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Abstract

Within the QCD sum rule approach, we develop a formalism that enables one to calculate
the form factors of the heavy-light mesons in the mg — oo limit. It is shown that the
behaviour of the universal Isgur-Wise form factor is determined by the quark propagation
function in imaginary time.




1. Introduction. Recently, Isgur and Wise discovered that form factors of the B — Der
type decays, in the limit when heavy quark masses tend to infinity, can be described by
a universal function ¢{{w) that depends only on the velocities v,v" of the heavy mesons
w = (vv') [1]. This function accumulates information about the long-distance dynamics
and cannot be calculated within the perturbative QCD framework. Our goal in the present
paper is to outline an approach to this problem based on the QCD sum rules [2]. First, we
reformulate the QCD sum rule analysis of the mesons containing one infinitely massive quark,
developed originally by Shuryak [3], to cast it into a relativistically covariant form. Then,
we generalize this analysis to apply it to the form factor problems. Finally, we construct the
QCD sum rule for the Isgur-Wise function and compare our result with two existing quark
model estimates [4, 5].

2. QCD sum rules for mesons containing one infinitely heavy quark. The basic idea of
the QCD sum rule approach [2] is to calculate a correlator of two local currents j(z)

I(P) =i [ (O[T (j(z) j(0) ) 0} d'= ()

for momenta P belonging to a region where one can incorporate the asymptotic freedom
property of QCD wvia the operator product expansion, and then construct the hadronic
spectrum reproducing, as closely as possible, the behaviour of II( P) obtained in this way.

In the case of our interest, j(z) = §(=)I'Q(z) with Q(z) being the heavy quark field and
q(x) that of the light one. The matrix I' = 1,vs,7,, 757, specifies the type of the state:
scalar, pseudoscalar, vector or axial.

The heavy quark limit of the two-point function can be studied using some of the
conventional ways to analize the asymptotic behaviour of Feynman diagrams, say, the a-
representation analysis (see, e.g., [6]). It is easy to establish that when P? ~ m} — oo, the
T-product of the two currents reduces to the product of two factors

(01T (3(=) 5(0))[0) = {O|Tr{T'Sg(~=)I'S;(=, A)}|0), (2)

where the first is the perturbative heavy quark propagator (with the radiative corrections
included) and the second one is the total “gauge invariant” light quark propagator

Si(2,4) = (OIT(a(2)Pexp(ig [ Au(2)d=)(0)I0) (3)

containing both the perturbative part and the nonperturbative one (the nonlocal condensate,
see, e.g., [7]).

To make the dependence on the heavy quark mass mg explicit, we write the probing
momentum P as the sum of O(mg) term and the finite part: P, = (mg + E)v,, with v,
being the 4-velocity of the heavy quark. In the momentum representation, the heavy quark
propagator (to lowest order in «,) looks then like

P-k+tmq mo(l +4) — k B
(P—Fk)?-m} 2mq(E — (kv)} + E? — 2E(kv) + k?
~ (55) 5= + O/ma). (4)



where k is the momentum associated with the light quark. Note, that dependence on the
heavy quark mass mg has disappeared from the leading term. Another observation is that

where p = %1 is the parity of the relevant current. As emphasized by Shuryak [3], the sum
rule for the vector state is the same as for the pseudoscalar one. These states are degenerate
in this limit: the energy levels do not depend on how spin of the (infinitely) heavy quark is
oriented. Another degenerate set is formed by scalar and axial states. However, there is no
degeneracy in parity: the states with opposite parity have completely different properties.
The next standard step is to perform the Borel transformation I*(v, E) — M*(v,¢)

o= [ (G -n(( T (D) o

~ Thus, all the dynamical information is accumulated in the function S,,(‘%’). Note, that in
the rest frame of the heavy quark one has v, = (1,0} and, hence, this function describes the
propagation of the light quark in the imaginary time r = 1/e. As mentioned above, it has
two parts: the perturbative propagator

Spert(w) = ”ﬁ%i + O(a,) + ...

and the nonperturbative part given by the sum of two nonlocal quark condensates

(01a(0)a(=)10) = (70} B(=?), (6)
and )
2 (01g(0)1g(2)[0) = ~ & ra (30} (=) (1)
4 H 162 ? !

all taken at the point (or, better, moment) z = 1v/e.

For the sake of brevity, we omitted the P-exponential, i.e., the temporal gauge v*A, = 0
is implied, in which it reduces to unity. Numerically, the contribution due to the vector
nonlocal condensate is much smaller than that due to the simplest scalar combination and,
in what follows, we neglect it.

For the scalar nonlocal condensate, we use the Gaussian model [7]

®(z’) = exp(2’A?/8),

with the width parameter A determined by the standard value [8] of the ratio

(§D%)/(dg) = \* = 2{a(+G)a)/{da) = 0.4 % 0.1 GV (8)



Taking the usual ansatz “first resonance plus continuum” for the hadronic spectral func-
tion gives the following sum rules

fze—ER/e — /E

0

- 32 / 2 A2
Sy ) Ed _ [ , 9
7€ s — pK exp( 862) (9)
where Epg is the lowest energy level (with negative or, respectively, positive parity) of the
light quark in the static color field and & is the basic energy scale for this system settled by
the quark condensate value:

Trz

K= —g{qq))”3 a2 260 MeV. (10}

Applying the requirement of the best agreement between the two sides of the sum rule we

obtain, for the negative parity states: Eg = 360 MeV for the energy of the first resonance,

E. = 680 MeV for the continuum threshold parameter and f? = 3.9 for the coupling constant

f2. In the positive parity case, we get Er = 1000 MeV for the energy of the Jowest resonance,

E. = 1270 MeV for the continuum threshold parameter and f% = 18.6 for the coupling
constant f?. These results agree with those obtained by Shuryak [3].
The parameter f? is related to the @ — pv decay constant fg by

2 ? 2
F= %'“quQ,

so that fo ~ 1/\/M_Q [3]. For the D-meson this gives fp = 150 MeV and for the B-
meson fp = 90 MeV. To get the experimental masses of the D and B mesons (Mp =
1.86 GeV, Mp = 5.28 GeV') one should take m, = 1.5GeV and m, = 4.9GeV, which are
reasonable estimates for the ¢- and b- quark masses normalized at a near-mass-shell point.
However, any comparison with experimental data would be meaningful only after an accurate
calculation of the O(1/mg)- and O(a,)-corrections.

3. How many poles has the quark propagator? Since the infinitely heavy quark can be
treated as just a source of the color field, a heavy-light meson, in the Mg — oo limit, can
be considered as a system composed by a single light quark. In other words, this is the
simplest possible color neutral system in QCD, providing the best laboratory to study the
properties of an isolated quark in the color field compensating its color charge. To this end
it is instructive to return to eq.(refeq:borel) rewriting it in terms of the imaginary time

ME(r) = Tr{(%—j«)sq(ivr)}. (11)

Its most wonderful property is that it states that a Green-like function describing mesons
is simply proportional to (the projection of) the quark propagator. Note now, that the
mesonic function M*(r), in the narrow-resonance approximation, should be given by the
sum of exponentials

M (r) = Y fleoB (12)
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with E; being the energy of the ith state. Inverting then eq.(11) one concludes that, at large
7, the quark propagator behaves like exp(—E;7). This means that the quark propagator has
a pole at k> = E?, and, hence, E; = Eg can be interpreted as the constituent (dynamic or
whatever) quark mass! Fortunately enough, the value Ep = 360 MeV is just what one would
expect from such a parameter. In fact, eq.(11) implies more than that. It states that the
quark propagator has not a single, but many poles: the number of the poles is determined
by the number of the states the quark has in the external color source.

The statements above might sound paradoxical. However, they become evident, if one in-
corporates a simple quantum-mechanical analogy. For the d-dimensional harmonic oscillator,
e.g., which is an exactly confining system, one has

=]

- W 4/2 d/2 k d - ' - 242
Moac(,r) — (m) = (2w) / é%e {d/242k) P (13)

for the Green function in the imaginary time (see, e.g. ref. [9]}, i.e., it is given just by the
sum of poles (or, more precisely, §-functions) when taken in the energy representation.

Of course, what we are discussing now, is the quark propagator in the presence of an
external color source whose colour is opposite to that of our quark (taken together with
accompanying gluonic field). We are not discussing how a single quatk propagates in an
empty space or in a color neutral background. Such an propagator, however, is of little
practical importance in the real world with confined quarks.

4. QCD sum rules for the B — Dev type decays. To calculate the decay form factor,
one should add an the extra current J#(y) into the correlator and analize the three-point
function T(P, P'), with P = (mg + E)v and P’ = (mg' + E'}v'. In the mg, mgr — oo limit,
this function reduces to the product of the light quark propagator and two heavy quark
propagators. The latter, as discussed above, acquire a very simple form. As a result, T'( P, P’)
depends on the initial and final momenta only through v,v’, E, E’. The dynamic information
again is accumulated in the light quark propagator. For the double Borel transform we get

d*k 1+ ¢ 1 ,
M(El,ég,v,v’) = f (2‘”)4 TI‘{F'(-{_T’;) P#(%}_) qu(k)}e—(kv)/q—(ku e _

149 1+¢ w
() (L st )
r 5 7 TS+ ) (14)
Thus, one should use now the function describing the light quark propagation from the past
point —iv/e; to the future point 1v'/e;. Using the explicit form for SP*"(x), we obtain the
perturbative spectral density in the lowest o, order,

rt _ (81 4+ 82) 081677 < 5y < 81€")
e ) = Ve =T

where v is the angle between v and v’ : w = cosh(y). The nonperturbative contribution is
determined by the nonlocal quark condensate

(39)® (— [:—,+l2+ 2w ) (16)

1 Ez €]_€2

(15)



Taking €; = €3 = 2¢ and assuming again the “first resonance plus continuum” ansatz we
obtain the sum rule for the Isgur-Wise form factor £(w) :

_ E. s (8 4 8g)e(mtn)i2e A orw 41
e o [t [ a8 o] 2 ()]
fré(w)e | ds ” 83 21 + w)va? 1 + K" exp 8e 5 (17)

Note, that this sum rule, in the limit w — 1, coincides with that for f2, since
PP (s, 8, w — 1) = 8(s1 — 32).

This means that £(w) is normalized at zero recoil: £(1) = 1 (cf.ref.[1]). Taking E. = 680 MeV
for the continuum threshold and varying the Borel parameter e within the stability region
e = 400 — 800M eV, we obtain the resulting curve for the {(w) function. Within the accuracy
limits of the method, it can be approximated by

E(W)'QCD SR ~ exp(—0.37v w2 — ].) (18)
Numerically, the QCD SR prediction is rather close to the valence quark model result
E(w)lom = exp(—0.63(w — 1)) (19)

obtained by Isgur (4], especially in the region w > 1.5, where the QCD SR errors caused
by the use of a rough model for the continuum are less significant. On the other hand, our
curve goes lower than that corresponding to the formula

§(w)leom = 1.88 (sinh*y * 1+cosh7) .

obtained by M.Ivanov [5] in his confined quark model.

. Conclusions. Physics of the hadrons containing one heavy quark, is essentially a
light-quark problem. This means it requires a nonperturbative approach. As we observed,
the QCD sum rules provide such an approach enabling one to systematically calculate both
static and dynamic characteristics of these hadrons. From the other side, the heavy-light
systems, in the Mg — oo limit, seem to be an ideal tool to study the nonperturbative
properties of the light quark propagation functions, nonlocal condensates, eic.
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FIGURE CAPTION

Fig.1 Comparison of the QCD sum rule calculation of the Isgur-Wise form factor {(w)
(eq.(18), solid line) with the results obtained in the valence quark model (eq.(19), dash-
dotted line) and in the confined quark model (eq.(20), dashed line).
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