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The amplitude for (ompton scattering from the nuclecn is calculated within the
framework of the nonrelativistic quark model. The objective is to evaluate the con-
sistency of the model with low-energy theorems, ita alility to predict the electric and
magnetic polarizabilities, as well as its behavior at higher energies, where multiple

tiucleon resonances play a role.



I. INTRODUCTION

The electromagnetic properties of hadrons provide nontrivial constraints on
attempts to model them with constituents. Compton scat.ering serves as an
important complement to electron scattering. Within a simple nonrelativistic
picture, elactron scattering nrobes size aspects of a hadron, while Compton scat-
tering probes its spectrum. Of course, sizse and spectrum are related in any model,
but the ultimate test is the set of observables available from these two processes.

Compton scattering from the nucleon is constrained at very low energies by
Low’s theotem [1, 2}, which completely fixes the contributions of O(1) and O{w)
in the expansion of the scattering amplitude in powers of the photon frequency.
The first structure-depencent terms come from Rayleigh scattering at O(w?). The
coefficients a and 3 are the electric and magnetic polarisabilities, respectively,
and can be thought of as the Compton analog to the charge radius. At higher
photon enetgies, the incident photon can excite a variety of intermediate oucleon
resonances, and the corresponding amplitude is more sensitive to the spectral
details of the model.

There has been considerable theoretical interest in computing the polarizabil-
ities within various models, including the bag model [3, 4], the nonrelativistic
quark modet [5], a chiral quark model [6], the Skyrme model {7], and with chiral
perturbation theory [8]. We also note that L'vov {9] obtains good agreement
with available data up to 400 MeV using fixed-¢ dispersion relations, together
with the electric and magnetic polarizabilities, as input. There are also some
excellent reviews {10, 11].

Data at higher energies exists mainiy i thie fonn of differential cross-sections.
These have been calculated in the A{1232) region and above using dispersion
theory and the pion-photoproduction data [12]; this is successful in fitting the
data only ai low energy and for forward scattering. The Bonn group has also
attempted to fit the small angle intermediate energy data using the vector (p)
dominance model [13-16]; the vp coupling constant that results is smaller by a
factor of two than the generally accepted value. Phenomenological isobar mod-
els, along with the measured photoproduction amplitudes, have been applied
by the Tokyo group [17-20] to extract resonance parameters from the Compton
scattering differential cross-section data.

Qur goal in this study is to evaluate the performance of the nonrelativistic
quark model in predicting the Compton scattering amplitude over a range of
energies. To our knowledge, no calculation using a composite model for the
structure of the intermediate resonances has been applied to Compton scattering
at both low and intermediate energies. We believe that any quark model should
atiempt to be consistent with low-energy theorems, the measured polarisabilities

and higher energy observables. This is a nontrivial standard. Even the low-
energy theorems are not automatically satisfied within models in which Hilbert
spaces ate truncated or other approximations are made. We also believe that it
is important to understand the role played by various ingredients of the gquark
model in building the Compton amplitude. These include the quality of fit to the
baryon spectrum aad the photon transition amplitudes, but also the possibility
that baryon resonmances which couple weakly to » N may figure more noticeably
into a photon process.

The paper is organized as follows. In Section 2, we present basic formulas for
Compton scattering, along with the salient features of the nonrelativistic quark
model as they pertain to Compton scattering. We also discuss our method of
calculating electromagnetic current matrix elements. The constraints provided
by low-energy thecrems are then given, and we show how they can be satisfied
exactly for one limiting case of the model. In Section 3, we present numerical
tesults for low-energy limits, polarizabilities, and a variety of observables at higher
energies. Section 4 contains our conclusions.

II. DESCRIPTION OF THE CALCULATION
A. basic formulas for Compton scattering

We take k = ¢ = 1 and use Heaviside-Lorentz units, whereby aggn = e°/4r =
1/137. The Hamiltonian density for the inieraction of photons with quark fields
is

H{z) = Ze‘-r.-,.(a)A”(w), (1)

where ¢, is the charge of the ith quark, I*(z) = §(z)v*¢:(z) is the quark current,
and A#(z) is the photon field. In a nonrelativistic valence quark model, the
effective Hamiltonian has both one-photon and two-photon terms:

lemtnn = H’r + H,,. (2)

The one-photon contribution is, for real transverse photons:

H, = - Zeili(ri) - A(r,)

=—Z{§f,;:[pi-A(re)+A(r.)-p.]+p,--VxA(r.)}, (3)



where i, = e;o,/2m, is the magnetic moment of the ith quark, e;, m;, ¢,/2, p,
are its charge, (constituent) mass, spin, and momentum, and A(r;} is the photon
field. The two-photon contact interaction is

Hyy = Z ;:

The photon field has the following expansion:

A(r) = Z[ (21)3 *5;—— [a(k, /\)ék_xeik'r +G'(k,/\)é-k“\e_"k'r] (5)

i (4)

The Compton amplitude can be written schematically as follows:

{f1Hy|n)(n|Hy|d) {FIHy|n}{n|H,]})
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T={flH vy lt) (6)
where w and «’ are the initial and final photon energies, E; is the initial baryon
energy and E, is the energy of the intermediate hadronic state.

We now assume that the Hilbert space consists entirely of the set of baryons
generated from a quark model. In addition, we assume no (gq) excitations, i.e.,
only valence quarks. In this regard, we mention recent work of Geiger and Is-
gur [21] on (gg§) excitations in mesons. First, they find that (¢§) excitations
in mesons tend mostly to renormalize the overall string tension. Second, they
consider processes such as A — BC — . For those processes classifiable as
OZI suppressed, in which the final meson D contains a {(gq) pair not found in
the initial meson A, there may be amplitudes 4 — BC and BC — D which
are large on an individual basis, but the sum of the combined amplitudes will,
under certain conditions, vanish, provided that all intermediate (gq) states are
included in the sum. These results were obtained within a specific model, and
make use of closure and spectator approximations. Nevertheless, interpreted in a
qualitative sense, they suggest that, while amplitudes for the photoproduction of
intermediate baryon+meson intermediate states may be individually large, there
may also be considerable cancellation among them, and that it would be better
to leave meson [or (¢)| excitations out of the calculation entirely than to include
only a partial sum. In the exploratory calculation presented here, we take the
former option. Pionic excitation, however, may be a special case, as is discussed
in our conclusions.

If the vN system has an overall momentum P, and the initial and final photon
momenta are k and k', respectively, then the Compton amplitude is

T=eN"
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where
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(8)
where

wm{p) := vVm* + p?, (9)

and X,, stands for any baryon in the spectrum.

B. overview of the nonrelativistic quark model

The wavefunctions for the nucleon and delta resonances used here are those of
the nonrelativistic quark model (NRQM), specifically the model of Isgur and Karl
[22, 23], which describes a batyon as three valence quarks moving in a confining
potential. The Schrodinger equation for the nonrelativistic three body system is
solved for baryon energies and compositions using the Hamiltonian

H= z (m. + ZPK) Z(: (vi+m), (10)

where the spin-independent potential V*/ has the form
bri; 2a,

V¥ =4 L
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with r;; = r; — r;. The hyperfine interaction H;‘;p is the sum

g _ e { S0 -8,8%(ey) + {3(5 7 )(S; ) s,..s,]}

hyp ey
3m;m; 5

(12)

of familiar contact and tensor terms arising from the (colozr) magnetic dipole-
magnetic dipole interaction. In practice, V¥ is written in terms of a harmonic-
oscillator potential plus an anharmonicity



Py

1] Kr:i
VJ:T+U,'J;, (13)

and the resulting anharmonic terms are treated perturbatively.

States of the three-quark system which represent the nucleons and deltas (with
three equal-mass quatks) are then written as the product of a totally antisym-
metric (under the exchange group S3) color wavefunction and a totally symmetric
sum

¥=Ca)y ¥xé, (14)

where the spatial (4), spin (x), and flavor (¢) wavefunctions form representations
of 53. The zeroeth order spatial wavefunctions are therefore taken to be the
harmonic-oscillator eigenfunctions ¥ yrar(p, A} with p = (ry — l‘g)/\/i and A =
(r1 + > — 2r3)/V6. Ground states [such as N(938) and A(1232)] are described
{to zeroeth order) by wavefunctions with N = 2{n, + ny) + [, + I, = 0, which
means they have no radial nodes or angular momentum. The negative-parity
excited nucleon and delta resonances (‘P waves’) in the 1.5-1.7 GeV region have
N = 1 spatial wavefunctions with either I, = 1 or [, = 1, and the positive parity
excited resonances in the 1.5-2.0 GeV region have N = 2 wavefunctions. In
order to describe the intermediate states in our calculation we need to establish
the notation of the Isgur-Katl model for the unmixed harmonic-oscillator states.
The details of how the sums in Eq. 14 are constructed can be found in Refs. [22]
and [23]; here we just use the labels for the unmixed states which result from
that procedure. Individual oscillator substates are labeled |X2S+1 L, JP), where
X = N or A, S is the total quark spin, L is the orbital angular momentum, =
is the Sy symmetry of the spatial wavefunction (S=symmetric, M=mixed, and
A=antisymmetric), and J” are the total angular momentum and parity of the
state. We will also find it convenient to group the states into SU(6) multiplets,
labeled by [i, L”], where u is the SU(6) multiplicity (found from the spin and
flavor multiplicity of a group of states with similar spatial wavefunctions) and
L? is the orbital angular momentum and parity of the spatial wavefunction. For
example, the ground state nucleon |N35’5%+) and delta |A4Ss%+) are found in
the [56, 0%] multiplet, while the S;,(1535} P-wave resonance is a mixture of the
oscillator substates {[N*Py ;") and |N ‘PM-;-—) found in the {70, 17| multiplet.
All of the states up to the N = 2 band are tabulated in Table I.

The energies and compositions of the resonances are then modeled by first-
order perturbation theory in the anharmonicity U;; and the hyperfine interaction
H l:; . The apharmonicity is treated as a diagonal perturbation on the energies
of the states; in particular it is used ouly to split the N = 2 band (it causes no

splittings to first order in the N = 0 or N = 1 bands). The diagonai expecta-
tions of I/ in the N = 0 and N = 1 bands are lumped into the band energies; the
mixing of states between the ¥ — 0 and N = 2 bands induced by U is ignored.
The hyperfine interaction is treated to first order in both the energies and wave-
fenctions, with the contact interaction active within all bands and the tensor
interaction active within the N = 1 and N = 2 bands. In their paper on positive
parity excited baryons, Isgur and Karl [23] quoted wavefunctions for the excited
JP = %+ nucleons and J¥ = %+ deltas which do not include the mixings with the
ground states that were later calculated and shown to have important physical
consequences by Isgur, Karl and Koniuk [24]. As a result, these wavefunctions
are not orthogonal to the (properly} mixed ground states from Ref. [24]; this
is cotrected here (in our ‘mixed’ basis) by re-diagonalising the hyperfine (plus
diagonal-anharmonic) interaction in the combined N =0 and N = 2 basis.

The main features of the spectrum of the P-wave and positive-parity excited
baryons are then quite convincingly described by this model. The effective pa-
rameter o, sets the scale of the hypetfine interactions and can be adjusted to fit
the A(1232)-nucleon splitting. The structure of the splittings of the P-wave res-
onances is then determined; the contact interaction is responsible for splitting the
IN*Py3 ™) and [N 2Pa 37 ) below the other states, and then the tensor interac-
tion introduces further (smaller) splittings, and mixings of the N* and N? states.
The resulting spectrum is in rough agreement with the experimental pattern, and
just as importantly the compositions of the mixed [N}~ ) and [N} ) states is in
agreement with details of their sirong decays. The ¥ = 2 band spectrum has its
coarse structure determined by the splitting induced by the anharmeonicity, which
in first order perturbation theory is independent of the exact form of U;; = U(ri;);
the size of the splittings can therefore be parametrised by a constant A. Choos-
ing A larger than the oscillator level splitting w can (rather artificially) force the
lightest nucleon resonance in this band, the |N2Ss. :_,1-+) in the [56°, 0] maltiplet,
to be lighter than the P-wave states, and so it can be associated with the Roper
resonance N(1440). The anharmonicity produces splittings between the other
SU(6) multiplets, and the contact and tensor parts of the hyperfine interaction
cause splittings and mixings of all states with the same isospin and J. There
are more states predicted by the model in the N = 2 band than exist in the z N
partial wave analysis data; a strong decay analysis carried out by Koniuk and
Isgur [25] established that the states whose mixed wavefunctions allow them to
couple to their x ¥ production channel correspond, in both energy and aumber,
with the observed states.



C. electromagretic current matrix ¢lements in the nonrelativistic quark model

The transverse components of the electromagnetic current operator which
we use here were calculated in this basis of mixed wavefunctions by Koniuk
and Isgur [25]. They used a nonrelativistic tramsition operator based on the
interaction Hamiltonian H, given in Eq. 3. Their purpose was to calculate
the photo-excitation amplitudes for the nucleon and delta resonances formed
in yN — X — =N (real photons) in the center of mass frame of the excited
resonance X. These two transverse amplitudes A; and A; are defined in terms
of helicity states of the nucleon and the produced ‘resonance by

Ay = (XT; 00\ (0)|N 3; -kAn), (15)

where Ay = 1- )\, and the matrix element is to be evaluated in the rest frame of X
with k|jz. Note that A is forbidden in the case that X has J = 1. The resulting
fit of the photo—excntatlon amplitudes of the baryon resonances by Koniuk and
Isgur [25] is of poorer quality than the spectral fit, as we might expect from the
results of a perturbative treatment. We will return to this point in our discussion
of the results of our calculation at higher energies.

Modern calculations [26-28] have gone beyond Isgur and Karl’s model for the
spectrum and wavefunctions, and beyond the nontelativistic approximation [29,
30] for the electromagnetic transition operator; we hope to apply a more sophis-
ticated model of this type to Compton scattering in the future.

To use the Isgur-Kari-Koniuk model in our calculation, we need all four matrix
elements of the electromagnetic current. In order to describe their calculation,
we examine the details of how an effective operator to be used between NRQM
wavefunctions for the intermediate resonances and the nucleon is derived. If we
insert the field A{r;) defined in Eq. 5 into Eq. 3, then we can wriie the transverse
amplitudes as

€
v 2w
Here the expectation value is taken to mean integration over p, A and R =
(r1+ ra + r3)/3, and expectation value of spin and flavor dependent quantities

i

between the spin wavefunctions )(L and xp, and the flavor wavefunctions ¢
and ¢dn.

Since the wavefunctions in Eq. 14 are explicitly symmetrised, it is sufficient
to know the form of the operator for the third quark in the sum in Eq. 3. We
can write H: in Eq. 16 as

Ay =D (XTAHEAN LA - 1), (16)

1

g)
Lo

T3 ikry,
HY = (pos + kﬁi) eihrss (17)

&\“
S

#q
m

where we have used the polarization vector €4, = “/—,1,(1. 1, ). We then integrate

over the center of mass coordinate R (note that ry = R — ‘/g)\) after inserting

plane waves for the center of mass motion for the initial and final baryons (one
with momentum zero). The result is that Eq. 16 can be written as a simple
integral over internal coordinates

e
—— Ay =X MHEUNL A -1 18
‘/2: A ( I 3i ] ) ( )

with the operator

Hsa—eﬁ;}\/— e~V IN (\/;m— "%) (19)

In a similar way we can write the longitudinal current matrix element as

Ll - 3(X-J1 -],'IH:;IN-,. "') (20}

\/T

; (- :\/1_(‘/5% ;)e“*ﬁ“, (21)

and the charge matrix element as

with

e
——C, =X, AN L D), 22
with

" — etV (23)

D. boosts of current matrix elements

The key physical ingredient in the calculation of Compton scattering ampli-
tudes is the set of curtent matrix elements between the target nucleon and each
of the excited baryons included in the spectrum. For real photons, only matrix
elements of the transverse components of the curzents are in principle required.
Howevet, because the current matrix elements are calculated in the rest frame
of the excited baryon, the need for tramsverse matrix elements in the presence
of the crossed-photon process also requires us to calculate ell components of the



current in the excited baryon rest frame. Since the quatk model itself is nonrela-
tivistic, Lorentz transformations of current matrix elements cannot be done fully
consistently. In the face of this, we proceed as follows. For each excited baryon,
the transition current matrix elements can be expressed in any frame via Lorentz
invariant form factors. These form factors are computed specifically in terms
of the transition matrix elements in the excited baryon rest frame. The lack of
full relativistic consistency would appear when we tried to compute the transi-
tion matrix elements in some other frame and found different “Lotentz invariant”
form factors.

We use a Lorentz covariant multipole expansion to express the physical infor-
mation in the transition current matrix elements. The details are summarized in
Ref. [31] We provide the salient details here.

The four-vector current operator I*(z) can be expressed in terms of a 2x2
matrix as follows:

fg(m) = [iO’g{IU(iE) + I(x) - a}]g (z), (24)

where o are the Pauli matrices. Then I_g(a:) transforms according to the undotted

and dotted representations of SL(2,C). The matrix element can be written as
follows: Matrix elements of Ig((]) can then be expressed in terms of reduced

madtrix elements as follows:

(XTx: 9w [T (0)IN 5 pas)

\/“’ (p') \/":“({f;ﬂ)) Z(%C%ﬁlﬂﬂs)(fﬂismIJpg)(ijlujljrp )Y‘ " (Po)

% (B0 ool Eetp], DAL (RAL (), N X Ix N 1@V D). (25)

The momentum py is the momentum of the initial nucleon in the rest frame of
the excited baryon. L.(p) is a 2x2 representation of a rotationless boost under
SL(2,C):

L.(p) := cosh lu + & - psinh Fu; tanh u = |p|/p°, (26)

corresponding to the transformation of a particle at rest to a momentum p*.

The Wigner rotation R.(A, p) corresponds to a Lorents transformation between
momentum p* and p'* = A*,p¥:
R.(A,p) := L7 (Ap)ALc(p). (27)

To make a connection between fg(;c) and I#(z), we define

10

4

Iy (z):=(-1) \;Z“ a3Blsp)I5(z), (28)

3

whick has explicit components

=) = q:\/LE(Il(a:) +il’(z));  BMe) = Ple); (29)

(z) = I°(z). (30)

Note that Eq. 28 is simply a definition, and does not imply that f;;’ has the

rotational properties of a rank-s tensor. The matrix elements of I ;.(0) can then
be expressed as follows:

(XJX:p II' (O)IN'npﬂ

- wm(Po
= s/_\/w '(p)\/wm(p)

X {{msp |\ T ur)(GaTugli' w' )Y, " (o)
X[L7HP MialLelp )]Tﬂ ,m[R (Le(p"), PO KX Tx ML 7 (g 3. (31)

The reduced matrix elements (X Jx|{|I;, 7(¢°)[|N 3} are Lorentz invariant and
contain all the dynamical information relevant to any electromagnetic transi-
tion matrix elements between two states with a given mass and spin. However,
these reduced matrix elements are not all independent: beyond the requirement
of Poincaré covariance of the matrix elements, there are additional symmetries
which farther constrain them.

The constraint of current continuity can be written as

(X Tx; p'a (0NN 3ipp) — q - (XTx;p'w' [L(O)IN Jipu) = 0. (32)

This equation, together with Eq. 30, means that reduced matrix elements of I"(O)
can always be re-expressed in terms of matrix elements of It 4(0), or equivalently,
matrix elements of the three-vector current I(0).

The output of the nonrelativistic quark model is a set of helicity amplitudes,
which aze defined in terms of matrix elements of i;(o} as follows:

(aiBlsu ) (3 Sntsn,)

Cy = (XJTx;05|13(0)|N }; -k3);

Ly = (XJx;03|15(0)IN }; —k1);

Ay = (XJx; 03|} (0)NE; ~k - 3);

Ay = (XTx;04|1}1{0)|N}; k), (33)

i
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corresponding to the Coulomb, longitudinal and the two transverse amplitudes,
respectively. In the rest frame of the excited baryon, Eq. 25 has an even simpler
form:

(XJTx; 06| I2ON S po) = Y (JadBlsua) (lmsp | Tug) juT nsli'v')
<Y, " (poN X Ix 1l 7 (aIIN 3). (34)

Of the four helicity amplitudes, only three are independent, the fourth being
constrained by current conservation. There are also four corresponding reduced
matrix elements (X Jx||fy1 1), 7(¢°)l|N 1) which are consistent with spatial inver-
sion symmetry, and the continuity relation reduces this number to three. Eqgs. 33
and 34 can then be solved to relate the reduced matrix elements to the helicity
amplitudes. For j* = 1, there are only three helicity amplitudes and corre-
sponding reduced matrix elements, of which only two are independent under the
constraint of current continuity.

As an application of this procedure, we compute the elastic electron-scattering
form factors for the proton and neutron. The Sachs form factors Gg{Q?) and
Gm{Q?) are related to current matrix elements in the nucleon Breit frame as
follows:

1.,1 ] 1,1 — ' .CE.E_‘(_Q_Z_)_
(V3 b IPO)N 5~ yau) = Buw—r==z
G 2
(NL +1qp [O)IVE; - Lqp) = i(o x q)wr\;‘%v (35)

where 7 := Q*/4M> and Q? = q° in the Breit frame. A boost of the current
matrix elements is necessary because the helicity amplitudes Ay, C) and L) are
compuied in the rest frame of the final nucleon rather than the Breit frame.

The form factors are plotted in Fig. 1, together with modified dipole form
factors:

Gep( Q@ Vdipate = m;

G up (@ Mipote = B G Ep(Q% dipote;

Garn( @ ipote = 4n G p(Q Mdipoles

GEa{Q aipote = —TGCMn(Q%)dipole- {36)

For A* = 0.71 GeV~, the dipole form factor represents a reasonable fit to existing
data, at least for purpeses of comparison. All of the Isgur-Karl form factors fall
off too slowly for low @°. As is well known, this means that the predicted charge

12

radius is too small: 0.4 fin vs. 0.8 fm. In addition, the form factors fall off
too rapidly at large Q3. Most likely, this is a consequence of using a truncated
harmonic-oscillator basis.

E. low-¢nergy limit

The low-energy behavior of the nucleon Compton amplitude can be charac-
teriged by an expansion of the amplitude in powers of the photon frequency. As
shown by Low {1] and by Gell-Mann and Goldberger [2], the contributions of O(1)
and O(w) are completely determined by the nucleon mass and magnetic moment.
At O(w?), two new contributions enter, namely, the electric and magnetic polar-
izabilities. It can be shown, using methods similar to that used to prove Low’s
theorem [32, 33], that the siructure of the amplitudes is completely determined,
though the actual polarizabilities & and 3 depend upon the composite physics of
the nucleon. For the nucleon in the lab frame, the complete expression is [32]

T = %{(e’ -€) — i’ +w)%0‘ (€ x €)
+ifw’ + w)(—l:_TA)zcr (o' x€)x (nxe)
S o (o <€) - of@ €)oo x o]
—w'w%(é ) +w'w (IT;;;);(n’ x €)-(n x e){(n’ -n)
—w'wu:fz(n -€)(n' - n)
—w'w%(e' -€) ~ w'w%(n' x €)-(nx E)} + O(WJ), (37

whete ) is the anomalous nucleon magnetic moment, k = wn and k' = w'n’.

A calculated nucleon Compton amplitude shounld therefote be capable of re-
producing the behavior dictated by the low-energy theorems as well as correctly
predicting the polarizabilities. However, reproducing the low-energy theorems is
not guaranteed for any calculation: indeed, there are many ways for a calcula-
tion to fail to yield the low-energy behavior. For example, since the Thomson
limit (O(1)) for Compton scattering from a charged particle has the contact form
(e*/m)(€ - €), one would be tempied to assume that the Thomson limit for a
composite particle is simply the sum of the Thomson limits of the constituents.
In general, however,

13



e? ez
—# Z.: - (38)

The problem is resolved when one takes into account the non-confact contri-
butions (those involving matrix elements of one-photon operators as opposed to
two-photon operators), while keeping track of the Fermi motion of the constituent
particles and the recoil of the final composite particle in the lab. Indeed, it has
been shown by explicit calculation [34, 35] that these contribuiions combine to
yield the result dictated by the low-energy theorem.

The original proofs of Low’s theorem [1, 2] were essentially model independent.
Later works [34, 35] centered on classes of models, and used closure over the
spectrum of the strong-interaction Hamiltonian to obtain the low-energy result.
This presents a potential problem for calculations based upon a specific model
which are intended to produce a Compton amplitude over a range of energies,
and not just at threshold. A closure sum could only be performed at threshold;
at nonzero energies a truncation of the model space is a practical requirement.
Nevertheless, a calculation employing a truncated model space runs the risk of
violating the low energy theorem, if the closure sum at threshold depends in an
essential way upon the truncated states.

A special case which offers a partial resolution of this dilemma is the harmonic-
oscillator model. Near threshold, the non-contact term is dominated by processes
in which intermediate states are excited by the convection current. The corre-
sponding gradient operator converts the lowest lying 5 state into a multiple of
the lowest lying P-wave state. Only one state is excited, and the closure sum
therefore saturates with this one state at threshold. This result has been verified
explicitly for a model of a charged spin-% particle bound to a spinless uncharged
spectator. A direct verification at threshold for antisymmetric three-quark wave
functions is technically more involved, but the result must be the same. This
can be seen by noting that Low’s derivation of the low-energy Thomson Lmit is
a consequence of the continuity equation. Since the harmonic-oscillator model
is a local interaction which does not transfer charge between constituent quarks,
its one-body currents satisfy the continuity equation. We expect therefore that
the Thomson limit will be obtained with a complete sum over the excited baryon
spectrum, and in fact it will saturate with the lowest-lying P-wave states because
of the particular symmetry of the harmonic-oscillator wave functions.

While reproducing the Thomson limit in a particular model is certainly feasi-
ble, as discussed above, correctly obtaining the O{w} contribution is unlikely in a
nonrelativistic calculation. Low's derivation of the O{w) term depends upon two
distinct pieces. Tlhe first is what he labels “diagonal magnetic scattering,” corre-
sponding to successive M 1 photon transitions via an intermediate nucleon ground
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state. The second he discusses within the context of “relativistic invariance,” and
rests upon the fact that matrix elements of the charge operator have relativistic
contributions from the nucleon magnetic moment. From the continuity equation,
these matrix elements in turn affect the transverse current matnx elements. The
first of these terms is naturally included in a nonrelativistic calculation, but the
second is not. We therefore restrict ourselves to verifying that our calculations
reproduce the diagonal magnetic term only. For nuclecns, the O{w) contribution
io the Compton amplitude makes a very small contribution to the cross section
compared to the Thomson limit and the polanzability terms. However, it is not
known at this time how large the relativistic corrections may be to the polar-
izsabilities themselves. In a relativistic framework, no new amplitude structures
enter at O(w?) [32], but there can be additional contributions to a and 3.

While a pure harmonic-oscillator model can reproduce the Thomson limit
with a sum saturated by the lowest lying P state, the Isgur-Karl model does not
have that property. Since the Isgur-Karl states correspond to linear combina-
tions of pure harmonic-oscillator states, one must at Jeast include all states with
admixtures of the harmonic-oscillator ground and P-wave states ip calculating
the low-energy limit. A more serious problem, however, comes from the fact
that some effects of the anharmonic potential are included only perturbatively
in the energy, and not in the wave function. This has the effect of modifying
the energy denominators in the expressions for the Compton amplitude, but not
modifying the corresponding current matrix elements. In general, the Thomson
limit will then be lost. Alternatively, one could view the Isgur-Karl states as
true eigenstates of the Hamiltonian, if the latter is viewed as a set of projection
operators. In that case, the expression for the Compton amplitude is correct,
but the implied Hamiltonian is then non-local, and the continuity equation can
only be satisfied by introducing two-body currenis. The extent of the violation
is discussed below with other numerical resuits.

F. polarizabilities

In a pure nonrelativistic framework, the electric polarizability for Compton
scattering is [32]

& = a+ A, {(39)

where

_ [(N1D,1 X)) . 2
0-22": T Ae=5 00, (40)
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D. is the electric dipole opetator, and Z is the charge of the nucleon. The term
Ace appears only in Compton scattering and not in treatments of composites in
static electric fields; it arises as a form factor effect in the contribution from the
quark contact Hamiltonian at non-zero momentum transfer.

The magnetic polarizability is

B=p5+48, (41)

where

(N |M,| X)) __12e, 5 (D%
—~Z BB, & 7 AR v (£2)

In typical baryon models, 3 has a large coniribution from the A(1232) interme-
diate state, but tends to be cancelled by the negative term in AS3, leaving a small
result for 3.

The polarizabilities @ and 3 are related to & and ,@ in Eq. 37, respectively, as
follows:

& = aQEDY;

8= aQEDB- (43)

Note that & and 3 are not only dimensionless, but they also do not depend
upon the use of Heaviside vs. Gaussian units, in contrast to their barred coun-
terparts.

In our calculations, rather than compute & and 3 from the above formulas,
we extract them directly from the Compton amplitude itself. Making use of the
formula 37, we compute an amplitude in which intermediate nucleon states are
omiited. This eliminates the O(w”) contributions in Eq. 37 which are separate
from « and 3. We then subtract the O(1) and O{w) limits, which are calculated
separately. The remaining expressions in the forward and backward photons
directions are proportional to & + 3 and & — J, respectively.

G. cross section and polarization observables

At photon energies above those appropriate to the polarisabilities, we report
our results in terms of various observabies in the center-of-momentum frame. In
principle, all information about the Compton amplitude 15 contained in a set of
six invariant complex functions. We use the parameterication of Ritus {36]:

T= A1 - €4 Ass’ -5+ 1430 - (€' x €) + 1440 - (s’ x 5)
+id, [(a k)(s' - €) ~ (o - K')(s- e')]

bide [(g K)s - €) — (o - K)(s- e’)] , (44)
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where s = k x € and s’ = k’ x €. All observables can in principle be written in
terms of bilinear combinations of the invariants 4.

With our set of normalization conventions, the differential cross section in the
center-of-momentum frame is

do a2 ]
5 = adenlTI* (45)

The amplitude T is defined in Eq. 7 for photon polanzations with respect to
a common quantization axis. It is more convenient to use photon quantization
directions along their respective momenta. In Eq. 45 we therefore use

HUNLENTING ), = ZDA Afem) (NLEVTINL KN, (46)

where DYX X (fcas) is a rotation matrix and fca is the center-of-momentum
scattering angle.

We have also studied the nuclenn polarization asymmetry A, (6cn, Ey), de-
fined by

A, == 2o (47)

Here Ny, is the number of final photons (or nucleons) that scatter into a detector
at #c s with the initial nucleon polarized along +y, where +y is in the direction of
k x k’. Both photon polarizations and the final! nacleon pclarizatior arc summed.
Similarly, one can define a photon polarization asymmetry P, as

A

= 7 (48)
N+ Ny

where Ny, is the number of particles scattering into a detector at center-of-mass
angle 8c ¢ with an initial photon helicity of +1, and the nucleon and final photon
polarizations are summed.

H. model options

In the following we descrihe the types of wavefunction sets that we have
used as intermediate states in our calculation, and the associated spectra used
to calculate energy denominators. In order to study the low-energy limit of our
calculation, it is useful to define a basis set for which we have exact current
continnity. This is simply the set of unmixed states in Table I, with a pure
harmonic-oscillator spectrum. Both ground states are degenerate and are given
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an energy of 3m,; the P-wave states are also degenerate and have an energy of
3mg + who, and the N = 2 band states all have a mass of 3my + 2wno. Hese
my, who and the size parameter ayo in the harmonic-oscillator wavefunctions
must be related by wno = afo/my; we use ago = 0.41 GeV and m, = 0.336
GeV (the values favored by Koniuk and Isgur [25] in their fit to the photon
amplitudes) which yields wyo = 6.500 GeV. The resulting spectrum places the
ground states at 1008 MeV, the P-wave states at 1508 MeV and the positive
parity excited states at 2008 MeV, which compare roughly with the band centers
in the Isgur-Karl model which are at 1085 MeV, 1610 MeV and 1810 MeV.

Our full calculation then uses wavefunctions mixed by the hyperfine interac-
tion and physical masses (taken from the Particle Data Group (PDG) [37] where
possible) for the states. Those states in the model which couple weakly to mN
and so are unseen in the partial wave analyses (so called ‘missing’ states) are
assigned the Isgur-Karl model prediction for their masses. For this set of states
we have also calculated with hadronic widths, which are allowed to enter the
calculation in the energy denominators, by the replacement of the energy Ex of
the intermediate resonance with Ex — il'x /2. For the known states, the widths
are taken from the PDG; the missing states are assigned widths typical of states
in their energy range. The resulting spectrum and the corresponding widths are
listed in Table II. In order to study the effects of the mixing between harmonic
oscillator substates induced by the hyperfine interaction on the Compton scat-
tering process we also use the unmixed wavefunctions with physical masses and
widths as above. Although it might be more consistent to use the masses which
result from the Isgur-Karl model before hyperfine mixing (shown in Table I), this
is problematic because of degeneracy of the nucleon and A(1232) masses.

III. NUMERICAL RESULTS

A. low-energy limit

As discussed above, the low-energy limit of the Compton scattering amplitude
is completely determined, through O(w), by Low’s theorem [I]. It thus serves as
a consistency check of a given model which, through various approximations and
truncations, may not necessarily satisfy the theorem.

As noted eatlier, a nucleon composed of three valence quazks in a pure
harmonic-oscillator well will yield the correct Thomson limit, provided the terms
corresponding to the contact interactions with the quarks and the excitation of
the lowest-lying P-wave states are included. In units of e’ /M, the contact term
contributes a factor +3 and the direct and crossed P-wave terms each contribute
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—1, giving the overall Thomson coefficient of +1.

When the full quark Hamiltonian is turned on, the low-energy limit of the
Compton amplitude becomes 0.8¢*/M, in contrast to the expected coefficient of
unity. While all baryon excitations through the ¥ = 2 band are included, the
problem does not stem from a truncated space, because our result has appar-
ently converged. The most likely source of disagreement is the lack of current
conservation associaied with the mismatch between baryon state vectors and the
Hamiltonian. As noted eatlier, a local nonrelativistic Hamiltonian with no charge-
changing interaction will yield state vectors whose current matrix elements will
be conserved with one-body operators only. The Isgur-Karl Hamiltonian satisfies
this criterion, but some of its contributions to the state vectors are only eval-
uated perturbatively. Thus, continuity is no longer guaranteed. The Thomson
limit should be restored with a consistent set of state vectors. We have also
investigated the issue of current at higher energies, as discussed below.

For the O(w) contribution to low-energy Compton scattering, Low’s theorem
contains two distinct contributions: “diagonal magnetic scattering,” cotrespond-
ing to successive M 1 photon transitions via an intermediate nucleon ground state,
and a second term arising from “relativistic invariance.” The first contribution
alone is proportional to the square of the nucleon magnetic moment. For both
the pure harmonic-oscillator model and the Isgur-Karl model, our results agree
with this first term in the sense that the magnetic moment is that predicted
by the quark model. The second contribution arises from the interplay between
the charge and current operators under Lorentz boosts; when combined with the
first contribution, the O(w) term is proportional to the square of the anomalous
magnetic moment. While our baryon current matrix elements have the correct
transformation properties between the excited baryon rest frame and any other
frame, the fact that a covariant operator was not used to compute the matrix
elements in the first place means that the calculation is not fully consistent rel-
ativistically, and this fact is manifested in the failure to obtain the correct Ow)
term in Low’s theorem.

B. polarizabilities

At O{w?) in the low-energy expansion, the electric and maguactic polarizabil-
ities & and 3 enter as structure-dependent coefficients. We discuss & and g in
turn for the proton and then the neutron.

The most recently measured values of the proton polarizabilities, obtained
at the University of Illinois microtron [38], are &, = (16.1 & 3.2 + 1.9), and
ﬁ,, = {4.9 7 3.2 7 1.9). Typically, ﬁp is close to or consistent with zero.
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As noted above in Eq. 40, & has two distinct contributions, one coming from
a form factor effect from the quark contact terms, and the other coming from
excitations of the P-wave baryons. In the Isgur-Karl model, the proton rms
charge radius is 0.375 fm. This yields a contribution Aa = M¥{(r?)/3 = 1.06 to
the electric polarizability.

The numerical results are given in Table III. For the pure harmonic-oscillator
model, &, is in qualitative agreement with the experimental value. For the Isgur-
Karl model, however, & is considerably lower. This disagreement has three pri-
mary sources. The first is that the contact form-factor term is proportional to the
mean square charge radius, which is already known to be too low in the Isgur-
Karl model. The second is that the energy denominators for coupling to the
P waves are larger than in the harmonic-oscillator case, and therefore decrease
the contribution to &. The third is that there is considerable variation among
the individunal P-wave contributions. In both the harmonic-oscillator and Isgur-
Karl models, for example, the states corresponding to the N '%‘(1520) and the
At %_ (1700) give disproportionally large contributions to the overall amplitude.

The theoretical calculation of 3 involves a cancellation between A(1232) ex-
citation and recoil contributions from the P-wave baryons. A resuit close to zero
therefore implies a sensitivily to the ingredients of both these coniributions. In
the Isgur-Karl model, we would expect the A(1232} contribution to be lower than
it should be, given the fact that the yN A(1232) coupling is too low by a factor
of 0.6, and this coupling is squared when computing Compton amplitudes. The
fact that our result for 3 is considerably higher than zero again implies, as was
the case for &, that the coupling to P-wave states is decreased significantly by
larger energy denominators.

It is possible to improve the agreement with & and 3 by replacing the P-wave
energy denominators with some {smaller) average value, and this step has been
sometimes been taken in the literature, but this simply sidesteps the main physics
goal of obtaining a consistent spectrum with consistent photon couplings.

The most recently measured values of the neutron polarigabilities, obtained
at Oak Ridge National Laboratory 39}, are &, = (18.2+ 2.4 + 3.0), and Ba =
(4.6 T 2.4 F 3.0). The results are given in Table III. Once again, the harmonic-
oscillator result is much closer to experiment than that of the Isgur-Karl model.
No tesults for 3 are shown for the harmonic-oscillator model because the A(1232)
is degenerate with the nucleon, and would yield a completely unphysical energy
denominator.

C. higher energies

Our goal at higher energies, where the composite physics of the nucleon must
play a role, has been to investigate which observables are particularly sensitive
to the inclusion of various intermediate tesonances. We have alse searched for
signatures in Compton scattering which could be used to establish the presence of
resonances unseen in the # N partial wave analyses. In particular, since Compton
scattering has two YN — X interaction vertices, it is much more sensitive than
pion production experiments to those states whose coupling to 7N is weak and
whose coupling to yN is not. By the same reasoning, it is more sensitive than
pion photoproduction (yN — Nr}.

Our results therefore hinge on the reliability of the Koniuk and Isgur cal-
culation of the photo-couplings using the Isgur-Karl model wavefunctions and
the non-relativistic transition operator. As explained above we have extended
their calculation to include the longitudinal and charge matrix elements, and
have caiculated (for a given intermediate baryon X, in the ¥ N center of mass)
for all values of the inital nucleon momentum. Note that from Eq. 8, unless /s
is equal to the mass of X,, (we are on the pole for that intermediate state) for
the direct term, the value of Q* = —¢* = —[M,, — wp,(—k})]* + k* is not zero.
The crossed term never reaches this kinematic point. Our amplitudes therefore
explore a rather different set of kinematics than the photo-excitation amplitudes
which are necessarily at @Q° = 0, and a comparison of the results for these am-
plitudes with experiment should be made at all Q2. It is for this reason that
we have not altered the results of the calculation of the matrix elements in any
way in order to fit the photo-coupling data. Table IV lists the model results for
the photo-coupling amplitudes, which have been recalculated here, and the data
(taken from the Particle Data Group [37]). The quality of the resulting fit (to
rather uncertain data) is typical of composite model calculations of tramsition
amplitudes.

We have calculated the differential cross section do/dQ? and the asymmetries
A, and P, both as a function of lab photon energy E., at fixed 8¢y and for fixed
E, as a function of 8¢, with the former being more useful for disentangling the
contributions of various resonances. Figs. 2, 3, and 4 show our results for these
three obsetvables at 8cy = 60° for our mixed set of states (with the effects
of widths included but no continuity constraint imposed). We have plotted four
curves: the asymmetry with just the nucleon and A(1232) as intermediate states,
with the P-wave states also, with these plus states in the N = 2 band that are
seent in 7N, and finally with all of the intermediate states in Table II. The two
bumps in Fig. 3 in the second of the above curves which obviously arise from
the P-wave states are the result of a complicated interference, and survive the
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addition of the N = 2 band states [which include the Roper resonance N~ (1440})].
This interference is illustrated in Fig. 5, where we have shown how adding the
P-wave states one by one takes the first curve of Fig. 3 into the second one. The
states N“27(1700) and N~5 (1675) have a negligible effect on the asymmetry
{and so the result of adding them in is lumped in with another state} but all
others have sizeabie effecis on ilie final 1esuii, and the intermediate steps often
don’t resemble the final curve.

In the difference beiween the third and the fourth cuzves in Figs. 2, 3, and 4,
the effect of removing the ‘missing’ states from the spectrum of intermediate
states is illustrated; given the siseable change in the asymmetry A, such an
experiment may be able to confirm the existence of these states predicted by the
quark model but not seen in xN. Of course, our results at these higher energies
are sensitive to states established in *N that we have left out, and we have
not shown that the intermediate sum has converged at these energies. We will
return to this point later. It is also important to point out that because of the
underestimate of the A(1232) photocouplings we are underestimating the size of
the effects at the A(1232) pole.

In Figs. 6, 7, and 8 we have ploited the obervables above (again at 8o =
60°) calculated using our uncoupled intermediate set, to illustrate the siseable
effects of turning off the wavefunction mixing caused by the hyperfine interaction.
This demonstrates that these results are quite sensitive to details of the model
used for the wavefunctions of the intermediate states, through the sensitivity of
the matrix elements of the electromagnetic current. Simple models which count
the resonances, their masses. and photn-couplings do not include the necessary
constraints imposed on these current matrix elements by the composite nature
of the resonances and the force which binds their constituents together.

The Ritus amplitudes A, defined above are plotted in Figs. 9 and 10, and
again the four curves are with just the nucleon and A(1232) as intermediate
states, with these plus P-wave states, with all states seen in #N up to N = 2,
and with all the states in Table [1. Although the A; are themselves not directly
observable, we nevertheless thought it useful to illustrate their sensitivity to these
groups of intermediate states. It is possible that if an A, demonstrates a particular
sensitivity to some physics {such as the presence or absence of the ‘missing’ states,
as seems to be the case with Im{A,) or Re( A1), for example) an experiment could
be designed that is sensitive to it. Note that 4, is also the only amplitude which
has non-zero real and imaginary parts at zero energy {the tensor it multiplies has
the same structure as the Thomson limit, see Eqn. 44) and that its real part at
zero energy is reduced by roughly a factor of three {and its imaginary part there
becomes non-zero) by the introduction of the P-wave states. Note also that the

imaginary parts of A, 43, A;, and A vanish when only the nucleon and A(1232)
are allowed as intermediate states. The imaginary parts of these amplitudes are
therefore only senmsitive to the resonances in the P-wave band and beyond, and
these results are independent of the size of the A(1232) effects.

The effects on do/df1 of imposing continuity on our current matrix elements is
illustrated in Fig. 11. for 50 MeV and 300 MeV lab photon energy. We have cal-
culated with an intermediate set which includes up to the P waves for simplicity,
and have compared the results without a continuity constraint to those where
the longitudinal current matrix element is constrained to be a muitiple of the
charge matrix element, and vice-versa. Although the 300 MeV plot shows eonly
small changes, at 50 MeV there is an unphysical asymmetry about 90° and rapid
fall-off near 0° when the longitudinal matrix element is constrained. Fixing the
charge matrix element by continuity seems to reduce the size of do/d) without
affecting its angular behaviour significantly. Either of these procedures will ad-
versely affect our low-energy limit, so we have chosen not to impose a continuity
constraint. We also conclude that the violation of the continunity reqnirement is
less serious at higher energies.

Compton scattering data exist in the energy region of interest mainly in the
form of differential cross sections measured at various angles and energies. We
have calculated the angular dependence of do/df? at sample photon lab energies
of 320 MeV and 300 MeV in order to make a comparison with the data of the
Bonn {14-16] and Tokyo [17-20] groups. The first energy is close to the A(1232)
pole and the second is in the P-wave resonance region. The data from Ref. [14]
at 320 MeV and our calculation for intermediate sets made up of the nucleon
and A(1232), these plus F waves, and all of the states np to N=2 are plotted in
Fig. 12. The curve with just the nucleon and A{1232) shows the expected problem
with normalisation due to the non-relativistic quark model’s underestimate of the
A(1232) couplings at the pole (see Table IV; our estimate of the direct term in
the Compton amplitude at the A(1232) pole is too small by a factor of about
1/3). The other curves demonsirate that a minor cancellation in the amplitudes,
expected from the P-wave states at the A(1232) pole, becomes a large effect
when the Delta amplitude is underestimated by this factor.

Examination of the model predictions in Table IV for the P-wave states give
us confidence that, while serious, this disagreement should not persist at higher
energies where the A(1232) contribution is less important. Indeed, the situation
is better at 800 MeV, as illustrated in Fig. 13 where we have plotted data from
Ref. {15] and Refs. [17-19] and our calculation for the same three intermediate
state sets. Here the data show an asymmetry around 90° which is enhanced in
our calculation when the N==2 band (positive parity excited} states are included



in the set of intermediate states, and the normalisation of our calculation relative
to the data is roughly correct. In Figs. 14 and 15 we have also plotted A, and
P, at this energy (for which no data exist).

One question which remains unanswered is the degree to which our results
have converged at the energies examined here. In order to be certain that the
effects of higher energy intermediate states are negligible, we need to be able to
evaluate the contributions of the next band of states in the harmonic oscillator,
the N = 3 band. At this level, the harmonic oscillator plus corrections picture
of the baryon spectrum is less likely to be reliable as there are now states whose
wavefunctions will sample the potential in its (expected from QCD) linear region,
where anharmonic perturbations will become very large. For that reason it is
understandable that there exist negative parity excited states in the data which
lie within the energy range of the N = 2 band, the most reliable of which [37]

are the A7(1900), with J¥ = %_, and A~(1930), with J¥ = %_. From counting
arguments within the NRQM these states cannot be N = 1 band states, but lie
far from the center of a postulated N = 3 band at around 2500 MeV. It may
be that mare sophisticated models [26] can incorporate such states; in the model
with which we are most familiar [27], where these wavefunctions are expanded in
a harmonic-oscillator basis up to N = 7, the lowest A states with these quantum
numbers are at 2035 and 2155 MeV respectively [40]. This is consistent with
the roughly 100 MeV overestimation of the mass of the Roper resonance in this
model, and the situation for these states is probabiy somewhat similar; there may
be mixtures of the ¥ = 3 band states which have particalarly low energy.

In order to investigate the effects of these states on the Compton scattering
amplitude at /s = 1900 — 2000 MeV (corresponding to lab photon energies of
toughly 1450 to 1650 MeV), we would therefore need to find the wavefunciions
of the lowest energy states in the N = 3 band in the Isgur-Karl modei, which
would necessitate a complete spectral analysis. The simpler option of evaluating
the effects of these states with an unmixed harmonic-oscillator model for the
wavefunctions {and energies} is, from the above discussion, unlikely to lead to a
greater understanding of the issue of convergence. We would simply see effects
near the (degenerate) band center of mass and not elsewhere. This issue may
only be dealt with within a more sophisticated model for the states and their
electromagnetic couplings which encompasses the N = 3 band states. The result
is that our calculations at these energies is missing the effects of two states clearly
seen in T N. Our calculation of the polarization asymmetry A, for the spectrum
with and without the ten unseen states shown in Fig. 3 is therefore missing their
contributions in both cases. We conclude that the difference of the curves at these
energies, rather than details of their shape, may survive inclusion of the N = 3

band.

IV. CONCLUSIONS

We have presented a systematic study of nucleon Compton scattering within
the framework of the Isgur-Karl-Koniuk model. Our results include calculations
of low-energy quantities such as the electric and magnetic polarizabilities as well
as differential cross section and polarization observables at intermediate energies.

We wish to emphasize that Compton scattering is not simply a summary of
baryon photo-couplings. For some observables, notably the proton asymmetry
Ay, there is considerable interference among the individual resonance contribu-
tions which would not be exposed by studying individual baryon photo-decay
amplitudes. In particular, Compton scattering appears to be quite sensitive to
the spectrum of P states.

We therefore urge experimenters to consider a variety of measurements of
nucleon Compton scattering, including cross sections and, where possible, po-
larization observables, to provide more precise constraints on guark models of
baryons.

Overall, the behavior of existing data is qualitatively reproduced by the model.
Noticeable points of disagreement, such as the failure to reproduce the Thomson
limit and the very low cross section in the A(1232) region, can be understood
in terms of specific shortcomings of the model, such as the violation of current
continuity at low energies, and the small YN A coupling constant implied by the
Isgur-Karl-Koniuk model, respectively. Certainly improvements in these aspects
of the model will also improve its ability to describe Compton scattering in detail.

There is also much work to be done on the theoretical side. Extension of the
Hilbert space beyond the N = 2 band is an obvious candidate. We are presently
investigating the applicability of the relativized quark model [27], with a basis
which extends up to N = 7. This may improve both the agreement of the sise
of the photo-couplings with data and the degree to which the continuity relation
is satisfied. There is also the effect of relativistic dynamics. Incorporating rel-
ativistic dynamics, which includes both one- and two-photon operators as well
as multi-quark current matrix elements, into a model which also fits the baryon
spectrum and satisfies the continuity relation, is a major project. Different ap-
proaches can handle different paris of such a project easily, and other parts not
so easily. The relativited quark model represents one way to do this. We are also
considering models which do not rely on v/c expansions. Another physics issue
is whether to include explicit meson [or (¢§)] intermediate states. As mentioned
above, there is some evidence that there may substantial cancellation among the



intermediate (gg) contributions [21]. However, the pion may represent a special
case. In the chiral quark model {6], it is pions rather than quarks that provide
the bulk of the nucleon polarizability. In chiral perturbation theory, of course, all
of the polarizability comes from pions {8]. On the other hand, at higher energies,
pions may play a role not unlike other mesons, in which case a valence quark
model may be more appropriate. This topic is presently under investigation.
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TABLES TABLE II. Spectrum of states corresponding to the coupled wavefunctions, from
the Particle Data Gronp [37]. States labelled | are ‘missing’ states; they are given
model masses and widths estimated f{rom those of nearby states with similar quantum

TABLEI. Harmonic oscillator substates of the ¥ and A up to the N = 2 band. The numbers. The first A® with JF = %+ (experimentally A°(1600)) is assigned its model
notation (Ji,J2,...) is a shorthand for states identical except for their total J = L + S. mass for consistency.
Energies are the model predictions before application of the hyperfine interaction. -
State type Mass Width Mass Width Mass Width
N S5U{6) Energy states (IJF) (MeV) (MeV) {MeV) {MeV) (MeV) {MeV)
multiplet (MeV) N%+ 038 0
0 [56,0*] 1085 |N?Ssit) [A*Ss2t) a3t 1232 115
1o foat) 1610 IN?PM(%# D7) IV Pl ;1 237 8% Parl3,2)7) N*LT 1535 150 1650 150
2 [56',0%] 1600 NS 1T |A*Ss 37 A_g_ 1620 140
[70,0*] 1810  |N?Spit) IN‘Sad ™y [A%5p st Noa- 1520 125 1700 100
[56,2%] 1850  |N?Ds(2,3)* 1a'Ds(3, 3,3, D) 1
[10,24] 1935 IN?Da(},3))  INDu(L 130N 18Da(3 ) i 1700 250
[20,1%] 2020 |[N?Pa(L,2)%) N3 1675 155
Nit 1440 200 1710 110 19001 85
2060t 85
At 18751 150 1910 220
N-3t 1720 200 18701 170 19551 170
19751 170 20551 170
a3 1800 250 1920 250 19851 200
N°3 1680 125 19551 100 2000 140
atst 1905 300 19751 270
NI 1990 330
At 1950 240
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TABLE III.  Static limits and polarizabilities for two quark models described in text.
Values of 3 for the harmonic-oscillator model are not shown because they contain no
A(1232) contribution.

parameter pure HO Isgur-Karl expt.

Top (2 /M) 1.0 0.8 1.0

Tow (e2/M) 0.0 0.1 0.0
agp 13.3 3.8 16.1 +3.2+1.9
8y — 3.7 49 F32F 19
Gn 11.1 2.8 182 £24+30
Bn — 4.4 46 F24F30

32

TABLE IV. Photo-excitation amplitudes {in units of 107° GeV'f) for states for
which data exsts (taken from the PDG [37]) calculated in the center of mass. Proton
(p) and neutron (n») amplitudes are always equal for A states. Signs of the amplitudes
are not relevant here but can be defined relative to N and are shown to be generally
in agreement with the data in Refs. [25, 28].

State, J¥ A'; expt. A'; expt. A’; expt. A';‘, expt.
A(1232)it 85 14145 149 258419

N(1535)" 143 7314 123 7632

N(1650)1 91 48116 55 17437

A(1620)1" 97 19416

N(1520)3" 6 22410 44 6513 137 16710 135  144+14
N(1700)3~ 1 22412 14 0+356 30 0£19 71 2444
A(1700)27 119 116417 134 17428

N(1675)% "~ 7 19412 31 47423 10 19412 43 69+19
N(1440):* 18 6947 10 37419

N7t 58 5416 42 5423

a(1910)1* 23 12430

N(1720)3* 117 52439 45 2426 40 35424 8 43494
A(1600)1* 49 22429 110 1122

A(1920)3F 50 4347 36 2347

N(1680)3% 10 17410 9 31413 84 127410 23 30414
A(1905)%* 5 27413 11 47419

N(1990)11 T 24430 7 49445 9 31465 8 122455
A1950)1F 19 734 23 9013
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FIG. 12. Differential cross section at lab £, = 320 MeV {near the A(1232) pole] with

FIG. it. The effect of current conslrainta on the differential cross section at lab E, = intermediate states consisting of the nucleon and A(1232) {solid tine), these plun the £
50 MeV and 300 MeV for nucleon, A{1232) and P-wave states as intermediates. The solid waves {dashed line), and with all states from Table [§ {dot-dashed line). Data are from

Lo . A Rel. |14].
line is without any continuity ronstraint imposed, the dashed line has the longitudinal of- [14]

matrix element constrained, the dot dashed line has the charge matrix element constrained.



Lab E, =800 (MeV)

T T T Y l L] L] T T I T

150 —

100 — Y

de/dQ} (nb/2r)

8oy (deg)

FIG. 13.  Differential cross section at lab £, = 800 MeV (in the P-wave region).

Legend as in Fig. 1Z. Data are from Ref. {15] (crosses), Ref. [17] {boxes), Ref. [18} {X's},

and Hel [19] (diamonds).
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FIG. 15. F, at lab £, = 800 MeV. Legend as in Fig. 13.



