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Abstract

The extension of the quark confinement model (QCM) is suggested to study
weak decays of heavy mesons containing a single heavy quark. It is assumed that
the confinement forces define the interactions between light quarks only and does
not influence the behavior of heavy quarks which are described as ordinary Fermi
particles with large masses. The leptonic decay constants and weak form factors
of heavy mesons are calculated which are needed for determining the Cabibbo-
Kohayashi-Maskawa matrix elements. The comparison with the predictions of new
symmetry discovered by Isgur and Wise for such decays and nonrelativistic quark
model (NQM) is performed.



1. Introduction.

The study of weak decays of heavy mesons plays a crucial role in determining the
Cabibbo-Kobayashi-Maskawa matrix elements. Of a special interest are heavy mesons
containing a single heavy quark along with light degrees of freedom. Nowadays, it is
established that heavy quarks interact with other color degrees of freedom as spinless
point sources of color. This gives rise to the new syminetries first discovered by Isgur
and Wise [1] for weak decays of such mesons. These symmetries allow one to reduce the
number of independent form factors characterising the semileptonic decays of B and D
mesons. The remained independent form factors should be obtained from a dynamical
model.

Traditionally, the nonrelativistic quark model (NQM) is used to describe these form
factors [2, 3|. There is a lot of calculations of these form factors in other approaches: rela-
tivistic quark potential model [4], phenomenological analysis involving vector dominance
and current algebra [5], QCD sum rules [6]-[9], lattice simulations [10].

In the papers [11, 12] we have developed the relativistic quark model with taking
into account confinement of light quarks. In this model the hadron interactions are de-
scribed by quark diagrams averaged over vacuum gluon backgrounds. The confinement
hypothesis means that this averaging provides an abcence of singularities in quark dia-
grams corresponding to quark production. All physical matrix elements are defined by
the universal confinement function describing the behavior of quarks at large distances.
The calculations of numerous low-energy effects of the meson-meson and meson-baryon
interactions performed in the QCM {12] have shown that the model allows one to describe
with quite a good accuracy both the static hadron characteristics, such as decay widths,
magnetic moments etc., and more sophisticated ones as form factors, phase shifts, etc.

In the paper [L3] we gave the extension of the QCM for applying to study the weak
decays of heavy mesons containing a single heavy quark along with light degrees of free-
dom. It was assumed that the confinement forces defines the interactions between the
light quarks only and does not influence the behavior of heavy quarks which are described
as usual Fermi particles with large masses.

The main aim of this work is to describe the behavior of forin factors characterizing
semileptonic decays P — P'lv (P = D,B; P’ = ., K) and B — Dlv. We use these form
factors to calculate the electron spectrum in these decays. The comparison of our results
with the predictions of new symmetry developed by Isgur and Wise for such decays and

nonrelativistic quark model (NQM) is performed.



2. QCM: light and heavy quarks.

In the QCM, hadron interactions are described by the quark diagrams, e.g., the quark
loops in the case of light mesons, see, Fig.1. The hadron-quark verteces are given by the

interaction Lagrangian

Ly(z) = gnH(z)Jag(z} (1)

where H is a hadron field and Jg is the corresponding quark current. The coupling
constant gy is defined by the so-called compositeness condition [11] which means that the

renormalization .constant of hadron wave function is equal to zero
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where 1:1}{ is the derivative of the mass operator. Physically it means that the probability

of finding the hadron H in the bare state is equal to zero. In other words, a hadron H is
a bound state of quarks.

The following assumption is about the confinement of light quarks. It has been pro-
posed that there exist vacuum gluon configurations that ensure confinement of colored
objects. We do not use any concrete gluon backgrounds, only suggest that the averaging
over vacuum background fields Byg. of the quark diagrams leads to the smearing of quark
masses so that no quarks can be found in the observable hadron spectrum. Technically,

we change the averaging over Byq. with measure do,q. to the one-multiple integral

/ 40 oaet [ M(%1)5(2122] Buge ) .. M(20) S(€n1| Buac )] —

— fdcrutr[IHS.,(zl ~ 22)..TaSu(zn — 21)] (3)
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- = 2P -ipiry-a2)
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The measure do, is defined as
do,
/vd_.’=G(z)=a(—:2)+:b(—:2) (4)

The parameter A, characterizes the confinement range. The function G(z) called the

confinement function is an entire analytical function which decreases faster than any



degree of z in an Euclidean direction z> — —oo. This requirement provides the absence
of singularities corresponding to quark productions in the physical matrix elements and
makes all diagrams to be finite. G(z) is a universal function, i.e., is independent of
color and favor. The choice of G(z) is one of the model assumptions. However, as
calculations have shown, only integral characteristics of the function G(z) are important
for the description of low-energy physics [12] and its shape is chosen from a convenience
under calculations. Some restrictions on the shapes a{u) and b(u) can be obtained from
the condition of coincidence of the QUM-predictions with the well-established low-energy
approaches as chiral theory, vector dominance model etc. for small external momenta.
To demonstrate this coincidence let us consider the main low-energy physical values.

The interaction Lagrangian is chosen as

Ly = %«ifvi'xsq + %@ﬁn“q + —g\/%étbﬂ“q (5)
where # = n'rt, 5, = p,r'. Electroweak interactions are introduced in a standard manner.
The quark diagrams describing physical processes are calculated according to confinement
ansatz {3) (for details see [11, 12]). The relations between the physical values obtained

in the limit of zero hadron masses are shown in Table 1. The notation is Bp = Tdub(u),
0

Ao = cf’dua(u). One can see, if the following conditions are valid
0

a(0) =60)=1 —a'(0) = L; a"(0) =2
Ao=Bo=2 A, =236MeV, (6)

the well-known low-enérgy relations are reproduced. It is to be remarked that the nu-
merical value of the parameter A, = 236 MeV turns out to coincide with the constituent
mass of a light quark. Further, we will use the simplest shape of the functions a(u) and

b(u) satisfying the conditions (6):

1 — a2
a(u) = (1 —au + apu?)exp{~{(az — 1) + (——Q_GQ]HZ — (1 = ay)ul:
b(u) = exp{—u® + bju}. (T
Here, b = 1.18 and the parameters a; and a; are connected with each other by the

condition Ay = 2. The hest agreement with experimental data is achieved al a; = 1.5
and a; = 2.675. The numerical results obtained with taking into account the physical

hadron masses are shown in Table 1.



The calculations of numerous low-energy effects of the meson-meson and meson-baryon
interactions performed in the QCM {12] have shown that the model allows one to describe
with quite a good accuracy both the static hadron characteristics, such as decay widths,
magnetic moments etc., and more sophisticated ones as form factors, phase shifts, etc.

It is clear that additional physical ideas are needed for applying the QCM to heavy
quark physics. It have known that heavy quarks weakly interact with vacuum gluon fields,
e.g. instantons [14}, and they can be considered as spinless point sources of color 1, 2].
Therefore, we can adopt the following picture for describing the processes with heavy and
light quarks. The interaction of light quarks is completely defined by the confinement
mechanism whereas a heavy quarks is considered as an ordinary Dirac particle with a
large mass. According to this notion, we propose the following ansatz for averaging quark

diagrams containing a single heavy quark (see, Fig.2):

[ d0vact[T15(2123| Buae)... T S™ ™Y (2021 | Buac)] —
— fdcr.,tr[[‘lSu(:cl ~z3).. 1.5 (z,, ~ z1)]. (8)
where

dip : 1
heavy — —ipz
5 e) = ./ (2r)%° Mg -—p

Here, Mg is a constituent mass of the heavy quark. In other words, it is suggested that

the heavy quark is described by an ordinary free propagator with mass Mg.
it should be emphasized that the ansatz (8) provides confinement of both the heavy

quark and a light one, i.e., absence of imaginary parts corresponding to quark productions.

3. Week coupling constants of B and DD mesons.

The Lagrangian describing the strong interactions of heavy mesons (H = B, D, B, D)

with quarks is written as

Lr = gg|B%biv®d) + B~ (Biy®u)} + gp[D°(Giv°c) + D™(dir’c)] +
+ gg[Bﬁo(Eq“d) + B;'(Fry“u)] + gp (D (v e) + D;_(c?'y‘”(:)] + h e (9)
The coupling constants gg(g+, are determined from the compositeness coundition (2)

where the mass operator II(p?) is defined by the diagram, Fig.3a, and is written in the

following f[orm:



d*k 1
Ouu(p?) = f /da’utr[z-y

d*k k 1
= - [ o) .
Ay J 4rh A" Mg —(k+9)

Here and further, we will use the dimensionless variables:

k= Aqﬁ., pP= AqP, MQ = Aq#q, mg = qu.g.

Then the expression {10) can be written as

d4ktr[G( K)- L

H 2 = _AZ

This integral is calculated in the following way:

(1) the trace is calculated,;

{2) the transition to Euclidean region is performed both the internal momentum

Ko — iy, K* = — K2 and external one Py — 1Py, P* = —Pg;

(3) integration over sphere angles is carried out;

oA, —k MQ-(L+13)]=

(11)

(12)

(4) analytical continuation to physical region over external momentum is fulfilied.

The typical integral is

'K f(-K?) (
f w2 puh — (K + P)? /dufu)CuP)

where v = K} and

[/(u+ ph — P + 4uP? ~ (u+ ph — P?)]

C(u, P?) = -5

Finally, we have

en(p?) = —A2lgu(P?).

a0

Tag(P

B |

/duub(u) +[duC(-u. P {ugalu) + -;—(Pz - ,ué + w)blu)}.
1] 0

(11



Substituting (14) into (2) we have the following expression for the coupling constant
gH:

r 1
L S (15)
T VB Jla(ed)

where

7 ! 1 !
Tan(ip) = [ dulnqa(u)Ciy, (w, ) + 58(u)(C w, i) + (u = + wh)Cl, (. i)}
J _

The invariant matrix element defining the leptonic weak decay H — lv (see, Fig.2b)

is written as

M(H — lv) = GF‘/quHfﬁ(l - 75)11 (16)

where V¢ is the CKM-matrix element and

fH'—'Aq(?;gTH)zIH(Pii)! (17)

[v = (v + pb - p})C(u, uh)] fu—(u+pd +2k)C(u, pk)
2 2 "-a'(u) 2 2 }
L K

In(py) = [ du{pqbin)
0

The dependence of weak couplings fg(H = d,b) on the parameter A = My — My is
shown on Fig.2. It should be remarked that this parameter is not directly connected with
the binding energy because the light quark is supposed to be confined. One can see, there
is a strong dependence on the parameter A. The magnitude of fp is greater than fg for
the same A. If we take A = 500 Mev that corresponds to the choice of QCD sum rules

{see, e.g.[LT]), one can obtain
fp = 150Mev fs = 110Mev.
It is interesting to consider the limit Mg = my — 2. We have

o 2| _2#e
=5\ As+ By

i 1
Ig = ;; . [A% + 551],
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A, 1 f3 [A4+3B)] (19)

f = e—— . —
H VEq mY 2 \/Ao-i-B%

Here,
Ap = [ dua(u) = 2, By = | dub(u) =
! [+
A = [ duua(u) = 2.04, By = [ duub(u) = 1.68,
/ /

§=/u\/—au)—191 %=/u\/_bu)—l72
a 0

Such behavior of the weak coupling fy for large masses is in an accordance with the
nonrelativistic potential model {see, e.g.[15]).

For comparison, the numerical results of other approaches are shown in Table 2.

4. The form factors of decays D® — n*(K*)ev and B? — ntev.

The semileptonic weak decays H — Pev (P = K,w) are defined by the triangle
quark diagram and resonant one (see, Fig.5). It should be emphasized that we use the
full propagator for intermediate vector particle obtained as result of summation of the
one-loop self-energy insertions. After cumbersome calculations we have the following

expression for the matrix element:

M(H® — P*ev) = 3;‘4@(!0“:/:)[(? + PV fr(8) + ¢ - (2)] (20)

where ¢ = p — p', t = ¢%. The weak form factors fi(t) are written as
39ugP .. I (m})

¢ = I 4 2! 'zt *
f+( ) (21‘,)2 PPV (P r )[I{};' r?,' ) _ [(ll t)]

(21

1
— LAM(t) — ¢15()]
PPV(szPf2~ f)}

2 .-2 (1) th
)+ [Iyp(mi) = (¢ .
{(p [ V'v 1y ( )} I;‘:Pv(p2|Pf21 t)

The structure integrals Iy, and Iy are shown in Appendix.
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The differential decay rate for H® — P*ev has the form {24]

d:r GLmb
Wty " Vo !? 12«3H|f+(ym§f)|2(1 — 22)[Yma=(z) - ¥], (22)
where |
t E,
¥y= m—21 T = —7;-
H H

For fixed electron energy, y varies over the region

de(z, — )
(1-2z) °

where z,, = (m} — mb%)}/(2m}k) is the maximum value of x.

0<y<

The decay width can be obtained by integration over z and y. The result is

Gem?)? vo
[(H® — P*ev) = mfr(—“ﬁﬁ)—l%ol’flh(ymif)l’[(y —ydy -yl (23)

where yy = {(myg £ mp)?/mb.

It turned out that the form factors depend very slowly on the parameter & = My—Mg.
Therefore, we will choose A = 0.5 in accordance to QCD sum rules (see, [17]). The
masses of heavy mesons are taken from Review of Particle Properties [27) (Mp = 1.87
GeV, Mp. = 2.01 GeV, Mp = 5.28 GeV) except for the mass of the B”-resonance which
is taken from the NQM predictions [25] as mg. = \/m} + 1 = 5.37 GeV.

The behavior of form factors f,(¢) in the kinematical region is shown on Fig.6. The
separate contribution of the triangle diagrams is present. One can see that the resonance
contributions play a role only near t,, = (mg — mp)?, in a complete accordance with the
conclusion of the paper [26].

Most of the models allow one to calculate only the fi(0) because it is the overlap
integral of wave functions. In the Table 3. we give the results for f,(0) obtained in other
approches. But it is more interesting to have the predicticns for fo(tm) hecanse thes
values mainly define the electron spectrum.

Here, we give our results for fi(t) taking into account triangle diagrams only antl

NQM predictions without pole contribution [25]:



QCM NQM
(triangle diagram) (without pole)

Dr 1.22 1.34
DK 1.41 1.38
Br 1.85 1.98

Now let us construct electron spectra for the semileptonic decays H® — P*ev using
obtained form factors. We will use the shapes of an electron spectrum given by formula
{19) and normalized on decay width which is determined by (20). For comparison we
show the NQM predictions [3, 24]. The shapes of electron spectra are shown on Fig.7
(a,b,c). One can see that our results are in complete accordance with the NQM ones. But
the decay widths differ very strongly one from another. It can be easily explained by that
the NQM form factors fall very rapidly ~ exp[—(tm — t)], when t becomes less than ¢,,.

Of course, it is needed to take into consideration other final states, e.g. vector mesons,

for complete analisis of electron spectra. We are planning to do this in our next work.
5. The form factors of decay B — Dev

Of the special interest in our approach is a consideration of the decay B — Dev
(see, Fig.8) because two heavy quarks come to the quark loop. It this case, the threshold
singularities corresponding to production of band ¢ quarks may appear at t > (M, + M.)?.
But due to the kinematics of the decay this threshold cannot be reached because tmaz =
(mg — mp)? < (M + M.)?. Therefore, we will use the free propagators for both heavy
quarks.

The important consequence of the Isgur-Wise symmetry for semileptonic decay of
heavy meson containing two quarks with large masses is that amplitudes are independent
of masses and are determined by a single universal function depending on the dot product
of the four-velocities (1, 26].

To check this property in our approach, we calculate the matrix element cort=sponding

to diagram Fig.8

3 d*k
2r 27 | 4myg

A SR |

M¥(p.p) = )y L
r.p M—k—p Ap-k M —k-p

| =
(24)

/ddutrh“



3 dik 1 1
-tr[* - 5G(— )y —————|.
(27 ]ZQHQH A Anti [v M—k——ﬁ‘r (Aq)‘Y M‘—k—ﬁ']

Performing the transition to the dimensionless variables according to (11) we have

. 3 d*K 1 . 1
M*p,p') = P ——gugm i, 4ﬂ2iff‘[‘r“#_ﬁ, - PG(—K)m]- (25)

When p? = m? = M? — oo, and (p')? = (m')? = (M')® — oo, one can easily get the

following representations for typical integrals:

[ d*K F‘(—K

(kTP R /du\/—F (26)

d*K F(—-K?) f
duF(u

/ w2 [u2 — (K + P)*J(p')? — (K + pr)z] ZML (w) | du (27)

for any function F(u) decreasing faster than 1/u" for any n.

The function ®#{w) has the following form
1 Jw? —

B(w) = Y L (28)

2vVw?i —1 w—+vw?-1

where the variable w is the dot product of the four-velocities of initial and final particles:

2pp _ml () - ¢
w = = .
2mm/' 2mm/’

The value w varies over the region

m? + (m')?
1< w< wy = m’ + (m)7
2mm’
Taking into account the behavior of the coupling constants gy for large masses (see,

(18)), and making use of the expressions for typical integrals, we obtain the final result

M*(p,p') = Fldp + ) + f-(3")g", (29)
where
MM
fele®) == Wf( w). (30)

The obtained representation is in a complete accordance with the Isgur-Wise symmetry
prediction {1, 26]. The function {(w) is equal to

10



®(w)Ag + 72= B
£(w) = —
A0+ B%

(31)

The values Ay and B% are defined above.

The behavior of £{w) up to we = 2 (B-D-transition) is shown on Fig.9. For comparison
the NQM curve is drawn.

The "charge radius” p of § defined by the expansion

(w) =1-p*(w~1) (32)

is equal to

2Aq + 35%

2
PocM G(Ao + Bé,) 0.4

The numerical result for f,(0) is shown in Table 3.
In conclusion, we calculate the decay width according to the formula (23) for different
values of parameter A = My — Mg € (0.1 — 0.8). Our result is

T(B — Dev) = (7.3 — 10.5) - 10712| V4 |*GeV.

Using the available experimental data [26]

I'(B — Dev) = (4.9 % 1.6) - 107" GeV,

we find that

|Vis| = 0.027 — 0.043.

These values does not contradict the modern treatment of experimental data [30]

V| = 0.040 + 0.010.

6. Summary and outlook.

The relativistic scheme is developed to study the weak decays of heavy mesons con-
taining a single heavy quark along with light degrees of freedom. [t was assnumed that
the confinement forces define the interactions between the light quarks only and does not

influence the behavior of heavy quarks which are described as ordinary Fermi particles
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with large masses. This assumption coincides with the representation about heavy quark
as spinless point source of color. The form factors of the semileptonic decays P — P'lv
(P=DB;P'=n,I{)and B — Dlv are calculated in the framework of this approach.
It was shown that the main properties of these form factors are in agreement with a new
symmetry discovered by Isgur and Wise. The comparison with the nonrelativistic quark
model and other approaches are performed. In the next work we are planning to calculate

the form factors of decays H — Vev.
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Appendix.

The structure integrals defining the H — Plv-decay are

dik 1 1 1
I(p.p) = ,/dcr,,t z S 5 : =
(p.p') [47#: rly Mq-k—f Aqv—k‘y Aqv—-k—ﬁ’]

p q2 _ 2 12 2
(P+p)#IPPV(A2 I;\z Az)"'q“IPPV(%Et%“ q_g)
Hpv(s 7%, 4°) / da{a 13 (Wa, P2) + I§(Wa) -

- ZZI?(WMP:)_[(]'_Q)'P +aq2]I€’l(WaaPa2)}v

Tre (') = (q)——fda{zr (Wa, P2) + 15(Wa) -
= LY (Wa, P) = [(1 = )5 + ag® ~ 2ap” 11} (W, P}

Here, W, = a{l — a)p’?; P2 = (1 — @)p? — a(l — a)p* + a¢’, z = uo.

1
¥
L(y) = —/ —u V1—u
40

I{’,(:c) _ /‘dub(u)[u —(u+ 22: a:)C’(u,:t:)];

I3 fduau—yC(u:c)

I%(y,z) = j dub(u — y)Ci(u, 2);
Q

I {y,x) = fa'u.b(u BN LS CIL (”21: v+ ) Cuun)]
)

The structure integrals defining the two-point vector-vector loop are

1

L ] .

dik 1
,uu, = ut K - —| =
Iy (P.) f Py /da’ rly Mo - k +}37 Ao — k
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(1) 202
= ¢ Iyv(35) +

™%

v 2
P 4, P
v

AR

-

<L 83

IPH(z) = By + 213(z) — 2 1%(z) — ay(z) + 2Uz(z);

IF) () = Ih(e) + Iay().

o0

1{(2) = [ duf(w)Clu,=);
‘ r3 u—{u+ 2>+ 2)C(u,
o) = [dupilt=r 2Ll
7 wlu + 22 = 2)— [(u+ 22 —&)? + 4uz]C(u, z
e = Faug 02 )t £ o'+ Ot}

{—u(u+ 22+ 2z) + [(v + 2? + 2)* — 22?]C(u,x)}

ta(z) = [ duf(u) =
Q
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Table 2.

References fp, MeV fg, MeV
M.Suzuki [15] 117+ 14 75+ 9
N.Isgur [2] 243 174
P.Cea et al. [16] 182 931
E.Shuryak [17] 220 140
V.Chernyak [18] j 160 90
V.Aliev {19] 170 130
C'.A.Dominguez [20] 224 + 26 145-211
S.Narison [21] 173 £ 16 182 + 18
C.Bernard [22] 174 £ 26 £46 | 105+ 17 £ 30
M.Gavela [23] 194 £ 15 120
QCM (M, =13-18M,=47-52) 83 — 165 33 — 127
Table 3.
References D DK Br BD
J.M.Cline [5] | 0.77 £0.04 | 0.77 £ 0.04
M.Wirbel [4] 0.69-0.78 0.76-0.82 | 0.33-0.39 0.7
T.M.Aliev [6] 0.6 £ 0.1
C.Dominguez [7] |0.75%£0.05[0.75+0.05} 0.4x0.1
M. Voloshix [8] 0.72 0.72 0.3-0.4
A .Ovchinnikov [9] 1.4+ 0.2
Lattice UCLA (10] | 0.63 £0.15 { 0.75 = 0.20
Lattice ELC [10] |0.70+£0.20 | 0.74 £ 0.17
QCM 0.84-0.92 |0.95—1.08|0.6—0.62)|0.8—-1.25
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