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Abstract” Using a covariant model of mesons developed previously, we obtain new
numerical solwions for the light quark sector, and show explicitly how the small mass of
the pion emerges as a natural consequence of chiral symmetry breaking. Then we
genenalize the model, and show how chiral symmerry breaking and confinement could be
realized through completely independent mechanisms with different mass scales. In
panticular, the confiring potential can be chosen to be purcly scalar, as suggested by lanice
studies and phenomenology. and the remaining pant of the interaction can be chosen to be
chirally invariant. In a symmeiry bresking mode, this new model can still generate guark
mass and a massless pion bound state,




L. Introduction

The two most salient features of low-energy QCD related to the hadronic spectrum are
confinement and chiral symmetry breaking. Although these mechanisms might ultimately
be related at some decper levet (beyond, of course, that they both presumably follow from
the QCD lagrangian) there appears phenomenologically to be distinct scales associated with
cach ( Aprp ~ 200 McV. in the case of confinement and; 47, ~1 GeV as the natural scate
cnming‘fmm chiral perturbation theory!) thus suggesting that they might be independent
infrarcd effects. Further indications come from [attice siudies which suggest that the
confining potential is purely scalar? Indeed, in the case of a quark-gluon plasma, it has
become common place to discuss the possibility of iwo separate phase transitions, one
associated with deconfinement and one with chiral restoration.3 One naturatly wonders if
these two dual features of low-energy QCD can be independently and simultancously
included into 2 madel of the hadronic spectrum.  Early models generally focused on one or
the other of these two defining features: confinement in the case of the bag and
nonrelativistic potential models,? and; chiral symmetry breaking in the case of the various
effective lagrangian approachcs.'-’ In addition, many of these models suffer from & lack of
Loremz covariance. More recent approaches have ancmptca 10 include both ingredients,%
but generally in a fashion that closely weds the confinement mechanism with the chiral
breaking one. And of these, only one, to our knowledge, is covariant.”

We recemly prop!nsed a new model of mesons as quark -antiquark bound states thar is
covariant, confining and chirally symmetric®. The equ-nlions which emerge from this
approach give an analytic solution for a zero mass pseudoscalar bound state in the case of
exact chiral symmetry, and also reduce 1o the familiar, highly successful nonrelativistic
linear polential models in the limit of heavy quark mass and lighily bound systems. The
approach is therefore suitable for a unified description of all the mesons from the pion

through the upsilon. In this paper we exiend and further develop this approach by (i}

presenting new solutions in the tight quark secior which show that the physical pion can be
described by the model, and (ii) showing how it can be generalized so that chiral symmetry
and confinement can be realized in 2 compleiely decoupled fashion. In particular. we show
that the confinement mechanism could be taken as arising from a purely scalar imeraction,
and that, as long as the remaining interaction is chirally invariant, dynamical quark mass
and 2 zero mass Goldstone boson (the pion) can still emerge through symmetry breaking.

Independent of the vltimate commectness of this decoupling, a model in which this separation

is expliciily realized shows that at feast in principle we could be discussing two separate,

independent manifestations of low-energy QCD.

The paper is divided into five sections. In Sec. i, the model is briefly reviewed.
Much of the formalism has already been presented in rel ]8] and we will refer back to it
when necessary for details of the approach. However, in that first paper solutions fur the
case of light quarks and mesons were not given, and these solutions are now presented in
Sec_ Ifl. We find that a form factor which depends on the ofT-shelf quark mass must be
added 10 the kemnel in order 1o obuin solutions which have the correct chiral limit, and with
this addition the model can describe a realistic pion. In Sec. IV it is shown how 10 decouple
the confinement mechanism from dynamical chiral symmeiry breaking. Conclusions are

presented in Sec. V.

Il. The Model

The model given in Ref. [B] is a covariant generalization of nonrelativistic linear
potential models? that includes chiral symmeiry breaking by dynamically generating a
constituent quark mass. The tight mesons are viewed as bound states of these dynamically
generated, massive quark-antiquark pairs. A sell-consistency condition then ensurcs that in
lhe. chiral limit when the current quark mass is zero, the pion appears as a zero-mass,

pseudoscalar, Goldstone boson.  Qur effective quark interaction Vo (k), comtains two




componems: one picce is a covariant generalization of a linear potential and provides
confinement, and a second picce is a covariani genceralization of a nonrelativistic constant

potential:
Vogth) = V () 0 O + V(1Y 0] G . m

The Dirac matrices 0 and G operate on the Dirac indices of quarks | and 2, and describe
the spin dependent structure of each of the two picces of the effective interaction. In Ref.
I8). 0 = 0 was assumed, but they are. in general, distinct. The covariant scalar funclions
Ve (k) and V-(k) contain the momentum dependence of the two pieces of the effective
interaction.

We stari from the sclf-consistent equations for the quark self-energy and bound state
veriex function, Figs. 1a and 15. The heavy dashed lines schematically represent the quark
potential, modeted as an exchange interaction (&s would occur in & simple boson-exchange
piciure), involving two three-point vertices with the exchanged momenium determined by
encrgy-momenium conservation. [n both equations, the kernel is furiher defined by
restricting some of the quarks to their mass shell. In the venex equation, 1wo channels sre
created, one with the quark restricied 10 ils positive-energy mass shell, and one with the
anfiquark restricied to its negative-energy mass shell. The resulting two channel bound-
siate equation is shown in Fig. 2. These restrictions mean that even though the equations
are exacily covariant, they depend, like non-relativistic equations, on the relative three-
momentum only, and have a smooth non-relativistic limit. The second (antiquark} channel
is necessary for a consistent description of deeply bound states, as discussed in Ref. [ 8],
but is negligible for loosley bound, heavy quark systems. Finally, restricling both the
imernal and external quarks 10 their mass shell reduces the self energy equation (Fig. 1a) to

an algebraic sell consistency condition between the bare (current) and dynamical

(constituent) quark masses, and the parameters of the same kernel appearing in the bound
equation.

A essential featwre which makes these equations tractable is the infrared regulanzed,
Fourier ransformed, lincar potential V{r) = o r. In momenium space, the lincar potential
behaves as 174" plus an infrared subtraction that regulates .thc potential at q'=0 and
ensures that V(r =0) = 0.# The covariant generalization of 1his condition satisfied by the

confining potemtial ¥y (&) is:

&t (m
— vty =0, 2
JamlE) e >

where E, = ‘Iml +k%, and m is the quark constituent mass. [MNoie that, in the linut m —
«=, the factor [m/E(k)] — 1, and the expression (2) is preceisely the statement V(r=0) =
0.] We likewise definc a covariant generalization of a nonrelativistic constant potential,

V- (k). which satisfies:

FEN A
ey =c. 3
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For the initial numerical studies, we chose to work with a particularly convenient form

for the Dirac matrices, 0 and O:

== 1
Y0.0,=Y0.06 =5(I-rlsyi—ﬂ'y2"). {4)
S5 : i
This form was chosen because it is invarniant under U(1) chiral transformations, and
because it simplifics the equations for the venex function T{p.P), (where P is the bound

state momentum and p the refative momentwm of the two quarks), allowing a bound staie




solution which is a pure pseudoscalar: Fp,j) = l'".,(p)ty’, where p is the bound state
rest mass. While the choice (4) is convenient, it is certainly not best from a phenomeno-
logical point of view, and the optimal form for O and O will be deferred to a later work
when we use this model to fit the physical spectrum. This will be discussed further in Sec.
1V below.

Using the lorm {4), and plac.ing both quark legs on-shell in the sell-energy diagram
Fig. |a. gives the following relation® between the constituent quark mass m, the bare

quark mass m_, and the strength of the constant potential, C:

[._ ]-,J [vmwm)— ©)

Notice that, because of the constraint (2), the strength of the linear confining potential does
nol enter this relation. The linear confining potential thereby makes no contribution to the
generation of quark mass, and it is this decoupling which permits the confining potential o
be purely scalar. | This is discussed further in Sec. 1V.] In non-relativistic models, the
constant piece provides an overall mass shift. This is also true in our relativistic model, but
now this shift comes about through the dynamical breaking of chiral symmetry, and is
therefore associated with the structure of the vacuum.

Assuming that the quark sell-energy can be approximaicd by a constant mass shift in
the effective quark propagator, Fig. la, as occurs in the model of Nambu-Jona-Lasinie,
we obtain the following two channel, bound-state equation® for the wave functions

¥i(pr= [(p.PYI{2E, - p). and ¥y(p) = Tytp PYI{2E, + pt):

W
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The potentials V},, V3. V3, and ¥y, are schematically defined in Fig. 2b. The off-
disgonal potentials V;5 and V;, depend on the bound-state mass i and have been regulated
with an infrared subiraction analogous to that for the disgonal potentizls, Eq. (3). In the
Limit of zero pion mass, they reduce to the dizgonal elements V;;, and Vi, Observe that in
the zero mass pion limit with zero bare quark mass, m,=0, because of the constraim Eq.
{3) we obuain the analyiic sotution ¥ (p}= ¥5{p)=N/E, and C = -1, as required by
chiral symmetry, Eq. (5). The lincar potential again completely decouples in the chiral

limit.

1. Numerical Solutions for Light Quarks

For finite pion masses, we solve the equations numerically by expanding the wave
functions in & sel of basis functions (bi{p)), and then creating a generalized eigenvalue
problem by acting upon the bound-state equation (6) with the covariant operator
Jd’p bi(p}/E, . For convenicnce, we chose to fix the bound-state mass p, and then

solve for the constant C.




The linear potential werm Vy (¢} requires an ultraviolel form Factor not needed in its
nonrelativistic counterpart. This arises because the llq‘ potential loses two powers of £
when the quarks are restricied to their mass-shell, thereby generating a logarithmic
divergence in the subtracted pieces of Eq. (6) that conain the wave function evaluated at
some rix'cd point (p. k;, or k;). In our first paper! we choose a form factor that
depended only on g2, the argument of the linear potential. At that time we could only
obtain reliable solutions for heavy quark masses (i.e. when the constituent quark mass is
wken 10 be much larger than the soengih of the linear potential: ml>>a) Wealso
ignored the off-diagonal matrix elements Vi3 and V,,. In the casc of light quark masses,
we were obiaining values for C less than -1, in apparent contradiction to the mass-shift
relation Eq. (5), which requires C 2 —). We subsequently discovered that a form factor
which depends only on g% does not provide sulficient convergence lo insure consistency
with chiral symmetry. With such a form factor, the residue of the principte value
imcgration at ¢ =0 remains very large, even mt very large momenta, generating terms
which behave like an additional positive consiant potential, driving C 1o values less than
—1. This effect presumably occurs also for the heavy quark cases studics in Ref. (8], but
the effect depends surongly on the scaled sirength of the linear polential, o =oim?, and is
very small in the heavy quark case. To obtain light quark solutions consistent with chiral
symmetry, we must therefore chose a form factor with a more general momentum
dependence. We have tried two distinet (covariant) choices for this dependence: one which
depends on the sum of the quark momentum entering a vertex, ﬁe so called sideways form
factor, " and one which can be factored into functions which depend only on one of the
invariant masses of each of the legs entering a vertex (the factorized form factor). They
both give the sane qualiative resulis. Here we will present resulis only for the factorized
form factor, anticipating future applications when issues of cleciromagnetic gavge

invariance will be a concern. !
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Our results are shown in Figs. 3 — 5. which take the constituent quark mass m = 350
MeV, the strength of the lincar potential o =0.2 GeVZ, and both masses in the form

factorare A = Ay = Ay = 600 MeV. The form factor has the factorized form

F(.pl.q" = - V)= L0 £,(0]) [ita") (73)
where
(Al -m') ' A
*l = 1 Ty b
ft( i) [(A',—m’)'i—(m'-k,’)’ L(q ) (Al+ql) (b)

In Fig. 3 we plot our results for the constani € as a function of the bound-state mass.
Notice how close the value of C is 10 the chiral limit a1 the physical pion mass
(1 /2m ~0.2). Inserting numbers, (C ~~0.996), and using the mass-shift relation, By
(), gives a bare quark mass m, ~ 1.5 MeV, in rough agreement with sum-rule estimates.
By adjusting the parameters {e.g. A — 490McV) we can obtain a more canonical value for
m, ~ 4.6 MeV. It scems clear that this approach can give an account of the physical pion,
provided the parameters are properly chosen.

In Fig. 4 we plot our solutions for the wave funciions ¥{(p) {solid curves) and im
(dashed curves) for a family of values of the bound-state mass (1 / 2m =08, 0.5, 0.3,
and 0.15). Notice how the wave functions grow in momentum space as the bound-state
mass Jecreases, and how the second channel smoothly approaches the first. We have
found that, as the bound state mass j1 approaches zero, the solutions tend to approach the
limiting analytic form V/E,, deviating from this form at a value of p which increases as y
decreases. These solutions have been obtained using the full, coupled-channel bound-staie
equation with the off-diagonal matrix elements included. As Fig. 5 shows, there are only
the smallest changes in these curves when only the diagonal mauix elements, ¥y and 13,

are kept. This occurs for two reasons. In the case of lighily bound systems, the second

9




channel is small, as is its mixing with the first channel, and 1the bound-siate equation
reduces to effectively a retativistic, one-channel Schrodinger equation. In the deeply bound
limit, the confining potential is decoupling from the problem, and so once again the
contributions from V), and V,, are small. These observations, which justify ignoring the
off-diagonal potentials in certain cases, will prove useful in future work. 'When the off-
diagonal potentials can be ignora-d. it is easy to include the one-gluon exchange interaction
in a gauge-invariant manner.

With these resulis, the presentation begun in Ref[8] is now complete. In the next

section we show how the model can be generalized.
1V. Decoupling Confinement from Chirst Symmeiry Breaking

Lattice studies and recent phenomenological fits to the upsilon spectrum suggest that the
finear potential is purely scafar. 1n this section we show that. as long as the constant part of
the interaction is chirally invariant, a zero mass pion arises in the chiral limit (m, = 0}, and
that an analytic solution for this state can be found. To show this we will demonstrate that
ti} the scalar part of the mass equation is unaffected by the presence of the scalar linear
potential, and (ii) the scalar confining potential gives no contribution to the pion bound state
equation in the chiral limit, g = 0. -

First, the Dyson equation for the self energy for an on-shell quark (with the internal

quark also restricted 10 its mass shell), is

¥
m,+

r
A s

E,
Lt V(p-k
l(lx) T (P ®

where X5 and IV are the scalar and vector pants of the self energy. at the constituent
quark pole. Since these are constants, the constraint {2) guaranices that the scalfar term,
X5 is zero. [Note that the vector part is not zero, but can be removed by wave funciion
renormatization.!] Hence the lincar potential does not contribute 1o the quark mass, as
anticipated in Sec. I1. It is clear that this result will hold for many choices of the spin
invarianis O; only ones which contain momenium dependent factors can upset this general
result,

Next, from Fig. 2, the effect of a scalar linear potential on a pure pscudoscalar bound

siate I = y,I",, where I, is a scalar function, is:

d't 12t pa (R HEP Em)Y, (R - 4P+ m)
= N4 9
e ]——[2 A B, Fi.pY G 1] a)

where both the external and intemmal quarks are on-shell (denoted by the subscript 1), and
by

_ d’k _ 201 prH{P My, (-4 P+ m) 9b
rsop.p= IEEE)'_zE.“{V'-“’ b, r1e',pY [tk + 1] ©9b)

when the cxternat quark is on-shell and the internal antiquark is on its negative encrgy

mass-shell (2). In the first case k* = (E, — yp1. &), and in the second k" = (E, + ju. k).

Now, for a zero mass bound state, P = (u, 0) = 0, and this limit may be swdied for

each of the tenms (9) using the retation

meb+ Py m+k-3P) =im' k' + { PP ly,—my, P+ i, (P -F) . (1)



In this timit, I, = 177 and |V, ], = [V.],, (becausc they are identical), and the remaining

erms approach:

. (mAbeiPyy im+ R P) t m .- ¥,

] : =y = -2 (hl £

" m' (k- {P) 27257 4, (1=
. (m-l-"li')y(m{»‘.—}’) 1 m 2y, — 1.k

1 1 =y ety _2la— Nel

P'-In ml —(t + ;P)l Y 2+ZE| Ye ‘E. (lib)

where the first relation applies to Iy (. P), and the second 10 FT(p,F). Note that these
terms are regular in this limit. The 1otal contribution from the tinear potential is the sum of
these two terms, and is therefore

d’k
r*p.o=-rf z V, (p— (6.0 (12
(]

2n2E,
because the other spin invariants cancel.
Equation {12) shows that, in the P — 0 limit, the scalar lincar potential gives a vertex
funcion with a pure ¥, structure. Furthermore, since the &7 in the argument of [, is the
square of the four-vector (because I is a Lorentz invariant function), when P = 0, =
m?, and r,is necessarily a constant.  In this case, (12) reduces to the constraint (2),
proving that the scalar poteniial docs not contribuie to the pion equation in the limit P = 0.

The decoupling is hence complete.
V. Conclusions

This paper completes the model siudy begun in Rel. 8], and discusses some

generalizations of thar work. We find that solutions for light quarks (or a large linear

12

potential, which is by scaling the same thing) require a form facror dependent on the mass
of the off-shell quark in order 1o converge sufficicnly rapidly 1o be consistent with chiral
symmemry. With this added convergence, we are able to map out the light quark solutions
just as we did for heavy quarks in Rel. [B}. Hlustrative numbers show that it is casy in this
model to explain why the symmetry breaking represented by a current quark mass of a few
McV can gencrate a pion bound state with a mass of 140 MeV.

We also show that the model is sufficiently fiexible to permit the linear confining
potential to completely break chiral symmetry without changing the connection between the
generation of dynamicel quark mass and the emergence of an almost zero mass Goldstone
boson (the pion) which is an essential feature of this model. In particular, we show that the
linear pant of the conlining potential could be pure scalar without altering the chiral
properties of the model. The reason for this surprizing result is that the constraint which
controls the infrared behavior of the linear potential also insures that it does not contribute

in the chiral Kimit.
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3) Solutions for the constant C as a funciion of p/2m.
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4} Solwions for the wave functions ¥ (solid curves) and ¥, (dashed curves) for a

lamily of bound-state masses: g/ 2m =0.8,0.5, 0.3, and 0.15. The siates with a smallec

mass i are more spread out in p.
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5) Solutions for the cases §/Zm=0.3 and 0.15. with and without the off-diagonal

potentials, V , and vy In both cases. the wave functions ‘¥, (solid curves) and ¥,

{dashed curves) are the full solutions (identical 1o Fig. 4), while ¥, (dotted curves) and

‘¥, (dashed-doned curves) are the solutions with V), and V, = 0.



