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Abstract

A method has been developed for solving two-body relativistic hound stale equations
in momentum space with a confining interaction. A total of six dilferent Uhree-dineusional
reductions of the Betlie-Salpeter equation are studied wilh particular emphasis placed on
the competing roles of relativistic kinematics and retardation. The results indicate thal
these Lwo eflects counteract each other and this sheds some lighl on why non-relativistic

models of meson spectroscopy have heen quite successful.



Many thenretical sindies of meson spectroscapy’? have been performed in a2 non-
relativintic framework with a confining plus Covlomb.like potentind. The roufining term
prevents the quarka from escaping to large distances and the Coulomb term simnulates
the short range behavior of the vme glaow eackinnge force. Motivaied by the studies of
Iattice gange theories®, most work in this aren uses a livearly rising potential to provide
confinement. Relativily has alan been introduced into the problem by different authors
with various preacriptions!*. Although the hest way to do meson physics in the two-hody
framework would be to solve the Detlie-Salpeter{BS5)® equation, it is more practical and
econemical to anlve & three-dimensjionnal reduction of it. However it is well known that
there exint, in principle, infinitely many possible three-dimensional reduclions of the BS
equation’ and generally spenking there is no reason te prefer one reduction to another,
although in some special cases the physical problem itaell auggeata the use of a parlicular
reduction acheme. For example, in the case of a system of one heavy quark and one light
quark one might prefer the Gross cquation” since fie lienvy quark can be put on mass-shell
with some justification. Therefore for the generel ¢§ problem it would seem uselu! to carry
out a eyslemntic study of the various reductiona of the BS equation. We have developed
s method for solving bound state equationa in momentum space with the singular kernel
that arisex from the linear confining potential’ and in this letter we generalize the nonrel-
ativislic lincar potential Lo the relativistic case, and compare sohetiona for the acalar and
spinor g4 system obtained nsimg s reprosentative thees dimensional reductions of the S
equation.

The nonrelativislic linear confining potentinf can be writlen as
Vir) = im kre™"" 1)
n—e
In momentum space this becomes
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The relativistic generalization of thie potentinl has been obtained hy replacing 3-veclor
q=1p - pby 4veclor q. 80 that ¢> = q* — ¢2. This would appear 10 he the most natural

generalization of the non-relativislic linear potential, and indeed yields the non-refativiatic
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polential exactly when retardation eficcts are neglected. One can see that Lhe momentum
rpace polential has n singuolarity in the limit of 5 -~ 0. One way of awoiding this singularity
problem 5 is to carry out the caleulation for a small finite value of ela. However {this does
not produce true comfinement. We have previously studied how to exiract the exactn -« D
limit for the nonrelativintic cane®. We have nlan generalized this limiting procedure to Lhe
relativistic case. Complete mathematical details of this procedure will be communicated
elaewhere. In thin letier we deacribe the mnin ideas concentrating rather on a discurnion
of the results and the effecta of retardation and relativistic kinematics.

In the following we study thesr effecta in two model ayatems, one contnining nealnr

particles and the other contnining spinors. For scalar * "

" quarkas " we consider the Min-

imal Relativity(MR) equation,the Blankenhecler-Sugar{RBS) equation'® and the Kady-

sheveky equation'!

with and without retardation {K end K0). For apinor quarks the
Gross equation”(G) {with retardation) and the Thoinpson (T) equation!? {without relar-
dation) are studied. These rquations are the same set that were considered in the work of
Woloshyn and Jackson” where the scnttering of acalar particles was studied.

All six equalions can be written in the generic form in C.M. frame ax

Did(p) = / Vip'.p)d(p)dp’ {2)
where the operators D; are fisted in Table 1.

The singularity that atises from the non-relativiatic confining potential in mementam
apace has heen handled by a subtraction procedure ? similar in spirit, but very different in
detail, to that developed for the Conlomb potential'®. For the relativistic generalization
of the linear potential considered herein, the singularity structure of the relativistic kernet
remains the same as the non-relativistic case. Thus we obtain the extremely useful result
that the relativistic singularity can be handled by subtracting a term propotional (o the
nonrelativistic kernel. The 5 - 0 limit is taken in the same way ns the non-relntivistic

case®, 50 that we obtain in the case of I = @ and for equal mass parlicles:
-k " T ' E ¥ 4
Didolp) = P / [Qh(a)es(r') — {~2) Qaludbalplldr'. (1)
p ] m
Here § and y are defined as
49?7 (E, - EpP
g-T 7 ,i(,,;l’, Eg ) (5)
re
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_pip?
2pp’

P deuotes the priucipsl value integral, Qo and @} sre the Legendre function of the second
kind and its first derivative respectively and E, = /m? + p?.

¥ (6)

Using the relativistic generalization of the method developed in reference §, these
equalions are solved for the total energy W for the s-wave and particles of equal mass m.
Only coupling to the positive energy channels is retained. The uscfulness of these rela-
tivistic equations depends on the extent to which they reproduce global propertics of the
spectrum characterized by the dependence of the energy E, on the principal guantum
number n. ‘Fhis dependence is moat easily revealed by studying the ratio Eo/E,. E, is
related to the total energy W, through E, = W, - 2m. Table (2} containe the results for
the ratio K,/ B, for the equetions listed above for a reasonable choice of mass and coupling
parainelers,

Counsider frst the equations which have no retardation effect, (BBS, K0, T}, One sces
that in all three cases the cuergy ratios are significantly smaller than the non-relativistic
result {which is independent of mass) and furthermore that this difference is more impor-
tant for small quark masses which is as one would expect for a purely kinematic effect.
ln addition, the higher radial excitations show more pronounced relativistic corrections,
which is cousistent with the virial theoremn 7 for & positive power law potential which
requires larger kinelic energies for orbits with greater average radii.

A result of considerable interest is that when retardation in included, as in equalions
(MR, K, (), the effect of relativistic kinematics described above is counteracted, in that
the energy ralios move back towards the non-relativistic values rather than continuing to
become smaller. This provides one possible explanation as to why non-relativistic equations
have been quite successful in describing meeon spectroscopy. Notice that the differences
between MR and HBS, K and K0 equations 1a retardation. By comparing the differences
between MR colunn and BBS coluinn to the differences between K and KO coulma in
table 2 we notice that the effect of retardation is moze pronounced in the Kadyshevsky

equation than in the Minumal Relativity equation.

In conclusion we hiave solved the two-body relativistic bound state problem for a
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relativistic confining interaction which is a generslization of the non-relativislic linear
polential. We have considered six different 3-dimensional relativistic equations, four for
acalars particles and two for spinor quarks. In all cases we have studied, we have found
that the effects of relativistic kinemalics and retardation counteract each other. Future
work will be devoted to including spinors and coupling to the negative energy channels in

all six equations so that detailed comparisons to experiment can be carricd out.
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i Name Dy Retardation

MR Minimal AE (E,? - W1/d) Yes
Relativity

BBS Blankeubecler same as MR No
Suger

K Kadyshevsky 2E,ME, ~ W/2) Yen

Ko Kadyshevsky same as K Neo

G Gross 2E, - W Yes

T . Thompson same as (7 No
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