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Abstract

We extend the QCD sum rule analysis of the pion electromagnetic form factor Fir(Q?) into
the region of moderately large momentum transfers 3 GeV?<Q? <10 GeV?, where one should
take into account the effects due to nonzero average virtuality of the vacuum quarks and,
gluons.



1.Introductory remarks. Though the perturbative QCD is undoubtedly an adequate tool
to study the asymptotic Q* — oo behavior of hard exclusive reactions (1, 2, 3, 4,-5], there is
still no agreement about whether the accessible momentum transfers are large enough to be
treated as the asymptotic ones. There is a belief [6, 7] that one can apply the perturbative
QCD approach for the pion form factor at Q? > 3 — 4GeV? by calculating the hard-gluon
exchange diagram and using the “camel’-type pion wave function proposed by Chernyak
and Zhitnitsky [8]. The nonperturbative soft contribution is assumed to be negligibly small
above 3 GeV2. Our point of view [9] (coinciding with that of Isgur and Llewellyn-Smith {10})
is precisely the opposite one: we claim that the soft contribution itself is sufficiently large to
describe the data, while the one-gluon exchange diagram can be treated as a small O(a, /)
radiative correction. This statement is based on the QCD sum rule calculation of the pion
form factor at intermediate (0.5 GeVZ<Q?<3 GeV?) [11, 12] and small (0 < Q* < 0.5 GeV'?)
[13] momentum transfers. However, it is very desirable to support it also by an analysis of
the soft and hard contributions for higher Q2. Our goal in the present paper is to extend
the QCD sum rule analysis of refs.[11, 12] into the region of moderately large momentum
transfers 3 GeV?<Q*<10 GeV2.

2. QCD sum rules for the pion form factor. Among existing approaches to the analysis
of the nonperturbative effects in QCD the most close to perturbative QCD is the QCD sum
rule method [15]. To apply it to the pion form factors one should consider both the operator
product expansion
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for the relevant three-point function T'(p?,p?, ¢?) calculated at sufficiently large spacelike
values of the momenta p;,ps corresponding to the local currents with the pion quantum
numbers (we take the axjal current jg = dvs7*u, its projection onto the pion state |P, )
being proportional to the pion decay constant fy : (0|j2|P,x) = ifP®). A similar dis-
persion representation (with the same subtraction terms) holds for the perturbative term
TP*t(p?, p3, ¢*). The relevant spectral density
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is a smooth function describing the transitions between free-quark #d-states with invariant
masses 8, and s,, respectively. It differs, of course, from the physical (hadronic) spec-
tral density p(s1, 32, @?) that contains the term corresponding to the pion elastic form fac-
tor pre(s1, 82, Q%) = T2 f2F.(Q?)6(sy — m2)8(sy — m2) and the contributions correspond-
ing to transitions involving higher resonances. The difference between p{s,,sz,¢%) and
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PP (3, 32, ¢°) is reflected by the nonperturbative contributions to T'(p}, p3, ¢*) proportional
to quark and gluon condensates {(gg), (GG) ete. -—

The model spectral density p(s1, 92, %) should give the best possible agreement between
the two expressions for T (eqgs. (1) and (2)). The simplest approximation is to assume that
higher states contributions are reproduced by the perturbative spectral density

P("hs'b Qz) = P‘l"ll'("la"2a Qz) + (1 - 0(31 < 30)9(33 < 30))”?"‘("1"’3! Qz)‘l (4)

with 8o being the effective threshold for the higher states production. Normally, so corre-
sponds to the midpoint between the lowest state and the first resonance. Since the A;-mass?®
is 1.6 GeV'?, one should expect that so in our case should be about 0.8 GeV2,

Combining the two expressions and using the Borel transformation {15] (it produces an
exponential weight in the dispersion integral) one obtains the QCD sum rule
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with the coefficients a and b specified by the OPE.

Then, performing a fitting procedure, one finds the value of so that provides the most
stable result for f2F.(Q?) in the widest possible range of the auxiliary Borel parameter
M?. There exists a correlation between the value of f2F»(Q?) in the stability region and
the relevani parameter 5. To a good accuracy, it can be described by the (local) duality
relation, following from the SR (5) in the formal M? — oo limit v
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The condensates are formally absent in this relation. However, the value of the duality
interval sq, extracted from the fitting procedure, is determined by their magnitude, or more
precisely, by the ratio of the condensate contribution to the perturbative term.

The form of the 1/p? expansion (OPE) for the three-point amplitudes T(p?,p%, q*) de-
pends on the interrelation between ¢° = —Q? < 0 and |p?}. The simplest, symmetric
situation |p?| ~ |pi| ~ Q7 (intermediate Q) was studied in refs.[11, 12]. In this case
a=1"0b= % (13 + —OMé) . It is instructive to compare these values to those present in the
QCD sum rule for the pion decay constant {15}:

(6)
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Thus, the sum rule for f2F,(Q?) is similar to that for fZ, but the relevant (GG)-term is
smaller by factor 2 and the a,{gq)*-term is smaller by factor ~ 3.5. This suggests that the
value sq = 47?f? dictated by the f2 sum rule will be reproduced by the form factor sum rule
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only in some intermediate Q*-region where F,(Q?) varies between 0.5 and 0.3, i.e., for Q?
between 0.5 GeV? and 1 GeV2, This suggestion is supported by an explicit fitting.procedure:
56 = 0.7GeV? for Q® = 0.5GeV? and 30 = 0.9 GeV? for Q* = 1GeV?2. For higher Q2 the
fitting gives larger values: so = 1.0GeV? for Q? = 1.5GeV?, while for Q*<0.5GeV? one
would formally obtain values smaller than 0.7 GeV?. However, in the region of small @2,
one should use a modified form of the OPE [13], containing extra terms which vanish as Q?
increases. In particular, for Q* = 0, the condensate contributions in the form factor sum
rule coincide with those in the f2 sum rule (this consequence of the Ward identity insures
that F,(0):= 1 ) and then decrease to the values obtained in the symmetric kinematics,

e.g,a=(1+ '—"-%_%7) Hence, in the small-Q? region, the condensate contributions decrease

together with the perturbative term, and, as a result, the scale sy remains more or less
constant and close to the original value so ~ 47*f7.

In ref.{12), it was demonstrated that the local duality prescription (6), with the constant
value sy = 472 f2 ~ 0.7 GeV?, gives the contribution sufficiently large to describe the data
up to Q ~ 4GeV?. With so growing as Q? increnses, one gets even larger contributions.
However, a universal, Q?-independent value for s, is more natural [12, 16, 9]. In particular,
the local duality formula (6) in this case allows for an interpretation in terms of the effective
light-cone wave functions ¥(z, k1) ~ 8(k1 < z(1— z)s0)- »

On the other hand, the QCD sum rule (5) apparently indicates that the scale so should
be a growing function of Q? because, when Q? increases, the perturbative term decreases
(eventually, as 1/Q* for large Q?); whereas the condensate contributions remain constant,
with the quark term even growing. The ratio of the condensate terms to the perturbative
one increases and, as a result, all the hadronic scales induced by the (effectively increasing)
condensate contributions are also growing with Q.

The fact that the condensate contributions in the form factor sum rule are constant or
even growing with Q? is surprizing, since the form-factor-type diagrame should generate
the contributions decreasing as Q2 increases. But the diagrams producing the condensate
contributions differ from the ordinary diagrams: some propagators are substituted by con-
stant factors, e.g., quark propagator (T(g(z)3(0))) is substituted by the quark condensate
{(§(0)g(0)). As a result, instead of a Q?-dependent contribution one obtains a constant one.
The dependence on Q? appears when one calculates the contributions of the higher-dimension
operators {§(0)D?g(0)), {g(0)(D*)?q(0)) etc., produced by the Taylor expansion of the orig-
inal nonlocal condensate {7(0)g(z)}, the nonperturbative part of the quark propagator. The
resulting total condensate contribution decreases for large Q2. Each term of the standard
OPE, however, has the structure (Q*/M?)", and one should resum them to get a meaningful
result. Our strategy is to avoid the original Taylor expansion and deal directly with the non-
local condensates. This leads to a modified diagram technique, with some lines and vertices
corresponding to the nonlocal condensates.

9. Nonlocal condensates [14]. At the two-loop level, to which we restrict our analysis
here, one needs bilocal quark and gluon condensates, trilocal quark-gluon condensates and
four-quark condensates. For explicit calculations, it is convenient to parametrize the bilocal



condensates a la the well-known a-representation for propagators:
M(2) = (@0)g(=)) = (@Oa(0) [ ¢/ fs(v) v (8)
M,(2) = (@O na(e) = —izd [ &1 frlv)d (9)

where A = :—lra.(@‘q)z. The trilocal condensates

Moy, 2) (@011 Au(v)a(2)) = (zat — G (29)) M1 + (Wt — Gut”)Ma + ... 1 (10)
Mu(y,2) (G015 4u(¥)9(2)) = €upy’s"Ma + ..., (11)

can be parameterized by a triple integral representation of the same {ype:

Mi(zz, ¥ (z - y)’) = A; fw e ® [+ (A=) [4 fi(v1, va, v3) dvrdvadus. (12)
0

where A; = {'——%’A, 24, %A} The four-quark condensates are factorized via the vacuum
dominance hypothesis into a product of two bilocal quark condensates.

All fields are taken. in the Fock-Schwinger gauge 2#A,(z) = 0 where the path-ordered
exponentials (required by gauge invariance) are equal to 1 and the covariant derivatives
coincide with the ordinary ones. '

Expanding the nonlocal condensates into a Taylor series over the local ones is equivalent
to an expansion of f(v)'s over §™(v). In the limiting case of the standard local condensates
one has fs = §(v), fv = 8'(¥), fi(vy, v2,vs) = &§(11)8(v2)6(vs). Including the next term gives,
e.g., fs(v) = &) — LA28'(v) + ..., with ¢

(gD%q)
(dq)
being the parameter characterizing average virtuality of the vacuum quarks. It is inversely
proportional to the correlation length of the nonperturbative vacuum fluctuations. Retaining
only the lowest term of the Taylor expansion amounts to the assumption that this correlation
length is infinite, which, of course, is not true, e.g., existing estimates [17] indicate that A2 ~
0.4 GeV?. To study the effects due to the finite correlation length, we use a simple Gaussian-
type model [14] for the coordinate dependence of the nonlocal condensates, fixing the width
parameters by the estimates of the relevant operators containing an extra D?. In particular,
we take fs(v) = 6(v — 0.5)2); fv(v) = 8'(v - 035 A%} for the bilocals, and fi(n, v, v8) =

5(n — 0.202)8(v2) 6(vs — 0.2A2); fa(vn, v, vs) = &(vy) 8(vy — 0.523}6(ws — 0.222) ;
falvr,va,vs) = 6(1n) 6(ry — 0.2 /\:) 8(vy — 0.2 /\:) for the trilocals.

4. QCD sum rule with nonlocal condensates. The simplest contribution is due to the M,
condensate:

2
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where zo = 0.35A2/M?. Just as expected, this term eventually vanishes for large Q?, and
the bigger the AZ-parameter, the faster this contribution decreases with Q.  -—

The largest contribution is that due to the four-quark condensate. In the factorized form
it reads

1 1 1 1 T 2 2
A aaf s d [ v oi(a—b)Ne-9) fo (-——21 f’b) s (ﬁ”fa)
(@t Vbeg {_ Q*y(abzy — absy) }
(a + 1)bzg — a(b+ 1)Ty 2M2j|(a + 1)bzg — a(b+ 1)3y] |

(15)

It should be noted that the argument of the exponential function is always negative in the
integration region. Again, using the Gaussian ansatz, one can see that this term decreases
with Q2, and the bigger A2, the faster the decrease.

The contribution due to the trilocals has a similar, though more complicated, structure:

44 1 1 1 Q? i a 1
24 d _ _=
81M2./; d"fo fu’fa d”fo ye"p{ 3M? (2E(a+1) tie+ D) 2)}

a(y - 3:)2 a; {QS,'P;(MI, a, b,:c,y) + J’,‘S{(Mz, aabﬂ:!y)} (16)

=1

where the ¢-functions are related to the quark-gluon vacuum distributions

_ £ . , 2EbM? 2(y — z)M? .
. _ & . , 2(y—-z)M? 2zbM?

and P;, S; are some coefficients.

The diagrams with nonlocal gluonic condensate produce even more complicated expres-
gions. However, in the region of intermediate Q?, the gluonic term is numerically less signifi-
cant than the quark contributions. By analogy with the quark case, we assume that the con-
tribution due to the gluonic condensate also acquires an exponential factor exp (——A:Q’/M 4).

5 Numerical results. Understanding that our models for the vacuum distributions are
rather rough, we allowed the quark virtuality parameters to vary: A: was varied between
0.4 GeV? and 0.8 GeV'? and A2 varied between 0.and 1GeV2.

If A2 = A2 = 0 (the local condensate approximation), then the magnitude of the param-
eter sq, providing the best M?-stability for f3F.(Q?), rapidly increases with Q*. However,
the stability region is rather narrow even for the “best” values of so. A very good stability,
- practically a constancy of the r.h.s. of eq.(5) in the region 1GeVi<M?<2.3GeV? was
observed for A2 = 0.6 GeV?, 0.5GeV? < A2 < 0.75GeV? and A} = 0.8 GeV?, A2 = 0.5GeV?.
Rather good stability is obtained also for 0.6 GeV? < Al < 0.8GeV? Al =103 GeV2.

The values for the pion local duality interval so obtained from the fitting procedure are
shown in Fig.1 . One can see that, for the most popular value Al =104 GeV?, the increase
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of s, with Q? is much slower than in the zero virtuality case. It is even more slower for
A =06GeV? A remarkable fact is that if one takes A2 = 0.8 GeV?, the effectivethreshold
30 is constant till Q? = 10 GeV2,

The Q*-dependence of the soft contribution to the pion form factor calculated from our
sum rule is demonstrated in Fig. 2. Only the results obtained with A2 = 0.6 GeV? and
A2 = 0.8 GeV'? are shown. The curves corresponding to A2 < 0.6 GeV? go much higher than
the experimental data.

Our results depend, of course, on the models we used for the nonlocal condensates. It
should be emphasized, however, that our sum rule is dominated by the contribution due to
the four-quark condensate {(0)g(=)d(¥)a(2)) approximated by the product of the simplest
(§(0)q(2))-type condensates. This approximation amounts to neglecting the dependence
on the distance between the two gg pairs. With this dependence taken into account, the
dominant term will fall down faster, and the so = const result will be obtained for A:-va.lues
smaller than 0.8 GeV?.

6. Hard gluon ezchange contribution. Thus, the soft gluon contribution alone is suffi-
ciently large to describe existing deta on the pion form factor. However, one can also take
into account the O(a,) contribution to p*™*{(sy, s2,¢") containing the asymptotically domi-
nant hard gluon exchange term. The two-loop calculation is rather complicated but, as a
rather accurate approximation for the local duality integral, one can use a simple formula

f.o ds, fm ds2 ApP (81, 92,9°) =
0 )

a__ s
4r 1 4+ Q2/2s0
N

based on interpolation between the Q> = 0 value (related by the Ward identity to the
O(c,) term of the 2-point correlator) and the large-Q* behavior. In contrast with the
asymptotic perturbative QCD formula F}"¢ ~ 1/Q?, eq.(19) contains the subasymptotic
terms: 1/Q? — 1/(Q? + 2s0), and the resulting contribution is smaller than the asymptotic
one. In fact, if one takes the “canonical” value so = 472 f2 = 0.7 GeV?, the two-loop term
(19) contributes less than 0.1 GeV? to the “almost scaling” combination Q*Fy(Q?), i.e., by
factor 4 less than the soft contribution estimated under the same assumption.

The advocates of the pQCD applicability argue, that the hard-gluon exchange contribu-
tion is larger if one uses the wave function @C2%(€) = R fiE3(1 — £*) proposed by Chernyak
and A.Zhitnitsky [8] on the basis of the QCD sum rule for the moments of the pion wave
function

(19)

3M? 1 — et/M’ a, (GG) . 167ma,{(3q)?
dx? (N + 1)(N +3) ' 12xM? S1M*

£y = (11 + 4N). (20)
This sum rule has a striking similarity to the pion form factor sum rule (take N ~ Q*/M?):
the perturbative term vanishes like 1/N? for large N, while the (§q)- and {GG)-terms are
constant or even increasing with N. The ratios of the nonperturbative terms to the per-
turbative term grow with N and, as a result, the parameters s,(,N) and the combinations
F2(EV) straightforwardly extracted from the SR (20) are larger than the asymptotic values
a¥=0 % 0.75GeV? and f2{eN)* = 3f2/(N + L)(N + 3) by factors 2 (for N = 2) and 3
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(for N = 4). This is precisely the same effect that produced the growth of so and Fy(Q?)
for Q? > 2GeV?. The large value (£?) ~ 0.4 can be attributed only to & wave function
concentrated in the €2 ~ 1 region, and this is how the CZ wave function is obtained. The
crucial assumption in this derivation is that it is sufficient to take into account the lowest lo-
cal condensates, which amounts to taking A2 = 0. However, the soft contribution calculated
with A2 = 0 is much bigger than the data for Q%> 2 GeV?. This agrees with the observation
made by Isgur and Llewellyn-Smith {10] that the use of a (three-dimensional} CZ-type wave
function produces a huge soft contribution, well above the data. The hard contribution cal-
culated in pQCD with CZ wave function is about the data, but soft and hard terms taken
together are too big.

When one uses the nonlocal condensates, the parallelism between the sum rule for the
pion wave function and that for the pion form factor persists: the nonperturbative terms
in the modified wave function sum rule start to decrease with N, just like their analogues
started to decrease with Q?. Furthermore, the larger /\:, the faster they decrease. If one takes
A2 > 0.4 GeV?, the pion wave function extracted from the modified sum rule is much closer to
the asymptotic wave function p®*(£) = 2 f2(1—¢?) than to the CZ one (14]. Thus, an increase
in the magnitude of A2 decreases the soft contribution and, at the same time, produces the
pion wave function that is more and more closer to the asymptotic wave function. As a
result, the “hard” contribution also decreases. Taking A?=106-08 GeV'?, one obtains a
soft term close to data in magnitude, and & hard term that is smaller than the soft term by
factor ~ 3 -~ 5. :

7 Conclusions. Our main result in this paper is that the QCD sum rule for the pglon form
factor F,(Q?) has a structure very similar to that of the sum rule for the moments (¢7V) of the
pion wave function. As a consequence, it is impossible to obtain the large value (£2) ~ 0.4,
producing the CZ wave function, without getting a very large soft contribution to the pion
form factor in the region Q% 2 GeV?2. Using the nonlocal condensates, it is possible to reduce
the soft contribution to the level dictated by experimental data. To this end, one should
take a sufficiently large value /\: > 0.4 GeV? for the parameter A, characterizing average
virtuality of the vacuum quarks. However, the moments of the pion wave function then also
get smaller, and the resulting pion wave function cannot produce a large hard contribution.
All these observations unambigously indicate that the soft contribution, corresponding to the
Feynman mechanism [18], dominates the pion form factor at accessible momentum transfers
Q?<10 GeV?. However, in the region Q* ~ 10 GeV? one should take into account also the
suppression of the soft contribution by the Sudakov form factor of the active quark. These
studies are in progress now.
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FIGURE CAPTIONS

e Fig. 1 Dependence of the continuum threshold parameter s on Q? for various sets of
A2 and AZ:
- a) A =0,)]=0;
— b) A2 = 0.4GeV?, )2 = 0.75GeV%;
- ¢) A2 =0.6GeV? A2 = 0.75 GeV?;
C = d) A2 =0.6GeV?, )2 =0.3GeV?
—e) Al =06 GeV?, A1 = 0.5GeV?
— f) A2 = 0.8GeV2
e Fig. 2 Dependence of the combination Q*F.{Q?) on Q? for various sets of A2 and A}:
-a) Al = 0.6 GeV? A2 = 0.3GeV?
b) A2 =0.6GeV?, A} =05 GeV?;
¢) A = 0.8GeV? A2 = 0.3GeV?;
d) X2 = 0.8 GeV?, A2 = 0.5GeV?.
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e Fig.

1 Dependence of the continuum threshold parameter so on Q? for various sets of
/\: and z\gz

a) A2 =0,A2 =0

b) A2 = 0.4GeV?, A2 = 0.75GeV?
c) A2 = 0.6GeV?, A} = 0.75GeV?;
d) A2 = 0.6GeV?, 2} = 0.3GeV?;
e) M2 =0.6GeV?, A} =05 GeV?
£) A2 = 0.8 GeV™.
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o Fig. 2 Dependence of the combination Q2F,(Q?) on Q? for various sets of Al and A2:
- a) A: = 0.6 GeVz,/\;‘; = 0.3 GeV?
~ b) A2 =0.6GeV? A2 = 0.5GeV?,
— ¢) A2 = 0.8GeV? A2 = 0.3GeV?

d) A2 = 0.8GeV?, A2 = 0.5GeV2,



