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ABSTRACT

We consider the condensate {: ¢(z)¥(y) :) in the chirally symmetric Nambu - Jona-
Lasinio model with two flavours. We Taylor expand the condensate and calculate the
leading non-local correclion in mean fleld approximation. The QCD generated up and
down quark condensates are found to fall off with & acele of 1.6 fm. We also discuss

non-local condensates in the context of composite models.
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1. Introduction

The effects of non-local condensates on hadronic properties have been calculated both
in QCD sum rules [1] and in various models [2]. Non-local condensates naturally occur
in sum tules end are then approximated by the first {local) term in their Taylor expan-
sion. Retaining finite widths for the condensates in sum rules seems Lo influence hadronic
structure primarily, and to be less significant for spectroscopy. It has for example been
clnimed [1] that non-locality leads to drastically different anawera for the sum rule for the
pion distribution amplitude then other approaches [3].

The values of the local condensates are phenomenclogically obtained from some QCD
suin rules for use in all others. However, their values are still the objecte of vigorous debate.
Estimatles of (24G?) for example vary widely [4]. For non-local condensates the situation
is much less clear. The functional dependence of the tondensates on the separation of the
fields is not calculable, and the widthe of the ansate functions are rough estimates,

In this context it is inleresting to consider non-local condensates in a model where
condensates supply the dominant physical contributions, namely the well known Nambu
madel in the mean field approximation. This model has recently received much atlention
as & possible low energy eflective Lagrangian for hadronic physics {5]. In Sect. 2 we briefly
discuss the non-local quark condensate in QCD. In Sect. 3 we evaluate the leading correc-
tion to the local quark condensate in the Nambu modef. Finally, in Sect. 4 we present some
conclusions and a rough estimate of the non-local structure of condensatea in composite

models.
2. (F(=)$(0)} in QCD

In Ref{1), the following nnsatz has been used to incorporate the non-local condensate

{$(z}4{0)) into QCD sum rules
(=1 (O)) = ()78, (1)

where an (implicit) string ensures gauge invariance of the condensate and we denote the

separation between the quarks by r. The width rp of this ansatz is initially an vnknown.
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Similar ansiize were employed to describe other condensates. Specific to {§(z)y(8)) how-
ever, i thal its width can be estimated as we now describe. Expanding (1} in a Faylor

expansion, the first non-trivial relation is

1 (oG
7T ) )

where the equation of motion {or light quarks has been used. The value of the condensate
{7 - G} is known [4] from the sum rules, thus one finds ry = 0.89 fm.

For the higher terms in the Taylor expansion, the equation of motion provides no
simplification. Therefore one cannot easily obtain the functional form of the non-local
condensate. Also, for condensates other than {(${z)1(0)) there does not generally exiat
relationship like Eq(2). Further phenomenological constraints on the values of the non-
local condensales may however, be provided by the analysis of systems with one heavy and

one light quark [6].
3. ($(=)¥(0)) in the Nambu Model

The Nambu model we consider is the chirelly symmetric one with two quark flavours.

The Lagrangian is:
2
£ =96 - myp + T {997 - (e} + miy, &)

where the 7; are the usual Pauli matrices. The dynamically generated mass term has as
usual been added and subtracted in Eq(3), so that it does not appear in the equation of

motion. This last is:
iy = ¢* {$($) — mrip(Prsmid)} - (1)
Consider now the Taylor expansion of the non-local quark condensate in this model

(D) = (50} + rolb0,) + Srurs (B0 + - (5

Clcarly the expectation value of the first correction vanishes. Lorentr. averaging yields for

the second term
- - 1 -
Srere (B0,2, ) = r (F076) = — LT (Gididg) (s}
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We now want to use the equation of maotion te rewrite this term as a local condensate.

Alter some algebra we obtain (y7 = 1,77 = feinTe + 8:;5)
W) = g ($9) — ieapPFrasp)r 1) ($red) - (F)FTme)brsv)).  (7)
To obtain this result we have used the following trick

($1,08,8%) =B ($1u9)FH)N) — {BuJu)$¥)

J J 8
=0, (7. v HEY) =9, (8)

where we employed conservation of veclor current. Note hat since we have used chiral
quarks and there is no anomaly in the model under consideration, axial current is also
CO“SEI’Ved.

The result (7} is, as promised, local and we can now use the mean field approximation
to calculate it. To illustrate this calculation we sketch the procedure for the condensate
{$¥). This is defined by {$¢) = {N|No(¥Fate)|t}, where |2} ie the physical vacuum, Ng
is the normal ordering operator for the bare quark ficlds, ¥ in the bare {perturbative)
vacuum [0). Since for some x the bare and full ficlds, 4y, are identical, we may initially

cousider the following identity at that point
{QIT(Po{2)¢e ()i = (RAT(de(2)e(=)IN) - {9

From Wick's theorem both sides can be written as

(T (Yol )o(z) R} = {RINo(Po(z)we (2)IR} ~ So(z, ), (10}
and
(QUT(Fe(z )l =)} = (RUN(Br{)i(=)I0?) — Sz, =), (11)

where Ny is the normal ordering operator for the full fields in the full vacuum and $o and
Sp wre the bare and dressed quark propagstars respectively. Hence the normal ordered

term in (11) vanishes. Since we use chiral bare quarks the singular integral

dk i
S{= (E;_T;-¥'= [ (12)

q

can be consistently set 1o zero, as a careful analysis shows. In this way we obtain
- A gk i
@ =-u [ G (13)
where A is the cutoff and M is the mass of the pseudoparticte. The terms in {7) may be

found through a straight{forward extension of the above. We obtain

PO 3,2
{($e)") ={e)’ {1 s, (smp} ,
—ie{(Brivs T w)(BTa)) =0,

(BN Frevsd brerst)) =) {a}’ + (-g-,fﬁ} (14)

Thus we obtain our main result
T - g 27 513 1 4
B = 59 - Srtowr’ {1 - s ) 0. (15)

Note that using the gap equation we find g* (Py}? = M?. Therefore the fail-off scale is
simply related to the constituent mass. If we assume, both for simplicity and to facilitate
comparison with Ref.1, a Gaussian fall-off of the forin of {1) we obtain ry = 1.6 fm. (We
use M = 330MeV.} Although our model was for twe flavours, naively inserting the strange

quark constituent mass of ~ 500 MV, yields a scale rg ~ 1 fm.

4. Ceonclusions.

We have found the scale of the fall-off of the quark condensale in the Nambu model in
mean field approximation. That we could calculate this scale so directly can be understood
s & conscquence of the fact that in this approximation the vacuum factorisation hypothesis
ia satisfied by the higher condensates. We obtained the scale ry = 1.6 fm, which is rather
larger thaa that found in QCD with the standard condensate values of QCD sum rules.
We note however, that our scale is very similar to that found from a solution of the [ree
Dirac equation with constituent messcs [7] where a complicated functional fall-off in terms

of Bessel functions was obtained. For strange quarks a scale of roughly 1 fm was found.
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Our scale is rather larger than (say} the nucleon radius, and this implies that the mean
field approximation, fcom the point of view of its using constant (separation independent)
cotudensates, may be expected to be a reasonable appreximation for many applications
{r.g. most hadronic slatic properties). However, we believe that if scales comparable to
rn vccur [8], then results obtained using the menan Reld approximation should be treated
with care. We stress that aithough the mean field vacuum has a non-local structure, this
has no effect on any hadronic properties calculated in this approximation! Introducing
non-locality may be a simple way of going beyond the mern field.

There is al present much interest in a Nambu-like mechanism for generating elec-
tcoweak symmetry breaking [9). In this context it is amusing to estimate the scale ry

appropriate to a It condensate. Using M; = 160 GeV, we find o = 0.003 {m.

Acknowledgements.

DX thaoks CEBAF and the DOE for financial support, ML thanks CEBAF lor
hospitatity, Prol. E. Werner for a discussion on non-local condensates and the BMFT for

financial support. We thank Profl. A. Radyushkin for useful discussions.

References
(1] S.V. Mikhailov & A. V. Radyushkin, Soviet J. Nucl. Pliys. 49 {1989) 494.
[2] D. Gromes, Phys. Lett. B115 (1982) 482.
P.V. Landsholl & O. Nachtmann, Z. Phys. €31 (1987) 405.
[3] V.L.Chernynk & A.R.Zhitnitsky, Nucl. Phys. B201 (1982} 492, B214 (1983) 547 E.
M. J. Lavelle, Z. Phys. C29 {1985) 203.
[4] 5. Narison, QCD Spectral Sum Rules, World Scientific Lectures in Physics v.26, (1990).
[5] ¥.Nambu & G.Jona-Lasinio Phys. Rev.122, (1961) 345
A. Kotic, Phys. Rev, D33, (1986) 1785.
A.H. Blin, B. Hilter & M.Schaden, Z. Phys. A 331 (1988} 75.
[8] N.lsgur, private communication.
[7] V.Elins, T.G. Steele & M. D, Scadron, Phys. Rev. D38 (1988) 1584.
8] See, e.g., U. Mcisaner, Phys. Lett. B220 (1989) 1.
{9] D.E.Kahana & S.H. Kahana, Phys. Rev. D43 (1991) 2361, and references therein.



