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Abstract

The QCD sum rule calculation of the pion wave function by Chernyak and Zhitnitsky is
implicitly assuming that the correlation length of vacuum fluctuations is large compared to
the typical hadronic scale ~ 1/m,, so that one can substitute the original nonlocal objects
like {§(0)q(z)) by constant (§(0)q(0))-type values. We outline a formalism enabling one
to work directly with the nonlocal condensates, and construct s modified sum rule for the:
moments {¢V) of the pion wave function. The results are rather sensitive to the value of the
parameter A? = (§D?q)/(dq) specifying the average virtuality of the vacuum quarks. Varying
it from the most popular value A? = 0.4 GeV? up to the value A} = 1.2 GeV'? suggested by
the instanton liquid model, we obtain (¢2) = 0.25 — 0.20, to be compared to the €Z value
(€?) = 0.43 obtained with A = 0.



1.Introductory remarks. The standard trick incorporated in all the approaches based on
the asymptotic freedom of QCD and factorization is the introduction of some phenomenolog-
ical functions and/or numbers accumulating necessary information about nonperturbative
long-distance dynamics of the theory. The most important examples are:

e parton distribution functions f,/z(z) used in the perturbative QCD approackes to
hard inclusive processes [1],

o hadronic wave functions ¢.(z), pn(Z1,%2,23), etc., which naturally emerge in the
asymptotic QCD analyses of hard exclusive processes (2, 3, 4, 5, 6]

¢ quark and gluon condensates (§(0)g(0)), (G(0)G(0)), the basic parameters of the QCD
sum rule approach [7], describing the nonperturbative nature of the QCD vacuum.

The hope is that in some future approach they all will be calculated from the first
principles of QCD without any model and/or ad hoc assumptions. A less ambitious program
is to calculate the hadronic functions f(z),¢({z}) using the QCD sum rules [7], with only
the condensate values ireated as input parameters.

While the parton distribution functions can be extracted rather reliably from experi-
mental data, the situation with the hadronic wave functions is much more complicai,ed.'
Normally, they appear only in an integrated form. Furthermore, the very applicability of
the perturbative QCD formulas at accessible energies is questionable [8, 9]. In this situa-
tion, the QCD sum rule approach ‘and lattice calculations are the only reliable way to get
information about the form of the hadronic wave functions. In particular, the most’ popular
set of hadronic wave functions [10], due to Chernyak, A.Zhitnitsky and I.Zhitnitsky (CZ),
was produced with the help of QCD sum rules.

One should remember, however, that the operator product expansion, the starting point
of any QCD sum rule analysis, has different forms depending on the situation. Presence of
a large (or small) extra parameter might essentially modify the expansion. The most well
studied example is the modification of the OPE for the form factors at small momentum
transfer ¢ [11, 12]. In that case & simple-minded extrapolation from the region of moderately
large q is completely unjustified: one cannot reproduce in that way even the normalization
conditions like F,.(0) = 1. Qur goal in the present paper is to show that calculating the N > 2
moments of the pion wave function one faces another situation requiring a modification of
the underlying expansion. We construct a modified sum rule and show that, for a standard
choice of the condensate values, it produces the pion wave function that strongly differs from
the CZ form.

2. Pion wave function and QCD sum rules: criticism of the CZ-approach. The first
application of the QCD sum rules to the pion wave function p.(x) was the calculation of
its zero moment, i.e., the pion decay constant f, , in the pioneering SVZ paper {7]. It was
calculated there within 5% accuracy. This success inspired Chernyak and A.Zhitnitsky [13]
to calculate the whole pion WF by reconstructing it from the next moments {¢¥) (where
¢ = 2z — 1). They extracted (¢2) and (¢*) from the relevant SR precisely in the same way



f« value. However, the nonperturbative terms in their sum rule
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completely different N-dependence compared to the perturbative one and, a priors, it
lear whether a straightforward use of the N = 0 technology can be justified for higher
e scale determining the magnitude of all the hadronic parameters including so (the
wtum threshold” (7)) is eventually settled by the ratios of the condensate contributions
serturbative term. If the condensate contributions in the CZ sum rule (1) would have
ne N-behavior as the perturbative term, then the N-dependence of (¢V) would be
ined by the overall factor 3/(N + 1)(N + 3) and the resulting wave function ¢(x)
coincide with the “asymptotic” form [4, 6]

w2*(z) = 6frz(l — z). (2)

vever, the ratios of the (gq) and (GG)-corrections to the perturbetive term in eq. (1)
wing functions of N. In particular, in the (3q) case, the above mentioned ratio for
is by factor 95/11 larger than that in the N = 0 case. For N = 4 the enhancement
equals 315/11 . As a result, the effective vacuum scales of (mass)* dimension are by
(95/11)1/% =~ 2.1 and (315/11)Y/® ~ 3.1 larger than that for the N = 0 case. Ap-
ately the same factors (5!/2 & 2.2 and (35/3)'/2 ~ 3.4) one obtains also for the gluon
isate term. Hence, the parameters JSN) and the combinations f2(¢V) straightfprwardly
.ed from the SR (1) must be larger than the “asymptotic” values sN=0 2 0.75 GeV?
(¢¥)as = 3f2/(N + 1)(N + 3) just by the factors 2 (for N = 2) and 3 (for N = 4).
are just the results obtained in Ref.[13].
better understand the structure of the relevant power series it is instructive to rewrite
. for the pion wave function ¢.(z) itself [14):

Tor(e) = AL - e (e) + T 5(e) + 8(1 - <)
;B melddl sy 4 50— 2 4 A8 @) + -2 ()

81 M+

e O(1) and O(N) terms in eq. (1) correspond to the §(z) and §(z)-terms in eq.(3). In
a, presence of the §(z)-functions in eq.(3) is evidently indicating that the vacuum fields
:ated as carrying zero fraction of the pion momentum. This can be easily understood
erving that the operator product expansion (underlying eqs.(1),(3)) is, in fact, a power
expansion over small momenta k of vacuum quarks and gluons. Retaining only the
nd (GG)-terms (like in egs.(1),(3)) is just equivalent to the assumption that k is not
- small but exactly equals zero.

wever, it is much more reasonable to expect that the vacuum quanta have a smooth
ation with a finite width g. In configuration space, this means that vacuum fluctua-
1ave a finite correlation length of the order-of 1/u , so that the two-point condensates
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The expansion of the condensate M (z%) over the local condensates corresponds to that
of the distribution function fs(r) over the §*)-functions: -

fs(v) =8(v)— Lsb'(v) + ..., (7)
with Ls fixed just by the average virtuality of the vacuum quarks (eq.(4)): Ls = A3/2.
There is another (vector) bilocal condensale M,, = {§(0)v.4(z)} , containing a y-matrix:

(@O el = ind [ ¢ fylw)ay @

where A = Zwa,{(3q)®. The zeroth moment of fv(v) is zero in the limit of massless quarks,
and that is why the §(")(v)-expansion for fy(v) starts with the §'(v} term :

fr(¥)=8)-Lvé&"(v)+..., (9)

with the parafnetér Ly determined by the magnitude of the condensates of dimension 8.
For the gluonic nonlocal condensate, in the Fock-Schwinger gauge, one has

‘ (GG)
384

where the Mc-function depends not only on the interval (z — y)?, but also on 2? and y?.
However, since the coefficients in front of z? and y? in the expansion

(GD2G) - 2(5%)

(AZ(Z)At(y)) = §% (Yuze — G (2¥)) Me((z - y)z’ zz’yz) +.o.. (10)

2 F4 ¢
v+

1 R
are rather small, one can start with the approximation
Mo(2,9%, (z = y)) = [ e /A f5(v) dv (12)

introducing the distribution function fg(v).
There are three simplest trilocal quark-gluon condensates

ﬁifw(ya z) = (@(0)r Au(¥)a(2)) = (zuy ~ 9 (z¥)) M1 + (Yuyo — guvyz)M! +... (13)
Mu(y.2) = (0)nrsAu(y)e(2)) = €mpy’2" M + ... (14)

The functions M;_3; can be parameterized by the triple integral representation:
Mi(22,4%, (2 — y)) = A f e # Mba? [ -oP [0 £y e) duydiadys. (15)
0

where A; = {—24,24,34}. The limiting case of the standard local condensates (corre-

sponding to A2 — 0) is obtained by the substitution fi(v1,vz,vs) — 8(v1)8(12)6(va).
Incorporating the nonlocal condensates as described above, one arrives at a modified

diagram technique, with some lines and vertices being the ordinary perturbative ones, and
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some corresponding to the nonlocal condensates. Increasing the number of loops, one should
consider the condensates containing more and more fields. We restrict our analysis here by
the two-loop level. Then, in addition to those already listed, one encounters the four-quark
condensate. To simplify the calculation, we apply the vacuum dominance hypothesis and
{factorize it into a product of two bilocal ones.

4.Sum rule. Using the representations (4)-(7), and calculating the coefficient functions we
obtain a modified QCD sum rule, with the é-functions of eq.(3) substituted by the functionals
6®;(z) of 6 vacuum distribution functions:

Hor() = A (1 e (2) 4 {42 f(eM?) + L 68:(2) + 68c(z)} + (= — 2) (16)

=1

where # = 1 — 2, M? is the Borel parameter and
| , i
perti ) — Bza{l Gere T Tl
. B | (z) = 6z3{ +Cp4w[5 3 + log (z)]}

is the “perturbative” contribution (free quark loop plus O(a,) radiative corrections).

The simplest contribution, proportional to the fy-function taken at v = zM?, is displayed
explicitly in eq.(16). Other contributions have a more involved form (see ref.[17]).

The most intriguing conclusion to be drawn from eq.(16) is that p.(z) , the longitudinal
momentum distribution of quarks inside the pion, is directly related to f(v), the virtuality
distribution of quarks and gluons in the vacuum. Therefore, it is very important fo know
the form of the latter to estimate the moments (¢V), for N > 0.

5.Modelling f;(v). To obtain the original SR (3), one should take the first term of the
§(M—expansion for the f(v)'s. It should be understood that this approximation is really the
simplest model for the distribution functions f(»). However, such a model (used, as a matter
of fact, by CZ [13]) is evidently too crude if the L;-parameters characterizing the width of
fi{v) are comparable in magnitude with the relevant hadronic scale. In this situation, instead
of the standard expansion over the local condensates we propose to use an expansion in which
the (relatively) large average virtuality of the vacuum fields is taken into account just in the
first term. For the functions M(z?) having a finite widths of an order of 2, it is much more
preferable to use the expansion of f(v) over §("}(v — p?). The first term of this expansion

M(z*) = M(0){ ¥4 + ..} (17)

takes into account the main effect caused by the finite width of the function M(z?), while
subsequent terms describe effects due to the deviation of its form from the Gaussian one.
To construct the Gaussian ansitze one should know the second term of the z*-expansion
of the relevant nonlocal condensates, e.g., incorporating eq.(4) we take fs(v) = &(v — A2/2).
For M, the situation is more complicated: Ly is determined by 5 different LC, the
values of which are poorly known. The simplest model is to assume that all the nonlocal
distributions have the same width. So, we take fi'(v) = §'(v — A2/2). Of course, it is more
reasonable to expect that the shift parameters L;, though all of the same order of magnitude,
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are still numerically different. Another model for Ly is to extract the part proportional to
(3D*q)(3q) from all the relevant LC of dimension 8 and neglect the remaining contributions.
This gives the value Ly = 575,\:, rather close to the naive estimate.

In a similar way we construct the model for the trilocal functions:

filvr, va, va) = Aib(vy — L{)6(va = LP)s(vs — L. (18)

One can try to determine L(j)’s from the expa.nsion of the relevant NLC by retaining only
the (§D?q)(gq) part of the coefficients in front of z2,y? or (z — y)?, respectively. This gives

Li = {&,—57 2} for the fi-function, L = {192,:;;, 2322 for the f;—function and

L = {—&,%,1}A2 for the fs-function [17]. According to these estimates, the trilocal
condensates in some directions decrease much slower than in the others, and sometimes even
increase when the distance between the quarks increases, which is completely unrealistic.
Hence, it is not safe to neglect other LC estimating the width parameters and, in the absence
of a reliable modél of the QCD va.cuum we simply assume that the trilocals decrease at the
same rate in all directions and take L) = )2 /2.

To model the nonlocality effects for the gluonic contribution, we assume, by analogy
with the quark case, that the §(z) terms of the O({GG}) contribution (eq. (3)) should be.
substituted by §(z — Lg/M?) in eq.(18), with Lg = 5)\:, as suggested by eq.(11).

6. Numerical estimates. Within the simplified version of our Gaussian (“delta-function”)
model for the nonlocal condensates, the pion wave function sum rule has the following form:

2 ‘
Frpe(®) = M1 - &)@ (2) + s (GG)S(z — 38) +

4x2
b spygrentia{a8'e - )+ 18—2‘,—‘("1'—‘-5‘5’—)-(:: +(A-2)log(2)) +

3 [8(z - A)— b(z - 24) (2+A)

1A A —(1-A)(z— D)+ (1 - 2A)—— 6(::—-2A)] -
BA<z<2A)[ 3= 2 A+ 2%
2% A 1—A+Z((3'1—A)]}
+(z — %)
(19)

where A = A\2/2M*.

Main observation is that in place of the §(z)-type contributions we have now either the
§-functions with the shifted arguments or the functions that are smooth at =z = 0. In both
cases, the moments of such terms decrease as N increases. Hence, for sufficiently large
values of ), there is no dramatic increase in the ratios of the condensate contributions to
the perturbative term. Taking A? = 0.4 GeV'? [15], we obtain for the lowest moments

(€*) = 0.25 (€Y = 0.12 (¢%) = 0.07. (20)



These values do not differ strongly from those corresponding to the asymptotic wave
function. Therefore, it is not surprising that the model WF -

oo (z) = —f,\/a:(l Z2), @m(z) = 6fez(l - z) (1 + -3-(1 _52(1 - z))) (21)

reproducing these values (20), are also close to the asymptotic wave function. The second
model corresponds to the expansion over the Gegenbauer polynomials C3/*(£) (the eigen-
functions of the evolution equation [4, 6]).

Thus, the moments of the pion WF are rather semsitive to the functional form of the
nonlocal condensates. The faster the NLC decrease with the distance, the faster is the
decrease with N of the relevant contribution into the (¢¥) sum rule. Of course, in the A, — 0
limit, eq.(19) reduces to the original CZ sum rule (3),(1), and one obtains large CZ values for
the moments, With A2 = 0.4 GeV?, the condensate terms still decrease more slowly with N
than the perturbative contnbutmn, and the (£¥)-values (20) are still larger than (¢V)**. To
get the asymptotic value for (¢?), one should take A2 = 1.2 GeV?. Surprizingly enough, it is
this huge value of A2 that is favoured by a calculatlon within a rather realistic QCD vacuum
model developed by Shuryak [16]. The recent lattice result (£2) = 0.11 {19}, is still rather far
from these values, but the disagreement might be essentially reduced by a renormalization:
factor (of order of 1.5) not included into the quoted lattice value. .

Our results depend on the models we accepted for the nonlocal condensates. However,
the sum rule is dominated by a single contribution (the second term in the braces in eq.(19))
which is due to the four-quark condensate {F(0)g(z)d(y)q(2)}, factorized via thesvacuum
dominance hypothesis to the product of the simplest (g{0)g(z))-type condensates. This
factorization amounts to neglecting the dependence on the distance between the two gg
pairs. If one takes this dependence into account, then the dominant term of eq.(19) will
produce the contributions that will faster decrease with N, and the resulting (¢V) will be
even farther from the CZ values.

7.Conclusions. Our basic idea in the present paper is that the nonperturbative informa-
tion about the QCD vacuum structure should be accumulated in the functions describing the
momentum distribution of the vacuum quark and gluonic fields. For the vacuum, these func-
tions play the role analogous to that of the parton distributions in the case of the hadrons.
Ideally, the vacuum distribution functions should -be calculated from the theory of the QCD
vacuum. In the absence of such a theory, one can incorporate the fact that the same vac-
uum distribution functions appear in different NLC-modified QCD sum rules for hadronic
wave functions, parton distribution functions, hadronic form factors eic. This opens a pos-
sibility of finding the vacuum distribution functions (universal for all the hadrons) from the
experimentally known hadronic functions.
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