fermion TrLn term ensures that a me-
son source from valence quarks will be generated. The inverse quark propagator
occurring in (12} is, for 4 = 0,

G Mz, y) =7 0. Alz ~y) + f] 'B{r—y)x( ery) (13)

If the chemical potential u in the action S[u, x] is set to zero, the saddle point
configuration will be x = fr. With a finite chemical potential there will be a



classical field expectation value of ¥ that reflects the spatial source distribution
of the valence quarks.

At the level of a mean field approximation, only a static x(R) field appears
and the baryon energy functional can be identified as the zeroth term in the
meson loop expansion of the effective potential. For the present model the energy
functional corresponding to a fixed set of quark occupation numbers n; is{7)

E[n, X} = Eq[nv X] + Em[X]: (14)

where the valence quark contribution is
E,[n,x] (—fdu) =Tr [LnG ™ [p,x] — InG™'[0,x]| — pjn;,  (15)
and the scalar field contribution is
Eux} = /d"’r [% (‘\'7x)2 +U (xg)] : (16)

The field y satisfies the equation of motion %-E = 0. The chemical potentials u;
are now functionals of the field x and the particle numbers due to the constraint
n, = dTrLnG~1/dy,.

With static meson fields, G~ !(«z, y) depends on time only through the variable
r = r4 - y4. The time-translation invariance of G~!(x,y) allows stationary
eigenstates of the form u,{Z)e'** which satisfy

j EyG (w3 F, ui(7) = irad; @)y (E). (17)

The cigenvalues have the form Aj(w) = w — i¢;{w) where ¢; is the quark eigenen-
ergy for state j. The w dependence of ¢;{(w) arises from the dynamical nature of
the self-energy L(w,z — ). The index j labels the set of distinct states of the
spectrum for a given value of w.

The quark component (15} of the baryon energy functional reduces to the
sum of positive eigenenergies bounded by the chemical potentials and satisfying
A; = 0, that is ¢; = —iw,. The associated states satisfy a self-consistent Dirac
equation which, in momentum space, is

[ k6 i By ) = 0, (18)

that s

k L
(- pAE) + B wy () + 1 [ 58 (B2 et - BB =0,

(19)

where the eigenvalue p, = k, = i¢, enters in a nonlinear way. The spatial
dependent part of the y field has been separated out, that is x = f, + %. Notice
that the meson vertex is energy dependent. A wave function renormalizalion
constant Z; can be identified from the residue at the pole of the Green's function
and is given by[7]

l -
7= - [ Padha 2SR g (20)
The net result for the energy functional of the baryon is
1/ \?2 .
E[n,x] = 3eolx] + fd3w [5 (¥x) +v (x‘)] : -y

where ¢ is the energy of the degenerate lowest S state. This is the standard resuit
for a scalar soliton model except that here the potential U and the dynamical
relation between ¢, and x are calculated from the nonlocal confining quark self-
energy amplitudes.

The meson field equation §E;éx = 0, after use of (21) and accounting for the
self-consistent energy dependence of the §xq coupling, becomes

=V + = + QD) = 0, (22)

5(7

where the meson source provided by valence quarks is(7]

Q=Y 77

/d’z:d:'yﬁj(:i:')B(—e - ) (____‘ - z‘) uj(¥)-

{23)

In the limit of point coupling where the amplitude B above becomes Bé(z — y),
the source reduces to the local form of conventional soliton models. The frequency
dependence of the dynamical quark self-energy is responsible for the wave function
renormalization Z;. Departures of Z, from unity are produced when the self-
energy amplitude A(z -y} departs from é(z — y} and when B(z — y) is not stalic.
Eqs.(19) and {22) are the equations of motion we solve for the scalar model.



C. Absolute confinement

The issue of how confinement is realized in QCD is unresolved. One of the
goals of this work is to investigate the effects of a novel confinement ansats on
the self-consistent solutions of the soliton equations of motion. We take up the
proposal that confinement is realized through the absence of a mass-shell pole in
the vacaum propagator for dressed quarks.[9] Such a behavior has been noted in
studies of model Schwinger-Dyson equations if the effective gluon propagator has
sufficient infrazed strength.[15] So confinement in the present model is defined
as the inability of e quark to propagate in the vacuum where x = fy. In this
situation the Dirac equation (19) reduces to

0 = [iv - pA(P’) + B(p?)] (). (29)
If there is no solution to p* + M*(p®) = 0, whete M(p®) = B{p*)/A(p?) is the
dynamical mass function, then we say that the quark is confined. This implies
that a quark is restricied to a region in which x # f.. In the present model this
region wifl have finite spatial extent due to the localized valence quark source.
This confinement mechanism has no knowledge of a bag surface and does not
presuppose a hadronic environment for its implementation. Rather it is the
presence of a hadronic environment that induces y # f, and creates a constituent
quark mass-shell through self-consistent solutions to {19) and {23). A simple
illustration of constituent mass generation from a confining propagator of this
type has been presented previously.[7)

The confinement condition p*+M*(p?) # 0 implies as a minimum that M?(p?)
for p* < 0 is linear with slope less than or equal to minus one, and is nonsero
at p* = 0. A simple realization of this is produced from use of the model gluon
propagator{15]

3
Dip) = (20)* (-a’6M(p), (25)
in the Schwiager-Dyson equation {6). The resulting self-energy amplitudes are

2, Py
A(pz) = 2a? % o’
,_%[1+(1+;,—) P>
2y (@t —4p?)E, PP

B(p*)= .. N 26

(r) { 0, p? > o (26)

For p? < O this gives M*(p®) = g‘: — p°. Several! studics have obtained use-
ful results with this simple confining dynamical mass function[5, 11, 16] We use
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the parameterization (26) for the present numerical work. We have previously
shown[11] that for these amplitudes A and B, the Dirac equation (19) has only
discrele solutions in the presence of a finite range ¥ field. This follows because,
in position space, the large distance behavior of the states is not governed by
vacuum solutions since mone exist. No solutions with scattering boundary con-
ditions are possible. This clearly implements one distinction between confined
systems and energetically bound systems: a confined system has no continuum.
QOur previous numerical work{11] also confirmed that with such a confinement
mechanism the quark eigenenergies necessarily tend to infinity as the strength of
a finite range x field approaches sero. Thus the constituent mass-shell disappears
as other valence quarks are moved away. This indicates that a finite size soliton
in this model will always exist, and is the only type of solution possible.

IIi. METHOD OF CALCULATION

The coupled equations of motion to be solved are the coordinate space equa-
tion for the scalar field (22}, and the momentum space Dirac equation (19}. The
Dirac equation is solved in momentum space because the dynamical nature of
the nonlocality, and comparison to a local limit (point coupling and constant
mass), ate most easily handled in that format. After projection onto S-waves,
the Dirac equation (19) is brought to the matrix form X{e¢;)u; = 0 by use of
Gauss-Legendre quadrature. The lowest positive S;;, energy is found from the
condition det(K) = 0 by stepping slowly away from ¢; = 0 in the positive direc-
tion until a root is bracketed. The root is then obtained to the desired accuracy
using Brent’s method.[17] The eigenfunctions u; are then obtained by iteration.

The scalar field Klein-Gordon equation on the other hand, is most easily
handled in position space due to its noniinear form. This implies that at each
iteration in the solution of the coupled equations a Fourier transform must be
performed twice. The source term @, of Eq.(23) is calculated in momentum
space from the quark states and is then Fourier transformed to position space.
The scalar field solution x{Z) is Fourier transformed back to momentum space for
use in the Dirac equation. The restriction to S-wave allows use of a fast Fourier
transform algorithm{17)] designed strictly for one-dimensional problems. With an
initial guess for a finite range scalar field, the quark states are calculated, and
the resuliing source term is constructed. A new scalar field is generated and
a comparison with the previous field provides a better estimate. The pair of
coupled equations of motion is iterated this way until convergence is achieved.
The convergence crileria used is that the components of the baryor energy should
be accurate to 1074, :

i1



The nonlinear scalar field equation is solved iteratively by the application
of Newton's method to a functional.  For example, given a functional F[x] for
which a solution x, defined by F[x,] = 0 is sought, one can proceed as follows.
Expansion of F{x] to first order about an initial solution x¢ gives

P = Fool+ [tz S8 G-+ (21)
Xo
The condition Flx] = 0 implies
/d*z g—f% . n(z) = — Flxo). (28)

This can be solved as a matrix equation for the vector n{z) = x(z) — xo(z), from
which the new solution x,(z} = m(z} + xi-1{z) is formed. Equation (28) is then
iterated to the desired accuracy. For the present case the functional F is that
given in Eq. (22}, from which one can see that the integration in (28) is removed
by the delta function generated ftom the functional differentiation. The starting
solution is that obtained from the linearized Klein-Gordon equation formed by
substitution éU/éx — mix.

IV. NUCLEON RESULTS

The nonlinear potential I as calculated from Eq.(9}, with the amplitudes A
and B of Eq.(26), is displayed in Fig.1. The result is very similar to the standard
fourth order polynomial form adopted in most chiral models. The obtained mexi-
can hat structure is quite insensitive to the detailed form of the amplitudes A and
B and is dictated by the underlying chiral symmetry. The resuits for the mean
field nucleon calculations are summarized in Tables 1 and 2, and in the graphs of
Figs.2-5. The soliton mass is estimated from the calculated energy E, by approx-
imate removal of the spurious center of mass component present in a mean field
model. That is, M, = [E? - 3 < p* >|Y?, where < p* > is the expectation value
of the square of the quark momentum. The first two columns of Table 1 contain
results from a pair of calculations that retain the confining dynamical quark mass
and the nonlocal quark-meson coupling. We refer to this as the DM-NLC case,
The two versions shown correspond to different choices of the single parameter a
for the gluon propagator strength; in the first column the pion decay constant f,
is fitted to its experimental value, while in the second column the soliton mass
M, is fitted to the average of the nucleon and delta masses. Since the pion, ex-
cluded from the present work, would lower the soliton mass by about 200 MeV,
the mass obtained with the correct f, value is encouraging. The second column
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illustrates that a modest decrease of a can lower the baryon mass by 300 MeV
while increasing the quark rms radius by 25%. The increase in binding there is
due mainly to the increased range of the distributed quark-meson vertex. Clearly
there are relevant processes which have been neglected in this work, however the
range between these two solutions is not large indicating that this model with
one parameter gives a resonable description of the physics involved. Obviocusly a
major uncertainty in a model of this type is the eflect of a more realistic gluon
propagator.

For comparison we report the results of a calculation for the limit of local cou-
pling and no confinement. For this limit, the dynamical nature of the amplitudes
A and B in the Dirac equation is suppressed by employing the constant p* = 0
values (4 = 2, B = a) for all p*. The original potential U[x?] and the value
fe = 93 MeV are retained. The result is a local soliton model with a constant
constituent quark mass M, = a/2, and a point coupling to the scalar field with a
coupling constant ¢ = M,/ f,. We label this case by CM-LC. It is well known for
such a local model that there is a critical value of the coupling constant g below
which a stable soliton cannot form.[1] In contrast for a confining model such as
the present DM-NLC calculation, any nonzero value of a ensures a stable soliton.

As can be seen from Table 1, the combined effect of the removal of the con-
finement mechanism and noniocal coupling is a slight increase in the baryon
mass but a 25% increase in the quatk rms radius. This is the result of several
mechanisms. In the confining case, the large distance fall-off of the quark wave
functions is guaranteed to be significantly faster than the exponential behavior
of typical bound states associated with a constant quark mass parameter. This
effect is illustrated in Fig.2 where wave functions from the confining DM-NLC
calculation are compared with those of the local CM-LC case. The quark source
for the meson field is consequently more compact in the presence of confinement.
The dynamical nature of the coupling vertex provided by the scalar self-energy
amplitude B(p®) introduces an energy-dependent and finite range spatiaily de-
pendent coupling strength. For low three-space momenta of the quark states, the
DM-NLC model has much stronger coupling than the local CM-LC model and
the reverse is true for high momentum components. This also induces a more
compact behavior for quark states. One may expect that the self-consistently
determined meson field would be weaker and of smaller range in the confining
nonlocal case. However this is not so and the scalar fields obtained in the two
cases are displayed in Fig. 3. Although the ranges are similar, the confinement
mechanizsm induces a deeper potential in agreement with a more compact quark
soutce. The integraied potential energy of the meson field is largely uneffected
but the meson kinetic energy is greatly increased in the confined case.
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Although in the present model the dynamical quark self-energy and the non-
local quark-meson coupling arise from a single mechanisn as expressed through
the amplitude B{p®), it is of interest to investigate the effect of the nonlocal
coupling separately. We have performed a calculation in which the seif-energy
dynamics was suppressed as described above, but the distributed nature of the
coupling vertex was retained. We labei this calculation by CM-NLC. In Table 2
we compare the results to the earlier purely local imit. The principal effect of
the nonlocal coupling is a lowering of the quark energy and a raising of the meson
energy without change in the quark rms radius. This effect is largely due to the
energy-dependent increase of the strength of the coupling vettex and accounts
for essentially all of the reduction of the quark energy evident from Table 1 in
the presence of confinement. On the other hand, it can be concluded that it is
the confinement mechanism that produces the reduction in the quark rms radius.
The effect of the nonlocal coupling on the wave functions and the scalar field is
quite small as indicated by Figs. 4 and 5 respectively.

We consider now the nucleon axial coupling constant within this model. In
general it is of interest to explore the coupling to various fields, such as the
electromagnetic field and the isovector axial ficld, since the nonlocality of the
quark-meson action (12) can make significant dynamical contributions. There
will not be associated currents that are local combinations of the quark and meson
fields. This is because the quarks there are dressed and the coupling to mesons
respects the extended gg structure. However, the original action (1) of the GCM
is unambiguous in requiring that the bare quarks couple to an external vector
field A, (here taken to be Abelian) through the covariant derivative 8 — 1AA.
Here A is the quark charge operator j(r3 + }) for electromagnetic coupling or
573 for axial coupling. The generating functional Z of Eq.(2) then acquires
a dependence upon the external field, and after the saddle point configuration
for quark dressing is obtained, the current that couples to the external field is
identifiable as

_ éinZ
B 6A,(q) A=0

= ﬁtr‘/d‘pd‘kc(k,p)rn(m kiq). (29)

Ju(q)

Here G is the quark propagator corresponding to (19) and T is the irreducible
three-point vertex for the coupling of dressed quarks to the external field. In the
present model this quantity can, in principle, be obtained from its defining inte-
gral equation that is the counterpart of the simplified Schwinger-Dyson equation
(6). This is still quite difficult.
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For the axial coupling constant, we use a simple minimal substitution ap-
proximation for F:’, that still permits us to explore the effects of the confinement
mechanism and nonlocal coupling upon g4. Since the present work omits the
pion, only the valence quark contribution to axial coupling is required and the
self-energy function contains the relevant information. The Dirac scalar ampli-
tude B(p®) is a chiral symmetry breaking term that does not contribute to the
axial carrent. Minimal substitution into the relevant part of the quark inverse
propagator then leads to

a 2
TL(P.Qi9) = -8(Q - q)55-i7 - PA(P*)ysms (30)
M

where P = L(p+ k) and Q = p — k. This approximation amounts to use of the
¢ = 0 value for all g and should be accurate for a coupling constant calculation.
The dependence upon the momentum P is a consequence of the quark self-energy
dressing and (30) satisfies the axial Ward identity with the induced pseudoscalar
mode removed as is appropriate for the present pion-free calculation. The axial
coupling constant is given by the valence quatk contribution to f d*zJ3(z) and
it is easily seen to be independent of z4. The result is

' )
94 = sz_l _/dapﬁ;'(ﬁ) {5;1'1'?14(:)’)} 15 Tau, (), (31)
?

whete p = (i¢;, p), and the spin-flavor summation over j is weighted by the occu-
pation probabilities of the standard SU(4) valence quark madel of the nucleon.
After angular integration, the dominant contribution can be expressed as

ga = ;% fdpp’A(-e’ +p%) {gg(p) - %fz(p)} : (32}

where g(p) is the upper Dirac component and —& - pf(p) is the lower component
of the S-wave quark state. We have not displayed terms that involve derivatives
of the amplitude A since they make a negligible contribution here. In the limit
where 4 and Z are constants that cancel, (32) reduces to the standasd result for
a point-coupling model.

In Table 3 we display results from evaluation of (32) for the three different
dynamical cases discussed carlicr. Although the value of g4 obtained in the
full dynamical model with confinement and nonlocal coupling (DM-NLC) is es-
sentially identical to the empirical value, this cannot be taken seriously in the
absence of a pion. In local models of this type[l] pionic effects can increase the
value by some 70%. Whether this will alsa be the case in the present model is un-
der investigation. The purpose of the g4 calculations here is to explore the effect
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of the confinement mechanismn and nonlocal coupling on the valence quark contri-
bution. From Table 3 it is evident that the confining dynamical mass and related
nonlocal coupling produces a 15% reduction from the purely local non-confining
(CM-LC) value. This is due to the finite range of the vector self-energy ampli-
tude A(p°) and the smaller effective range of the confined quark states. Since
g4 is usually overestimated in local chiral soliton models, the appearance of a
reduction mechanism whose origin lies in the composite nature of the confining
vacuum condensate < §(z)gq{y} > and associated meson modes is an interesting
phenomenon. The greater reduction in g4 that is produced by introducing only
the nonlocal meson coupling can be attributed solely to the increase in the wave
function renormalization constant Z. We recall that A = 2 in both calculations
that have a constant quark mass and the wave functions are essentially identical.
The confining dynamical mass actually decreases Z, but the overall decrease in
g4 is due to the momentum fall-off of the amplitude A and the confining behavior
of the wave function components.

V. SUMMARY

We have explored a mean field solution for the nucleon in a model where
valence quarks are confined by the nonlocal structure of the quark scalar con-
densate generated by dynamical chiral symmetry breaking. Associated with this
mechanism is a composite, extended scalar §q field which is the chiral partner
of the Goldstone pion. The employed quark-meson action has its origin in the
Global Color-symmetry Model where quarks interact via a current-current term
mediated by a parameter function to represent the finite range effective two-point
gluon function. The model is defined in Euclidean metric. The meson fields that
arise from bosonization are extended objects even at the tree level employed hete.
Only the scalar meson mode is kept in this initial numerical study.

The self-consistent mean scalar field and the corresponding quark states are
calculated in the presence of the nonlocal coupling dictated by the scalar term of
the vacuum quark self-energy function. A combination of momentum-space and
position-space numerical methods is found to be convenient for this problem. The
invariant four-space stinclure of the self-energy induces a self-consistent depen-
dence of the quark-meson vertex upon the quark energy and three-momentum.
Despite these unusual dynamical features, the obtained nucleon mass, size, and
constituent quark wave functions are very acceptible for a pion-free model with
one [ree parameter. The separate eflect of the confinement mechanism and the
noulocal coupling is presented. Both mechanisms increase the binding and raise
the meson field kinetic energy, while the confining mechanism significantly re-

duces the nucleon size. The nucleon axial coupling constant g4 is calculated and
it is found that both the confining dynamical mass function and the nonlocal
coupling setve to reduce the value below the local, nen-confining limit. Local
chiral soliton models usually overestimate g4 and it is interesting that there is a
reduction mechanism arising from the composite nature of the confining vacuum
quark condensate and the associated extended meson mode.

The field content of this non-topological soliton is quile primitive, but the
dynamics is rather novel. It remains to be seen whether the introduction of the
picn field will allow the presently successful features to survive. No new param-
eters are needed to include the pion in this model since there is a natural place
for it due to the hidden chiral symmetry maintained in the original derivation.
A crucial element in implementing a model of this type is knowledge of the vac-
uum quark propagator in the time-like region. We have used a simple confining
form generated from an infrared momentum delta function as the effective gluon
propagator in a Schwinger-Dyson equation. For a more realistic case, the ana-
lytic continuation is difficult in general and very little work in that direction is
available. One exception is provided by the recent work of Burden et al.[15} in
which dressing of the quark-gluon vertex is incleded along with the delia function
gluon propagator.
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TABLE I[I. Mean feld calculations of the nucleon/deita. Results that include non- FIGURES
local quark-meson coupling(CM-NLC) are compared o results from the purely local
reduction of the model{CM-LC). In both calculations the dynamical mass is frozen at
a constant value and there is no confinement.
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TABLEIIl. A comparison of values calculated for the axial-vector conpling constaat
in three cases ot «ifering dynamical content.

DM-NLC CM-LC CM-NLC EXPT
FIG.1. The calculated vacuum eflective potential of Eq.{9) is plotted as a function

94 103 1.42 115 1.24 of the chiral invariant scalar field x for the case in which the self-energy amplitudes 4
and B are those of Eq.(26). The form shown here displays the "mexican hat” behavior
adopted in most chiral models.
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FIG. 2. The upper and lower components of the quark wave functions are plotted
for two treatments of the dynamics. The solid lines follow from full model containing a
confining dynamical mass and nonlocal coupling. The dashed lines follow from reduc-
lian to a constant {non-dynamical) mass and local coupling. The differing asymptotic
hehavior is a result of the confinement.
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FIG. 3. The self-consistent scalar field x is plotted for the cases of confining dy-
namical mass and nonlocal coupling (solid line), and constant mass and local coupling
(dashed line).
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FIG. 4. The upper and lower components of the quark wave functions are plotted FIG. 5. The self-consistent scalar field x is plotted for the cases of constant mass
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. and local coupling (solid line), and constant mass and nonlocal coupling (dashed line).
and nonlocal coupling(dashed lines).



