Object Oriented Run Control for

. W

CEBAF Data Acquisition System!

David R. Quarrie, Graham Heyes, Edward Jastrzembski, William A. Watson II1
Data Acquisition Group
CEBAF MS 12H,
12000 Jefferson Avenue,
Newport News VA 23606, USA

Abstract

After an extensive evaluation, the Eiffel object oriented lan-
guage has been selected for the design and implementation of
the run control portion of the CEBAF Data Acquisition System.
The OSF/Motif graphical user interface toolkit and DataViews
process control systemn have been incorporated into this frame-
work. We discuss the evaluation process, the status of the imple-
mentation and the lessons learned, particularly in the use of
object oriented techniques.

INTRODUCTION

CEBAUF, the Continuous Electron Beam Accelerator Facility, is
an electron accelerator with an energy of 4 GeV/c presently un-
der construction. It is designed to allow the detailed investiga-
tion of the quark structure of the nucleus and will support
several experiments operating simultaneously at three end sta-
tions. Beam is scheduled to be available in 1994,

The CEBAF data acquisition system is being developed for
use in all three experimental halls for systems with a large range
of event sizes and data rates. Thus it should cope with up to 10
kHz event rate with up to 10 kBytes per event, whilst also effi-
ciently supporting other experiments having event sizes of less
than 1 kByte. These requirements imply that the system must be
flexible, robust and extensible for future enhancements. This in
turn implies that the user interface and control mechanisms
must be flexible and user-friendly.

Major features of the data acquisition system are:
* FASTBUS, VME, VXI and CAMAC readout modules.
* Intelligent readout controllers (ROC).

* Fiber optic links to a high speed data switch offering total
throughput of approx. 160 MBytes/sec.

* A VME-based processor farm offering approx. 1000
MIPS of processing power.

* SCSI output devices.
* Unix workstations for control and monitoring.

The conceptual data acquisition system is shown in Fig.1. Given
the large range of data rate requirements, some systems might

! work supported by the Department of Energy, contract
DE-AC05-84ER40150

Ethernet Control and Monitoring
Host e el] temmmmmmm=sssamaan ===
: : TrrrTi \
1 | | Processor \ g
H 1] Farm '
| 4] P | =,
¢ Data | [@ :, Workstations
"t | Switch]} ;!
: : ‘ l
: 5]
; ol
’ ’ "
Lo
<
FASTBUS FASTBUS VME/VXI Craie(s)

Fig. 1. Conceptual Data Acquisition System

not be equipped with a data switch and will have less processing
power in the VME processor farm.

A decision has been made to use object oriented techniques
in developing the control software for these systems. After an
extensive literature search the Eiffel [1] language and develop-
ment environment have been chosen as the vehicle for this de-
velopment. Furthermore, an extensive evaluation of Eiffel was
performed prior to embarking on the main project described
here.

EIFFEL

Eiffel is a pure object oriented language, unlike hybrids such as
C++ or Objective-C which are based on conventional procedur-
al languages. It is targeted at large software engineering projects
requiring a high degree of robustness and low maintenance
costs. Major features are:

* A small language having a similar number of reserved
words to Pascal.

* Both single and multiple inheritance.
e Static typing combined with dynamic binding.

¢ Deferred classes to specify behaviour without implement-
ing it.

Draw Program

This also acted as an exercise in learning X Windows and
the OSF/Motif toolkit. The goal was to learn how to create user
interfaces in Eiffel, allowing complex manipulations of graphi-
cal objects, including dragging them, rescaling them and group-
ing them into more complex figures. The intention was that such
a program would later form the basis of a graphical configura-
tion editor for the data acquisition hardware.

Several important deficiencies in the supplied Eiffel graph-
ical library classes were discovered, many of which could be
solved using inheritance, but others, including the lack of figure
dynamics such as dragging, could only be solved by direct mod-
ification of the supplied source code. Similarly, generation of
PostScript code 1o enable printout of the created diagrams was
also lacking,.

However, the technique was shown to be suitable for the
rapid development of quite complex programs. An example of
the capabilities of the resulting graphical editor is shown in
Fig.3.

File [Wraong Optioe Fot Taslboax

Fig. 3. Example from Draw Program

Cross Platform Development

The VxWorks' real time kemel has been chosen for use by both
the readout controllers and possibly the processor farm, al-
though in the latter instance Unix based systems are also under
consideration. This final evaluation of Eiffel attempted the cross
compilation of an Eiffel application (the histogram benchmark
described previously) from a Unix host to a VME single board
computer running VxWorks.

Eiffel supports the direct generation of C language packag-
es from the original Eiffel source code, but it was felt that use of
this technique and subsequent modification of the C source

I VxWorks is a registered trademark of Wind River Systers, Inc.

code would not be viable because of the consequent lack of
maintainability.

By creating a duplicate copy of the Eiffel class library, rep-
licating a few C header files, creating a small interface library
and redefining the Unix environment variable corresponding to
the C compiler to reference the cross-compiler instead, this was
shown to be possible. This allowed the full power of the Eiffel
development environment to be maintained. No change in the
Eiffel code was necessary in order to port this program between
the two environments.

Evaluation Conclusions

Several quite serious deficiencies were exposed by these evalu-
ation examples. The most severe were the sometimes long turn-
around time for an edit/compile/link/min cycle and the lack of a
true symbolic debugger, although the ability to inherit from the
VIEWER class alleviated the latter to a certain extent. However,
many of the programming bugs that would have only been
found at run time with most conventional languages were
caught either by the compiler or through the use of assertions.
Assertions proved to be quite expensive in terms of perfor-
mance, but the facilities provided for enabling or disabling them
were easy to use.

Furthermore, it was felt that the graphics classes were sub-
standard, being based on pure X rather than on the higher capa-
bilities of X toolkits such as Motif or Open Look. The standard
figure classes also lacked many of the desired features.

However, the major drawbacks are being addressed by the
next release of the compiler and it proved to be quite easy 10 im-
plement a Motif class library. Furthermore, it was felt that the
resulting programs were significantly more robust and main-
tainable than similar program written in conventional languages
such as C or FORTRAN. Additionally, these programs were
easier to modify and enhance to cope with changing require-
ments than similar conventional programs. Finally, in most in-
stances where a direct comparison was made, the number of
lines of code required to implement a program using Eiffel was
significantly less than the equivalent using C or FORTRAN. In
combination these indicated that a useful gain in productivity
was in fact possible.

It was therefore decided to use Eiffel for the design and im-
plementation of the run control portion of the data acquisition
system, conventional programming techniques being used with-
in other areas such as slow controls and within the readout con-
trollers and processor farm,

OTHER DECISIONS

In parallel with the evaluation of Eiffel, several other software
products were evaluated for their suitability within the frame-
work of the overall data acquisition system. The final outcome
of these evaluations was the following:

» The use of Unix workstations as both development plat-
forms and control and monitoring platforms.

ly the module and it includes the layout of modules within
crates and the relationships between slave modules and master
modules, together with the hierarchical data paths necessary to
access data within each module. One interesting aspect of the
object oriented approach is that each module object is itself re-
sponsible for performing actions on the corresponding piece of
hardware, in contrast to the conventional situation where some
central controlling procedure performs the actions.

Logical View of Experiment

This forms a hierarchy of the data acquisition system, its sub-
systems and components within these subsystems. This simple
hierarchy was considered adequate to describe the system, al-
though more complex configurations would be feasible. The
following subsystems were identified:

* Readout Controllers. These devices perform the readout
of the front end modules. All access to the front end mod-
ules, including downloading of calibration constants etc.
is via these controllers.

» Trigger System. The details of this will vary from one ex-
periment to another. However, they will all exhibit a pro-
grammable interface.

+ Trigger Supervisor. This device, the prototype of which is
presently being fabricated, is responsible for prescaling
different trigger signals and managing the protocol be-
tween the hierarchical trigger systems, front end modules
and readout controllers. It also manages the multiple event
buffers within the front end modules.

« Data Switch. This device is undergoing conceptual design
although a final decision on its format will not be made un-
til late in 1992. It is responsible for gathering the event
fragments from the various readout controilers and trans-
mitting them as complete events to the several nodes in the
processor farm.

* Processor Farm. This will consist of VME single board
computers operating either under the VxWorks real time
kernel or a Unix system.

* Qutput Device. Qur assumption is that 8mm tape or simi-
lar devices will be used.

* Slow Controls. This interfaces the experiment with the
CEBAF accelerator and detector status information.

» Data Acquisition Run. This conceptual subsystem de-
scribes the behaviour of the data taking run.

* User Subsystem. This includes the user-supplied monitor-
ing and analysis code.

In many instances a component corresponds to a physical mod-
ule in the physical view above, but in other cases subsystems
and components are more abstract, the DAQ_RUN object being
an example of this. This encapsulates all the attributes of a con-
ventional data acquisition run; the start and stop times, number
of events and status etc.

The subsystems within the sysiem are represented as items
in a linked list and the components within each subsystem are
similarly represented. All components have a unique name and
a hash table within the system object allows any component to
be referenced efficiently. Thus sending, for example, the
“download” message to the DAQ_SYSTEM object results in it
sending the equivalent message to its subsystems, each of these
sending the same message to their components. Use of inherit-
ance makes this a very simple but powerful concept.

The User Interface

The concept of a MANAGER is used, where each manager has
a target object upon which it acts as a result of operator interac-
tion. Each subsystem has its own manager which is responsible
for modifying the configuration and displaying the current sta-
tus.

Each manager consists of a set of X Windows, DataViews
views and Motif menus, panels and buttons. Here again, inher-
itance was used to reduce to a minimum the amount of code that
was written.

Summary

The cormrelation between the hardware and logical views of the
experimental apparatus is implemented as an application of the
Multiple Inheritance capabilities of Eiffel. Thus an object can
inherit from a parent that encapsulates its hardware behaviour
and also inherit from another parent that describes its behaviour
within the context of a data taking run. Thus it inberits the con-
cepts of being booted, configured and downloaded etc.

]

Fig. 4. Simpiified State Transition Diagram

A single state transition diagram was found to be adequate
to describe the internal states of all logical components; the sys-
tem, its subsystems and their components. A simplified version
of this state transition diagram is shown in Fig. 4. A similar di-
agram is used to describe the actual hardware.

