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ABSTRACT

The ability of existing analytical and numerical tools
to predict beam performance at the short bunch lengihs
and high peak currents characteristic of contemporary ac-
celerator designs is discussed. Recent advances in cal-
culating the high frequency behavior of impedance and
in describing bunched-beam collective dynamics are high-
lighted. A critical review is presented of outstanding prob-
lems that must be addressed before a thorough description
of short, intense bunches is obtained.

INTRODUCTION

Performance optimisation for linear and circalar col-
liders, FEL drivers, demping rings, and synchrotron light
sources often yields configurations with shori bunches of
high phase space density. For example, sub-centimeter in-
teraction point 3*s are needed in high luminosity collider
designa, and the variation of 3 over the scale 8* in turn
demands sub-centimeter interaction lengths and, therefore,
sub-centimeter bunch lengths. Chromatic effects can fur-
ther constrain these highly charged, short bunches to low
momenium spread. Similar demands are made on free
clectron laser drivers where high peak current at low mo-
mentum spread is necessary to achieve appreciable gain.
Bunches must be longer than the slip distance N (where
N is the number of periods of the wiggler and X is the wave-
length of the radiation), and longer bunches offer better
frequency definition (narrower bandwidth). However, for
fixed peak current the advantages of reduced total bunch
charge, if phase lengih, and wakefields make short bunches
attractive, and at IR wavelengths and below typical scenar-
ios again involve centimeter and sub-centimeter bunches.

For a relativistic bunch of length £ = cr, the width
of the frequency spectrum Aw of the wall currents due to
either the gross charge distribution or perturbations will
be of order 1/7. A diffractive model of the coupling (ma-
chine impedance) of beam-induced fields to vacuum cham-
ber discontinuities suggests a rolloff at frequencies above
¢/a, where @ is the beam pipe radius. The sub-centimeter
bunches discussed above are typically transported in multi-
centimeter radius beam pipes, and, consequently, the beam
coupling varies strongly over the frequency widths of pos-
sible collective modes and the rolloff region is sampled.

To fully understand this short bunch regime, which
is more typical of electzon than proton accelerators, two
principal questions must be addressed. First, what is the
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frequency dependence of the machine impedance at fre-
quencies well above the beam pipe cutoff (or alternatively,
the time dependence of the wakefields at distances smal}
compared {o the beam pipe radius). Secondly, what is
the correct description of collective phenomena for finite
length bunches with strongly frequency dependent cou-
pling. During the past few years there has been substantial
progress in answering the first question, with various an-
alytic approximations and numerical models yielding con-
sistent conclusions on the scaling laws for high frequency
machine impedances. The results have been more mixed
with respect to the laiter question, with reasonable suc-
cess in explaining transverse instabilities in storage rings
and curing emittance degradation in linacs, but only qual-
itative agreement with observed longitudinsl, single-bunch
instabilities in storage rings.

In September 1990 the Fourth Advanced ICFA Beam
Dynamics Workshop focused on collective effects in short
bunches, and the resulis presenied at that meeting by a
number of researchers strongly informs this present review.
The proceedings of the workshop was published as a KEK
Report[!] and, in addition to the individual papers, it pro-
vides overview notes and extensive references which are
recommended.

IMPEDANCE BEYOND CUTOFF

In the last few years significant progress has been
made in clarifying the asymptotic behavior of impedance
in the ultrarelativistic limit v = e. First, a variety of ap-
proximate approaches(?] have consistently shown that the
real (resistive) and imaginary (reactive) parts of the longi-
tudinal impedance Z of an isolated cavity vary as w=1/2 for
high enough frequencies , w » ¢/a. For an infinitely peri-
odic structure, on the other hand, the resistive impedance
is found to rolloff asymptotically as w=3/? and the reac-
tive, as w™?!, consistent with causality. A relatively simple
description of the transition between the two regimes is
given by Gluckstern!®! in terms of the complex admittance
per cell NYn(k) = N/Zy(k) for k = w/c and N cells:

NZoYn(k) = ZoYi (k) + av/N — 1 arctan (ﬁ) (1)

where
o= (1 + javTk (2)
vi
and where Z,Y;(k) is the averaged admittance for a single
cell
(14 j)avxk
v

ZoYi(k) = (3)



The cell gap is g and the intercell spacing is L. For
N - oo

(1 + HravTk +
Ve

and w™%/? dependence is obtained for the resistive part
of the impedance if the second term is large compared to
the first; i.e., ka? 3> L3/g. The derivation demands that
ka® » L. It would appear that for large spacing L the
impedance returns to a sum of single cavities values. If,
however N is held fixed and the limit k — oo is taken

N ZoYi (k) — (1 +j3/:r§a¢17k[ \/g(N —1) ] (5)

Note that for N 3 L/g the impedance per cavity is re-
duced by a factor 1/

The analogous longitudinal couplings for dipole and
higher modes, which are excited by offset beams, have
been found te exhibit (up to constants) the same behavior.
Neither wall resistivity nor beam pipe curvature has been
included in the analyses to date, and it must be pointed
out that all of the resuits have involved some level of ap-
proximation. Iterative methods or smoothing may not be
convergent, and truncation of matrices and finite mesh size
may introduce spurious behavior, but the fact remains that
a broad range of approximate methods agree on the basic
asymptotic frequency behavior of impedance. A rigorous
result for some closed geometry with beam pipe, unfortu-
nately, has yet to be achieved.

Experimentally, the clearest evidence of w=1/2 behav-
ior comes from reinterpretation of an ISR experiment by
Hoffmann, Risselada, and Zotter.[) It is argued that par-
asitic losses are due to single protons individually inter-
acting with the machine impedance. The interaction fre-
quency is determined by the width of the field lines at the
wall, Aw ~ cy/a. For high energies (31.4 GeV) frequencies
over 80 GHz are sampled. Measurements of energy loss at
three different energies (3.6 GeV, 15.4 GeV and 31.4 GeV)
are consistent with the w—1/2 behavior of isolated cells.

jrka?

NZyYn(k) — 7 (4)

LOSS FACTORS AND WAKE POTENTIALS

The longitudinal and transverse wake potentials (W,
and W, respectively) are the effective Green functions
for beam self-interaction in a quasistatic limit. They are
Fourier conjugate to the impedance functions, The associ-
ated loss factors, k; and k;, are averages of the respective
wake potentials over a given particle distribution, and are,
in particular, functions of the rms bunch length o. For
w~1/2 behavior, we have

ke x o~ 1/3 (6)
kg x 0’”2 (7)
W, x r-1/2 (8)
W, « r1/3 (9)

ke x o° (10)

k; x ot (11)
W, < 1° (12)
W, xr! (13)

where 7 is the distance behind the exciting charge, and
and ¢ are assumed small.

As is clear from equations (6-13), extrapolations of
measurements performed with relatively long bunches and
of numerical models at the limits of computer capacity de-
pend on which asymptotic regime is applicable. Consider
for example, the choice of bunch length in a linear col-
lider. If w!/2 behavior is realized, then exceedingly short
bunches would appear unattractive since energy losses and
bunch-induced energy spreads (of order 2k,Q) would be ex-
acerbated while transverse wakes would only be modestly
reduced. It is also noted that 7—1/2 small time behav-
ior for W, yields somewhat more curvature energy spread
than does a constant longitudinal wake. If w=3/2 behav-
ior is obtained, the transverse wakes would be strongly re-
duced with short bunch length with little imf)a.ct On energy
loss and energy spread. Although pulsed, room tempera-
ture linacs such as SLAC appear to be safely in the latter
regime, the wide spacing L of standing wave superconduct-
ing cavities in supercondncting linacs may not satisfy the
condition a?/o ~ ka® » L?/g for equation (4) to yield
w=3/2 polloff.

BEAM DYNAMICS OF LINACS
AND STORAGE RINGS

For the relatively short time a bunch is in a relativistic
linac, the longitudinal motion is essentially frozen. Longi-
tudinal electric fields can change the energy of beam parti-
cles, but since there is no slip associated with energy offset,
current modulations are not induced. Thus, the principal
longitudinal concerns are energy spreads induced by the
gross charge distribution. Transversely, there can be am-
plification from the head to tail of the bunch since trans-
verse wakes can induce betatron oscillations which can in
turn excite further wakes. This is described byl®!

ZOOZo 2 0) + (7 Pa(@)e(a, )

a (14)
= roj dz' p(2' YWy (2’ — z)z(2’, )
z
The emittance degradation is dominated by the the
transient amplification of the largest perturbations, ele-
ment alignment and jitter, which are of relatively low fre-
quency compatred to typical bunch lengths. In this regime,
where the perturbation z¢(z, s) is independent of z along
the bunch, an energy variation from head to tail can cancel
the wake force through chromatic variation of the focusing
strength. This, of course, is the principle of BNS damp-
ing or autophasing which has been successfully u.pphed to
SLAC. Note that this effect scales with A+, not —7- (¢ for
fixed betatron wavelength, and is therefore more effectwe

-at high energies.



In any case, the frozen longitudiral motion and short
linac propagation time allows for effective numerical sim-
ulation with the beam bunch divided into slices which can
be successively updated for ultra relativisiic wakes. To-
gether with the better estimates as described above of the
short time or high frequency behavior of beam coupling,
the necessary fundamental numerical modeling tools are
well in hand. The situation for storage ring bunches re-
mains more clouded in spite of considerable work. The
fundamental difference is clearly the imporiance of longi-
tudinal motion in the dynamics of storage ring bunches.
Synchrotron motion is an important ingredient, but the
principal physics is in the fact that perturbations in en-
ergy can lead to current variation which can in turn excite
wakefields. An additional feature is the need to address
long term stability rather than transient growth.

MODE COUPLING ANALYSIS

Internal bunch instabilities, both transverse and longi-
tudinal, have provided a fundamental limitation in the de-
sign of short-pulse-length synchrotron light sources, high-
phase-space-density damping rings, and single pass FEL
drivers. Although several formalisms have been devel-
oped to describe this class of beam instability, they share
a common structure. The starting point is typically the
linearized Vlasov equation,

8f .8f . Of 8f

—5{4-2'3; +P--:'§5+"8-;G[f]=0 (15)

where z and p are appropriate generalized coordinates, Pey:
is the external focusing, ard G[f] is some linear functicnal
acting on the distribution f. For a coasting beam f; is
independent of 2, and Fourier analysis yields a simple al-
gebraic equation. For a bunched beam, however, f; is no
longer independent of @, and Fourier analysis yields a con-
volution integral.

Typically, a set of basis states (possibly degenerate)
is chosen with the higher states corresponding roughly to
shorter wavelength internal ripples. For each mode there
is an associated eigenfrequency muv,, a multiple of the syn-
chrotron frequency. The impedance and beam current gen-
erate an additional interaction between the states which is
expressed as a perturbing matrix generated by expecta-
tion values of impedance in the space of the eigenstates.
In general reactive impedance can couple a basis element {o
itself and generates diagonal frequency shifts as its leading
term. Resistive impedance provides the primary coupling
between neighboring states. In this manner, the integral
equation implicit in the Vlasov equation for a finite length
beam is converted into an infinite dimensional matrix equa-
tion.

Determination of the threshold current for longitudi-
nal and transverse instability ostensibly requires solution
of an infinite dimensional matrix problem. In practice, the
matrix is truncated and numerically diagonalized. Insta-
bility can evolve in a number distinct ways. First, modes

(which at zero current are spaced by the synchrotron fre-
quency) can be shified as a function of current by the di-
agonal elements of the perturbation matrix. Modes of the
right class can couple when their frequencies match, and
can yield instability if there exists a nongzero off-diagonal
resistive coupling. For transverse instabilities in storage
rings this picture appeats to give a reasonable description
of experiment, with the lowest m=0 mode shifted until it
collides with the m = -1 mode. The spectrum of the m=0
mode primarily samples the betier known, lower portions
of the impedance spectrum. Speciral shifts and stability
enhancement from chromaticity are also observed and are
in reasonable agreement with theory.[”] Predictions based
on higher modes are more problematic.

For longitudinal dynamics the lowest m = +1 mode
(m = 0 corresponds to the unperturbed distribution) sig-
nificantly samples impedance in the rolloff region for short
bunches where the reactive impedance is changing sign
and there is a strong resistive component. Whether bunch
lengthening or shortening is predicted is particularly sen-
sitive to assumptions about the impedance spectrum. Cal-
culation of mode shifts is less certain and, in fact, the
onset of instability is not typically associated with mode
shifts.8] A second method for generating instability in a
matrix theory is for the off diagonal resistive elements to
become comparable in size to the unperturbed mode spac-
ing. For coupling of two neighboring modes, shifts in fre-
quency would be expected, but this may not be the case
when many modes are involved. The success of the infinite
matrix approach for the transverse mode coupling instabil-
ity depends very sirongly on the very finite dimensionality
(m =0 to m = —1) of the underlying physics. Experience
with the longitndinal instability suggests that its solution
may not be so well behaved, and results have not been sig-
nificantly motre predictive than simple “massaged” scaling
laws.

OPERATOR EQUATIONS AND INFINITE MATRICES

Successful conversion of an integro-differential equa-
tion and its associated eigenvalue problem into a truncated
infinite matrix equation depends on both the boundedness
of the operators and the basis set chosen for the expan-
sion. Typically, one is provided with necessary conditions
for convergence of the approximation scheme, but a par-
ticular operator may, in fact, submit to the approximation
even if it does not satisfy such a condition. Such luck re-
quires experimental confirmation. It will be argued heuris-
tically in this and the following section that the matrix
techniques nsed to describe longitudinal bunch instabilities
do not satis{y some of the simplest necessary conditions for
convergence. This is particularly the case for impedances
which asymptotically scale as w=1/3,

Intuition from finite dimensional matrices to infinite
dimensional operators is clearest for a subset of bounded
operators called completely continuous. Such operators
map bounded sequences of vectors to convergent sequences
of vectors;(® in other words, the matrix elements My, fall
off rapidly with m and n. For example, the identity op-



erator is bounded, but not completely continuous. Simple
differentiation corresponds to multiplication by harmonic
number (or matrix index) n in a Fourier series decompo-
sition, and is neither bounded nor completely continuous.
For completely continuous operators, one can be rather
cavalier in the choice of basis set,

For operators whose elements either grow, tend to con-
stants, or decrease too alowly (e.g., inverse square root)
with index, infinite matrix decompositions are not gener-
ally well behaved except for carefully selected basis sets.[1?]
These basis sets should share, for example, boundary val-
ues or boundary behavior with the underlying problem.
Other choices of basis can lead to misleading results.

Consider, for example, the Legendre equation

d

E;(l - z’)% = —w?f (18)
which describes space charge waves on a cold, parabolic
bunch in the approximation of the electric field being pro-
portional to the derivative of the longitudinal charge distzi-
bution. As a simple test of matrix truncation, this system
was analyzed using a simple Fourier series in sines and
cogines. The infinite matrix generated was trancated and
numerically solved. Diagonalisation produced good values
(~ n{n+1)) for the lowest even cigenvalues at a reasonably
small matrix dimension, but the lowest odd eigenvalues
had failed to converge even for a 180 by 180 matrix. The
symmetry and nodes of the eigenfunctions, however, were
suggestive of Legendre polynomials. Apparently the zero
boundary condition of the sine functions has introduced
convergence problems in the expansions of the Legendre
polynomials, which are nonsero at the bunch ends. The
Legendre operator has one other feature of note — it has
positive expectation values, and it is this fact which allows
the infinite matrix problem to work with carefully chosen
basis sets. The Legendre model above represents a finite
bunch with a sharp, but physically interesting interaction,
and may exhibit more singular behavior than smoother
distributions and interactions.

The question, then, with respect to the bunched beam
problem is whether the underlying infinite matrix is either
1) completely continuous and susceptible to an arbitrary
basis expansion or 2) well-behaved, but requiring a care-
fully matched basis set, or 3) pathological.

SINGULARITY OF LONGITUDINAL EQUATIONS

For frequency shifts {1 large compared to the syn-
chrotron frequency, the matrix equation for lengitudinal
bunch motion takes a particularly simple form, which is
sufficient to illustrate the issue. Following Wang,[!l] we
expect an infinite dimensional equation for high harmonic
number of the form

o0
Pn=3_ Tmupn

=00

(17)

where

IZ(n) Amon H(

1]
a T (18)

Ton =

0 [T g
A=) f_mdw#_u (19)

and I is the average current, Z(n) is the impedance at
harmonic n, and A, is the Fourier coefficient of the unper-
turbed charge distribution. Note that for 2/,/mn large
compared to the width of the revolution frequency distribu-
tion g, # o« mn. This implies, for example, that although
the diagonal elements T,, will scale as Z{n)/n for small
frequency shifts, for sufficiently large shifts the scaling can
be as strong as nZ(n). Consider now, the two asymptotic
forms of impedance described earlier. In the infinite peri-
odic limit, the leading behavior will be a reactive 1/n for
Z(n). In the limit Q@ — oo T,, remains bounded, but does
not rolloff. This situation is marginal for convergence of
arbitrary series expansions. For the isolated cavity, both
the reactive and resistive impedance falls as 1/,/n, and for
large shifts Ty, tends to a /n behavior. Since this w—1/2
scaling, as discussed earlier, is most likely for storage rings,
this estimate suggests that special care must be taken in
choosing basis sets. The large resistive term, in fact, may
prevent the process from converging at all at large values
of current. Typically, convergence becomes problematic
when the self-adjoint (in this case, the reactive part) is not
dominant.

It should be noted that for finite v, the impedance is
sharply rolled-off at frequencies greater that yc/a, and the
matrix is indeed finite but exceedingly large in dimension.
Also, for fixed 1, T, does finally rolloff at sufficiently
large index, say ng. However, ng increases with increasing
Q. The primary lesson to be drawn from from the discus-
sion is that matrix truncation can be misleading, and that
physical solutions, at a minimum, may require matrices of
a dimension considerably larger than first expected.

OTHER APPROACHES

The lack of startling quantitative success for trun-
cated matrix methods may be due to numerical difficul-
ties. On the other hand, it may be the case that some
important physics is missing from the model, and there
has been some activity with this perspective. Clearly, the
first concern would be that the impedance function itself
is not well estimated. Ii seems to be the case, however,
that fitting to magnitude and shape leads to internal in-
consistency, for example, between threshold current and
parasitic losses.['?] Oide and Yokoya!'3! argue quite legiti-
mately that the impact of potential well distortion of the
underperturbed distributior must be included, and have
produced a Vlasov matrix analysis (using a new set of
basis states) which indicates that threshold behavior can
be dramatically altered by inclusion of potential well dis-
tortion in a self-consistent manner. Agreement appears
good between this theory and simulaiion for some specific
impedance shapes. Of particular note is that a strong ca-
pacitive component enhances thresholds by shortening the



bunch and preventing deterioration of the incoherent syn-
chrotron frequency. A thermodynamic approach to turbu-
lent bunch lengthening has been proposed by Melles.[14]
The free energy of numerically-obtained, time-dependent
distributions is compared to the conventional stationary
Maxwell distribution for impedances with a resistive com-
ponent. It is found that above a threshold current a time-
dependent solution has a lower free energy and is therefore
the preferred state for the beam. This transition is inter-
preted as the threshold for turbulent bunch lengthening.
Comparison to SPEAR observations and simulation are
promising. Hiratall®! also finds time dependent soluticns,
but for localized structures, and demonstrates that they
can be the preferred state of the beam. More effort, both
analytic and numerical, should be focused on such nonper-
turbative methods. Finally, many computer simulations/®
have been implemented and the general features of bunch
lengthening with momentum growth have been observed.
At least qualitative agreemeni with experiment is found.
From the arguments in previous sections, some care may be
necessary to model the isolated cavity with w—1/2 asymp-
totic behavior.

SYNCHROTRON RADIATION IMPEDANCE

For small storage rings there may be another impor-
tant source of coherent interaction of the beam with its
environment — the synchrotzon radiation process. Syn-
chrotron radiation in bends and wigglers is suppressed at
frequencies below a cutoff value meny times the TM mode
cutoff. For a chamber consisting of two infinite parallel
plates, for example, separated by 2k, the synchrotron radi-
ation power takes on free space values only for frequencies
w satisfyingi!®] .

Piasa

w R ;(x) / (20)

where p is the bending radius. If this power loss is inter-

preted as an effective resistance, in the spirit of machine
impedances, the peak value of

Z h
o 300 thms

(21)
where R is the average radius of the machine.

Taken at face value, this impedance counld be the lim-
iting component for small machines, Consider a compact
synchrotron light source with p = 1 meter, R = 2 meters,
and vacuum chamber half height of 1 centimeter. Then a
maximum value of Z/n of 1.5 ochms is obtained at a fre-
quency w = (2x)50 GHs. For short bunches where the
impedance from vacuum chamber discontinuities is rolling
off, the synchrotron impedance could be dominant. How-
ever, the synchrotron-radiation-induced coherent interac-
tion may be of a different character. Wavelengths are now
of the ordez of the transverse beam dimensions, the interac-
tion occurs over an extended region (bending magnets and
wigglers), and synchrobetatron coupling is inherent in the
process. Much work has been done on the electromagnetics
of synchrotron radiation,*7h[18] primarily in analysis of the
resonance structure of a toroidal beam pipe. The beam dy-
namics has received only rudimentary attention. With the

commissioning of small, clean compact synchrotron light
sources, some experiments may be possible.

CONCLUSIONS

There has been much analytic progress in understand-
ing the high frequency behavior of accelerator impedance.
Analysis of beam dynamics has been successful for low-
order transverse mode coupling, but there is no cogent
analysis of longitudinal turbulent bunch lengthening, For
single-cavity impedances, the interaction may be too sin-
gular to be well treaied by a small-dimensioned matrix
approach, and more global treatments may hold the besi
promise for prediction. Computer simulations have been
exceedingly successful in modeling linac beam dynamics,
where both the finite duration of beam propagation and
frozen longitudinal motion with causal wakes ease calcu-
lations. For storage rings, it remains that the compute-
efficient codes necessary for simulating many turns require
compromises in electromagnetic modeling which limit quan-
titative agreement with experiment. Finally, the effects of
coherent synchrotron radiation on beam stability temains
an open question that could soon be addressed experimen-
tally in compact synchrotron light sources.
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