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Alistract,

The QCI) sum rule calculation of the pion wave function by Chernyak and Zhitnitsky s
implicitly assuniing thal the cotrelation Jength-of vacuumn fluctustions is Inrge compared tn
the typical hadronic scale ~ 1/m, 50 that one can substitute the original nandacal aljeris
like {§(0)q{1}} by constant (§{0)g(0))-type values. We oulline & [ormahism enabling <ne

. 1o work direclly with the nonlocal condenaales, and construct & modified sum rule for the
womnients ((¥) of the pion wave funclion The resulls are rather sensitive to the value of the
rarameter AY = (§07q}/{4q) specilying the average virtuality of the vacuum quarks Varying
it from the most popular value 33 = 04 GeV7 up 1o Lhe value 3] = 1 20V auggeated iy

DISCLAIMEH the instanton liquid mordel, we obtain {£}) = 0.25 ~ 0.20, lo be compared 1o the C'Z valur
{£'} = 8.4] oblained with A: =0
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I Introductory remarks. The standerd trick incorporated in all the appronches hased on
the raymptotic freedom of QU1 and [actorizalion is the intreduction of some phenomenclog-
wal functions andfor numbers accumulaling necessary information about nonperturbative
long-distance dynamics of the theory. The most important examples are:

s parton distrbution funclions fo,u(7) used in the perturbalive QUD approaches to
hard inclusive processes |1,

» hadronic wave funclions w.(z), pn(z), x4, 23}, etc, which naturally emerge in the
asymiplotic QUD analyses of hard exclusive processes [2, 3, 4, 5, 6]

o quark and gluon condensates {§{0)q({0}), {G{D}G{0)}, the basic parameters of Lthe QCD
sum rule approach [7], describing the nonperturbative nature of the QCD vacuum.

The hape is Lhat in some fulure approach they all will be calculated [rom the first
principles of QCD without sny model and/or ad hoc sssumptions. A less ambitious program
is tu valculate the hadronic functions f(z ), w({z}} using the QCD sum rules {7}, with only
the condensale values treated as input paraimeters.

While the parton distribution functions can be extracted rather reliably from experi-
wi~nial dala, Lthe situation with the hadronic wave [unclions is much more complicated.
Normally, they appcsr only in an integraled form. Furthermore, the very applicability of
the perturbative QCD formulas al accessible energies is questionnble [8, 9f. In this situa.
tion. the QU aum rule approach and lallice caleulations are Lthe anly reliable way to get
mlonunation aboul Lhe form of the hadronic wave funclions. In particular, the mast popular
sel uf hadronic wave [unctions [10], due 1o Chernyak, A Zhitnitaky and [.Zhitnitsky (CZ),
waa prodduced with the help of QD sum rules.

Oune shonld remember, however, Lhal Lhe operator product expansion, the starting point
of nny QHUL smn cule analysis, has different forms depending on the situntion. Presence of
& large {or small) extra parameter might esaentislly modify the expanaion. The most well
stuched #xample in the modification of Lthe OPE for the form [aclors at small momentum
teansfer g [11, 12] In that cese & simple-minded extrapolation from the region of moderately
Inrge q is complelely unjustified: one cannol reproduce in thal way even the normalizalion
conditiona like Ft0) = £ Our goalin the present paper is to show Lhat calculaling the N > 2
innnends of the plon wave funclion one faces another silualion requiring & modification of
the underlying expanaion. We construct a modified sum rule and show Lhal, for a atandard
vhoice of the condensate values, 1t produces the pion wave function that strongly differs from
the 07 dopin.

2. [Man wave funchion and QCD sum rules: crificism of the CZ-approach. The first
application of the QUD sum rules to the pion wave {unclion p.(z) was the calculation of
its zera moment, ve., Lhe pion decay conslant f, , in the pioneering SVZ paper |7[. It was
caloulated there within 5% accuracy. This sucecss insmred Chernyak and A Zhituitsky |11)
to calculate the whole pion WF by reconstructing it from the next moments {{™) {where
£ = 2r - 1). They extracted ({’) and (£'} from the relevant SR precisely in the same way

as the f. value However, the nonperturbative terms in their sum rule
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have n complelely different N-dependence compared 10 the perlurbative one and, a priors it
ia not clear whether a straightforward use of the N = 0 technology can be justified for lugher
N. The acale determining the magnitude of all the hadronic parameters including so [the
“continunm threshold” |7}} ia eventually settled by the ralios of the condensale contnibutions
1o the perturbative term. Il the condensate contribulions in the C'Z sum rule {1) would have
Lhe same N-behavior as the pertuchative lerm, then the N-dependence of ((¥) would he
detenmined by the overall {actor 3/(N + 1N + 23) and the resulling wave lunction ir)
would coincide with the "asymptotic” form |4, 6]

ilr) =6f,=x(1 - z). 2)

However, Lhe 1atios of the (§g) and {GG}-corrections to the petturbative term in eq (1)
nze growing functions of N. In parlicular, in the {jg) cose, the above menlioned ratio for
N = 2 is by factor 95/11 larger than that in the & = 0 case. For ¥V = 4 Lhe enhancement
fnclor equals 315/81 . As n result, the effeclive vacuum acales of (mass)' dinvension are by
faclors (95/18)"77 = 2.1 and {3t5/11)'® = 3.{ targer than that far the N = U case Ap-
proximately the same factors (547 = 2.2 and (35/3)"/? = 1.4) one oblains alsa for the glunn
condensale term. Henee, the parameters ,Lﬂl and the combinations f2{¢¥) straight{orwardiy
extracted from the SR {1} must be Iarger than the "asymptotic” values sf'=* = 0 75 (ie}7?
and FHEME = AFI/(N + 1IN +3) just by the faclors 2 {for N = 2) and 3 {for N =4}
These nre just the results obinined in Rel [13}.

To betler understand the structure of the relevant power series it in instruclive In rewrile
the SR for the pion wave lunction w,{z) itsell |}4]:
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The (31} and O(N) terma in eq. (1} correspond to the §{z) and #(xr)-terins in eq (1) En
ils turn, presence of the &{x})-functions in ¢q.[3) is evidently indicating that the vacuum fields
are trented as carrying zero fraction of the pion momentum. This can be sanly understoad
by cbaerving that the operator product expansion {undeslying eqa.{1),(1}} i, in fact, n powes
series capansion over amall woments k of vacuum quarks and gluons. Hetaining only the
{49} and {CG)-terms tlike in eqa(1),(3}) is just equivalent 1o Lhe assumption thal & is nal
simply smnll but exactly equnls xero.

flowever, it 15 much more reasonnble to expect thet the vacuum guantn have a sincoth
distribution with a finite width u In configuration space, this means that vacuum furtua.
tions have a lnite correlation length of the order of 1/, sa that Lhe two-poiat condensates



like {i{Mhql 2]} die away for {z]| lnrge compared Lo 1/, Of conrse, one can nlways expand
{§lU}qlz}} in powera of ¢ starting with the constant term (§(0)g(0)) that produces eventu.
ally the 8(x)-terin The question is, whether it is ressonable to do Lhis, since Lhe expansion
reaulting from such & Taylot series will nol necessarily behave well.

Arcording lo the standard estiniake |15], the average vickuahty of the vacuwum quarks

= s I 2
A= (§0")/(Ge) = 04 £ 01 GeV {4)
(here D is the covarianl derivalive) is not small compared to the tclevanl hadronic scale
N AnTfl = 0.7 GV

Even a Inrger value (hy factor of 3) was ohtained for ;\: in the instanton liquid moiel by
Shuryak [18]. Thus, the correlation length of vacuum Auctuslions is not much larger than the
badronic size, and Lhe constant-field approximation f{or the vacuum fields might not work,
1e, the highet power coreections mighl well ruin Lhe conclusions desived lrom the SR {1).

In what lollows, we outline & formaliam {ils preliminary version can be found in rel 17])
thal enables one 1o take inlo account the eflects due to the k (or ) distribution of vacenm
finctuntions To this end we nole that in all stendard cafculntions of the pawer cotrections
via the OPE one stasta with some nonlocal condensates like (§(0)q(2)} . {§(0}vA{y)q(2)), efc.
{such ohjects nre discussed for alniost [0 years now, see, e g., [18}), which ate subaequently
expanded over the local condensates (LC) (dq), {§D%q), etc. Qur sirategy is 1o avoid such
an expansion and dea} directly wilh the nonlocal condensates {NLC).

3 Nonlocal condensates. The simplest bilocal condensate M(z) = {§{0)g{z]} is just the
nonperiurhative pari of the quark propagsator. So, it is convenient to parametetize it o i
the well-known a-tepresentation for a propagator:

(@(O)a(=)) = ({OWgtO)} [ e/ fo(ui o (5)

Of course, due to Lhe gauge invarinnce, the quark fields g{z) are always accompanied by
an appropriate Wilson line operstor. Bul hete and in the lollowing we iake quark and
gluon fields in Lhe Fock-Schwinger gauge £ A,{1} = 0 where the path-ordered expanentials
are equal lo 1 and the covariant derivatives are converled into Lhe erdinary ones. Another
comment concerning eq.{5) is thal deriving a QUD sum rule one can slways perform the
Wick rotnation 14 =« izy and treal ali the coordinates as Euclidlean, with z? < 0

The functions like fs{r) describe the distribulion of the vacunm fields in virtunlity
Note, that the moments of fg(v) are propottional 1o the vacuum malrix elements of Lhe
local operalors

(d(0)9(0)) / T fse dv ~ (0N D*)"g(0}) (6)
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with increasing number of derivalives. By analogy with Lhe hadronic distribulion [unclions,
one can call f{r) the “vacuum distribution functions".

The expansion of the condenante Af{z?) over the local condensales corresponds 1o that
of the distribution function fs{e) over Lhe 5N functions:

Sstw) = 8w) - Ls'(w) ¢ .. ()
with Lg fixed juat by the avernge virlualily of the vacuum quarks (eq (4]} Ls = .\:,’2,
There in anather (vectorj bilocal condensate A, = {§(U)y,.9(z)) . containing n y-mnirix

(@006 2) = e3ud [~ €7 fy (v ("

where A = Zxa,(dq)’. The zerolh moment of fy(r) is ze10 m Lhe limit of masaless guarks,
and that is why the 8" )-expansion for fy{r) starts with the (e} Lerm -

frlv) = 6'w) = Lo 8"() + ..., &

with the parnmeter 1y delermined by Lthe magnituide of the condensates of dinension 3
For the giuenic nonlocal condensate, in Lhe Fock-Schwinger gauge, one has
L o (:G
(1AL = 8% ns — e S Mot~y L
where the AMg-Tunction depends nol only on the interval {z — y)?, but also on :? and '
However, since Lhe coeflicients in front of 2 and y? in the expansion

©06) - 1" vt
Mag=1- L — P
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nre rather small, one can starl with the approximation
L O T S L A TSP (2
3
intrnducing Lhe distribution funclion fe(r)
There are three simplest trilocal quark-gluon condensales
Moly.e} = (@0 Auyla(z) = (tape - g sy DA+ (pate — gy HM 1 11
M..»(!i. ) = (q(0}7V1lAu(y)Q“)) = !..v.-v"’Ms L [LR]]

‘The Tunclions Afy_y can be parameterized by Lhe tnple integral representation:
My (2 - )} = A,j eI eI (g )y dugdiy, {15
o

where A, = I—gl‘,2ﬂ,$!‘}. The limiting case of Lhe standard local condensates [cnrre.

sponcling Lo X: — ) is oblained by the sulistitution f,(ty, vy, 9] — 81y 38{0 18{1)
Incorporating the nonlocal condensales as described ahove, one arrives al a modified

diagram lechmique, with some lines and verlices being Ure otdinary perturbalive ones, and
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some earresponding lo the nondocal condensates. Increasing the nwmber of foops, one should
comsider the condensales conlaming mare anit more fields. We restrict our analysis here by
the two-luop level. Then, in addition 1o those already listed, one encounters the four-quark
comdensate  To simphfy the calculation, we apply the vacuum dominance hypolhesis and
factorize it inlo a product of iwo hilocal ones.

{ Sum rule. Using the representations (4}-(7), and caleulating the coclficient funclions we
obtain a maodified QCD sum rule, with the §-Tunctions of eq (1) substituted by the functionsls
A4 (r} of § vaceum distribution {unctions:

] 4
flodn = fi‘:;u ~ eI B ) 4 (45 fy (e MY) + 30 89 (2} + EBclz)) +ix — £) (16)

iwl

where # = | - x, M7 is the Borel paeameter and
) -
() = 6z{l + Crt[s - = 4 log’{ <]}
i 3 r

i« the “perturhative” rontribution {free quark loop plus O(a,) radiative corrections).

The simpleat contribulion, proporlional 1o the fy -funclion taken al v = x M?, ja displayed
explicitly in eq.{16) Otler conlributions have a more involved form (see rel }17]).

The most intriguing conclusion to be drawn from eq.(16) in that p,(r) , the longitudinaf

moementum distrabution of guarks anside the pion, is directly relaied to f{v), the wriualiy
distribution of quarks and gluons in the vacwum. Therelore, it is very hnporilant io know
the form of the latier Lo estimale the moments {{¥}, for N > 0.
5 Aedelhng f{5-). To obtain the original SR {3), one should take the fieet term of the
-expansion for the f{v}'s. 1t should be understood that this approximation is really the
simplesi madel for the distribution funciions f{r). However, such a model fused, as » mintier
of Tact, by CZ [13]) is evidently too crude if the Li-parameters characterizing the width of
f.{#) are comparable in magnilude with the relevant hadronic scale. In this situation, instead
af Lhe ataudard expansion over Lhe local condensales we propose 1o use an expansion in which
the {relalively) large average virluality of the vacuum fields is taken inlo account just in Lhe
first teran For the lunctians AM{z?} having s finite widthe of an ocder of p?, it is much more
prefrenble to use the expansion of f{v) over 8'M v — u7). The first tecm of this cxpansion

fin

M(2') = MO) M 1) un

takes into account the main effect cansed by the finite width of the function M{z?), while
subiseguent terms deaceibe electa due to the deviation of its form frown the (:auuinu one.
To construct the Ganssinn ansatze one should know Lhe second term of the z? -expansion
ol thie relevant nonlocal condensates, ¢.g., incorporating eq.{4) we lake fs{1) = §(v — A2y
For Af, the situation is more complicated: Ly is determined by & different l(. Lhe
values of which are poorly known. 'The simplest mortel is 16 nsaume that skt the nonlocal
ihstributions have the same width So, we take f::”{u] = 8w — .\;‘/2). Of course, il i1 more
reasonable 1o expect that Lhe shift paremeters L,, though all of the same ordec of magnilude,
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are slill numerically different. Another model for Ly is 10 extract the pasl peopoctional 1o
{§7%g){Gq) from all the rclevanl L{: of dimension 8 and neglect the remaining contributions
This gives the value Ly = % \:, rukher close 1o the naive estimale.

In r similar way we construct Lthe model for the trilocal funclions:

flinenn) = Ay ~ L7800 ~ E(0, - LY, (18]

One can try ta determine LE”'S from the expansion of the relevant NLC by retaining only
the (D7 q){dq) pnrl. of the coefficients in front of 1, y® or {2 - y)*, respectively. ‘This gives
I" = {8, -5 112 for the fi-Tunction, L = {‘—h,g—;.ﬁ;})«: for the fi-function anil
= {- ",,:, }A} for the fy-funclion {17]. According Lo these estimates, the tnlocal
cundenunleu in some directions decrease much slower than in Lhe olhers, and sometimes even
increase when the distance belween the quarks increases, which in completely unrenlistic.
Hence, it is not safe to neglect other LU estimnting the width parameters and, in the absence
of a reliable model of the QCI vacuum, we simnply assume that Lhe trilocals decrease at the
smine rate in all direclions and take LY = Atz
To mede] the nonlocality eflecta for the gluonic contribution, we sssmine, hy analogy
with the quark case, that the 8{x) terms of the O{{C?C)) contribulion (eq {3)] should he
substituted by ${z - L /A ) in eq.(16), with Le = g'\‘, a3 suggesled by eq (11}
6. Numerical estimates. Within the simplified version of our Gaussian ("delta-function” )
mosdet for the nonlocal condensntes, Lhe pion wave funclion sumr rute has the following forn-

1
Flou) = orll - ™M )em(a) ¢ Lo (GO - 20) +
ix in g

o
slM"“'(W) {f‘J'(z -A)+ IBA('L( —)ﬂt + (A - z)logl(F)) +
13.& J(r—A);ﬁ(thA) (- Ayt - Ayt _“ &)(“ 5z —m)] _
508 < < 28) A+ 2
A [I—A A(““]—A)”+
+(r — 1)
119}

where A = A2j2M7.

Main observation is that in place of the §(z)-type contributions we have now eitlier the
&-Tunctions with the shifted nrguments or Lhe functions Lhat are smooth al z = ) In hoth
cases, the momenis of such termis decrense ae N increases. Hence, for sufficiently large
values of Ay, there is no dramatic increase in the ralios of the condensale conttibulions i
the perturbative term. Taking A: = 0.4 GeV'? [15}, we obiain for the lowesl momenis

(€% = 0.2% =012 (€%} = 007, (20}
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These values do not diller stenngly from those correaponding to the nsympinlic wave
function Therelore, it 12 not surprising that the modei WF

ertte = AU B, re) = 6funtl - 1) (1+ 3(' ~sxl-a) (2

teproducing these values (20), are also close Lo the asymplolic wave funclion. The second
maodel corresponds 1o the expansion over Lhe Gegenbauer polynomials (:2/(€) (the cigen-
funciions of the evolution equation |4, 6]).

Thus, the moments of the pion WF are rather scositive to Lhe funclional form of the
nonloeal condensates. The faster the NLC dectease wilh Lhe distance, the lasler ia the
decrense with N of the relevant contribulion inte the {(¥} sum rule. Of course, in the A, — 0
limit, eq.{19) reduces to the original CZ sum rule {3),(1), and one obtains large CZ values for
the moments. With A} = 0.4 Gel'?, the condensate terms slill decrease more slowly with N
than the perturbative contribution, and the {{*)-velues (20) are still lazger than {£¥}**. To
get the asymplotic value for (£7}, one should take M = 12GeV?. Surprizingly enough, it is
this huge value of A? thal is favoured by a calculation within a rather realistic QD varuwm
model developed by Shuryak [16]. The recent lnttice result (¢€2) = 0.11 [19], is stiil rather far
ftom these valies, but the disagreement might be essenlialiy reduced by n renormalization
fnclor {of order of 1.5) nol included inlo the quoled Inltice value.

Qut results depend on the models we accepied lor the nonlacal condensales tHowever,
the sum rule is ominated by a single contribution (the second term in the hraces in eq (19))
which is due lo the four-quark condensate (§(0}g(z)d{y}q(z)}, faclorized vin the vacuum
tlomsinance hypothesis to the product of the simplest {(§{0)g{z)}-iype condensates. This
faclntizalion amounts 1o neglecting the dependence on the distance belween the Lwo 4
pairs Il one takes this dependence into account, then the dominsal lerin of cq.(19} will
produce the contributions that will fasler decrense with N, aad the resulting (€M) will be
even lasther [rom the CZ values.

7 Conclusions. Qur basic iden in Lhe present paper i that Lhe nonperturbalive informn-
tien about the QDY vacuumn structure should be accumulaied in the funclions describing Lhe
mmuentum distribution of the vacuum quarck and gluonic fields. For the vacunm, these func-
tone play the role nnalogous Lo that of the parton distsibutions in Lhe case of Lhe hadrons
Ideally, the vacuum distribution funclions should be enalculaled from the theory of the Q('D
vacuutn. In the absence of such a theory, one can incorporate the fact thal the same vac-
num distribution fenclions appear in difecent NLC-modified QUD sum rules for hadronic
wave funclions, parlon distribution functions, hadronic form factors ¢lc. This opens a pos-
sibility ol finding the vacuum distribution functions {universal for all the hadeons) from the
experinentally known hadronic funclions.
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