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An Autocorrelation Technique for
Measuring Sub-Picosecond Bunch Length
Using Coherent Transition Radiation*

Waealter Barry
Continuous Electron Beam Accelerator Facility
12000 Jefferson Avenue, Newport News, Virginia 23606

Abstract

A new technique for determining sub-picosecond bunch length using infrared transition
radiation and interferometry is proposed. The technique makes use of an infrared Michelson
interferometer for measuring the autocorrelation of transition radiation emitted from a
thin conducting foil placed in the beam path. The theory of coherent radiation from a
charged particle beam passing through a thin conducting foil is presented. Subsequently,
the analysis of this radiation through Michelson interferometry is shown to provide the
autocorrelation of the longitudinal bunch profile. An example relevant to the CEBAF
front end test is discussed.

Introduction

It is well known that transition radiation is a phenomenon useful for measuring various
parameters of a charged particle beam including energy, emittance and transverse profile.[!]
Typically, these measurements are made in the optical region where the radiation is due
to individual charged particle effects.

In order to determine the collective longitudinal properties of a particle beam, i.e.,
bunch length and longitudinal profile, a device or system capable of measuring the tem-
poral or longitudinal spatial distribution of the bunch charge or current is required. One
common method of measuring longitudinal profile makes use of optical radiation (syn-
chrotron, transition or Cherenkov) and a streak camera. This “single shot” technique is
quite expensive and generally limited to 1-2 psec bunch lengths. Alternatively, by consid-
ering radiation in the region where wavelength is comparable to bunch length and bunch
to bunch coherence is exhibited (wavelengths large compared to particle spacing), autocor-
relation or spectral analysis techniques can be used to measure equivalent bunch widths.
For picosecond and shorter bunches, this region generally covers the infrared.

In this note, a technique for measuring the autocorrelation of longitudinal bunch profile
using infrared transition radiation from a conducting foil and Michelson interferometry is
described. In order to present a clear picture of the origin and properties of transition
radiation, the radiation from an arbitrary charge distribution striking a conducting foil
is derived in some detail. Subsequently, the analysis of this radiation through Michelson
interferometry is shown to provide the autocorrelation of the longitudinal bunch profile.
An example relevant to the measurement of bunch length at CEBAF is given.

* Work supported by U.S. Department of Energy under contract DE- A C05-84ER40150.

1



Radiation from a Conducting Foil

Consider a beam of charged particles with velocity B¢ in the 7 direction striking a
conducting foil located at the z = 0 plane in the cylindrical coordinate system (figure
1). The foil is assumed to be perfectly conducting and the beam filamentary along the
z axis. For radiation wavelengths large compared to particle spacing, the beam is well
approximated by a moving line charge distribution g,(f — z/8c), where g(t) is the charge
distribution of the beam measured as a function of time as the beam passes the z = 0
plane. Accordingly, the beam current is defined as Iy(t — z/8c) = Bege(t - z/Bc). For the
autocorrelation measurement described later, the charge distribution must be periodic.
However, this restriction is not necessary for the radiation derivation.

A

p
True Image
p(z) = qQ(t-z/ Bc) p(z,t) = - q, (t+z/Bc)
.__> 4__...
7z s‘ /\ /X; > 2
.e S e
T
¥ I(z.t) =Beq,(t-2/Bc) I(z.t) =Begy(t+z/Be)
=Iq(t-2/ fc) Foil = Io(t+z/Pc)

Figure 1. Image method for radiation from a thin foil.

In order to satisfy boundary conditions at the conducting plane, surface currents are
induced in response to the fields of the incident beam. These currents in turn radiate elec-
tromagnetic energy. Thus, in general, transition radiation can be described as a reaction
to boundary conditions. Traditionally, the term transition radiation refers to radiation
emitied from a charged particle as it passes from one medium to another (in this case vac-
uum to metal}. However, radiation of this type will occur when any current distribution is
in the presence of abrupt boundary conditions. Unusual examples of transition radiation
might include radiation from a beam passing through a conducting aperture or from a slot
in the wall of a uniform beam chamber. The spatial and frequency characteristics of the
radiation are, of course, extremely dependent on the boundary geometry.

As indicated in figure 1, a convenient techrique for solving the foil radiation problem
makes use of image theory. Here, the conducting foil is removed and an image current
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Iy(t + z/Bc) is inserted for z > 0 so that:

I z/Bc) z2>0
= {310 =2 o

With this current, it is clear that only the z component of vector potential exists and from
symmetry, the vector potential and the fields derived from it are independent of ¢.

The vector potential must satisfy the homogeneous wave equation for p > 0:

1 824,(p,2,1)

, _ | .
\% A,,,(p,,e:,'.?)—cb2 52 =0 p>0 (2)
subject to the excitation condition:
2x
Iim Hy(p,2,t)p dp = I(z,1) (3)

p—0 0

The procedure for solving (2) is greatly simplified by introducing the two dimensional
Fourier transform:

fleyn,w) = [w ./—°° flp,z,t)e~Hwttns) 4y 4, (4)

which has an inversion given by:

1 co oo .
f(p,z,t)=;;g/ / F (p,m,w) efttn2) diuydn (5)

Applying (4) to (1), (2) and (3) results in a statement of the problem in the transform
domain:

& fiz (P:"T:w) + l 632(!’,":“")

2 _ .2\ 4 _
. L —32kIo(w
lm [ By(pmw) pdp = ZI2E0L) @

where: k=ko/f = w/fc

Io(w) is the frequency spectrum of the current defined by:

To(w) = f To(t)e—7t gt (8)
with inversion:
1 Ra .
Io(t) = 5 f_ L) (9)
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Equation (6) is Bessel’s equation of order zero. Anticipating outward propagating
wave characteristics, a solution to (6) is:

A, (pm,w) = e(m,w)H (p1/K2 ~n?) (10)

where: H((,z) () = zero order Hankel function
of the second kind
e(n,w) = function to be determined

by excitation condition

The ¢ component of the H field can be derived from the vector potential using:

1 aj-z(P-.»"h“’)

11
Ho dp ( )

ﬂ’.,b(p,'q,w) = -

Using equations (10), (11) and (7) and the small argument approximation for Hl(z)(m)
yields the following expression for ¢(7,w):

clnys) = 02l (2 ) (12)

Therefore, from (10):

At = 222 (L2 1 (o fig ) (13)

Taking the 7 — 2 part of the inversion given in (5) yields:

- —uo I oo k .
A(p,2,w) = —@# f ("72 - kz) 05 (P\/ k3 — n’) e’ dn (14)

—o

Equation (14) gives, in integral form, the exact frequency domain expression for the
vector potential. For the purpose of evaluating the fields in the radiation zone (p and =
large), the integral in (14) may be approximated by the method of stationary phase (ap-
pendix I) giving:

£ _ —dbolo(w)e™7*or k
As(r,6,w) = 2mr k2 cos? § — k? kor > 1 (15)

where: 2z =rcos#
p=rsind

As indicated in figure 1, r and 8 are spherical coordinates with # measured from the +z
axis. As is usual with the method of images, the actual fields are those obtained for the
region conteining the true charge or z < 0. Accordingly, it is convenient to use the axis
of specular reflection (2, = —2) as a reference when expressing the vector potential and
fields. Equation (15) is then written:



z Jpsodo(w)eT*or k
An("’an“’) = 2 kg cos?2 8, — k? kor > 1 (16)

where 8, and z, are as shown in figure 1. The electric and magnetic fields may be obtained
in the typical manner using:

E(r, f,,w)= FLV x E(r, 6.,w) (17)
0

-
VV. A(r,0,,w)

- R
E(r,8,,w)=—jwA(r,0,w)+ o

(18)

Resolving (18) into # and §, components, substituting into (17) and (18) and retaining
only 1/r terms, expressions for the radiation fields are found:

_ ZoIy(w)e~3%o" in 6,
Ea, (T, 9.,0-’) = ° 0(;;)-: J (1 -—ﬂﬂs;tosz aa) (19)
E‘fh (rg 9;,&0) = M (20)

Zy

where: Z; = 1/-‘-"-9- = 3770}
€o

Equations (19) and (20) are the frequency domain field expressions for backward
transition radiation emitted from a beam striking a conducting foil. It should be pointed
out that in the previous analysis, the thickness of the foil is irrelevant. If, however, the foil
is thin so that the beam passes through unperturbed, radiation will also be emitted in the
forward direction. The forward fields are obtained by reversing the ranges of z in (1). The
results are identical to (19) and (20) with the simple substitutions §, — 8 and ¢, — ¢. The
autocorrelation technique described in the next section requires only backward radiation,
therefore, forward radiation from thin foils will not be pursued.

Several important features of transition radiation are evident from equations (18) and
(20). From (19) it is seen that the frequency spectrum of the radiation is identical to that
of the beam current. Therefore, the conducting foil can be viewed as & device that produces
a propagating electromagnetic wave that is an exact replica in time of the incident beam
current (an infinite bandwidth antenna). This feature is most easily seen by transforming
(19) and (20) to the time domain via (9):

_ ZoIo(t et r/c) ﬂ sin0,
Bo.(r,0,,1) = 27r (1 ~ 32 cos? 8,) (21)
Hy,(r,0,,1) = E&%ﬂ (22)



Comparing the above equations to (1) shows that at a fixed point r in space, the radiation
has the same temporal characteristics as the beam current for a fixed point z. It is this
property that makes the autocorrelation measurement, to be described, possible.

Another important characteristic of transition radiation is its spatial distribution.
From (21), it is clear that the angular distribution of energy or power density is given by
the function:

. 9. 2
s0)= (e, =

This function has a single, very sharp maximum at 8, = 1/8y. Therefore, for relativistic
beams, virtually all of the radiation is in the vicinity of this extremely small angle. In this
case, an excellent approximation for $%(4,) is:

2
5%(9,) ~ (If"r—fl-i-a?) v large (24)

From (24) it is noted that the energy or power density is proportional to 42 at 8, ~ 1/-.

The standard example of transition radiation is that of a single electron striking the
foil. In this case, the current is approximated by Io(t) = eé(t) so that Iy(w) = e. For
& single electron or pulse of current, it is convenient to calculate the radiated energy per
unit frequency per unit solid angle:

ik _ |E9.(7'=01“")[2 r2
wdN 2nZy

Substituting (19) with Jo{w) = e into (25) yields the standard formula for transition
radiation from a single electron striking a foil:

(25)

U, €7, Joule
8wdN  8x3 Hz - Steradian

From (26) it is seen that for this idealized calculation, the electron radiates uniformly
over the entire spectrum. In reality, the analysis presented breaks down at wavelengths
comparable to the microstructure of the foil. However, for highly polished foils, (26) is
taken to be a reasonable approximation for wavelengths well into the visible range.

5%(4,)

(26)

Because electrons in an accelerator are randomly distributed from bunch to bunch,
autocorrelation of optical transition radiation will not provide any information on bunch
length or profile. However, autocorrelation of transition radiation at wavelengths compa-
rable to bunch length will provide this information if the bunch length is large compared
to electron spacing. This latter requirement ensures bunch to bunch coherence of the ra-
diation. In this case I3(t) is a simple periodic current corresponding to a continuous train
of bunches passing through the foil.

By use of equations (21) and (22) and the definition of the Poynting vector, the total
average power per unit solid angle radiated by a periodic beam current, Iy(t), striking a
foil can be found:



dP Pz, _, .
30 =50 5%(8,) watts/steradian (27)

where:
P zo Iz .
Zo = . o (t)dt T = period of Iy(t) (28)

The quantity Pz, is recognized as the total average power dissipated by Iy(t) in a 3770
(free space) resistor. By integrating (27) over the backward radiation half space, the total
radiated power for a relativistic beam is obtained:

P PZoln"T

9 watts (29)

The frequency spectrum of P consists of discrete lines at integer multiples of 1/T
with amplitudes proportional to the square of the Fourier transform of the bunch profile,
In this case, it is clear that the critical frequency components for determining bunch
profile and length are in the 1/7, region. This region covers the far infrared for the
approximate range of bunch lengths, .03 psec < 7, < 3 psec. It is worthwhile to note that
power measurements in the far infrared are traditionally made with bolometric and other
heat measuring devices. Because heat is measured, these devices are “flat” in the power
measurement sense throughout the far infrared range. Therefore, through interferometry
or filtering, the autocorrelation or power spectrum of bunch profile may be obtained using
these devices as detectors. The lower limits on sensitivity for these devices range from
10~* watts for the simplest thermocouple devices to 10~!1 watts for cryogenic detectors.?]

As an example relevant to CEBAF, consider a beam current consisting of a continuous
train of bunches with uniform rectangular profiles of length . The period of I, (1) (time
between bunches) is T and the average current is I,,. In this case, it is easy {o show that:

_ 2T

Pz, watts (30)

A typical front end test beam might have the parameters I, = 100 x 10~8 amps, T/, =
360 and v = 88 (45 MeV). With these parameters and equations (29) and (30), the total
power radiated from the foil is LmW. This level is certainly detectable by any of the devices
mentioned above. In addition, from equation (27), the angular distribution of power, shown
in figure 2, can be ploited. As expected, the radiation is concentrated in a thin cone of
half angle 1/y = 11 mrad with a peak angular power density of 67 mW/steradian. As
will be seen, the high directionality of the radiation is important for the autocorrelation
measurement described in the next section.
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Figure 2. Thin foil radiation from a typical CEBAF front end test beam.

Autocorrelation of Bunch Profile
Through Michelson Interferometry

A simple system for obtaining the autocorrelation of the beam current is shown in
figure 3. Here, the beam current, Iy(t), passes through a thin conducting foil at an inci-
dent angle of 45°. Backward transition radiation is then emitted about the axis of specular
reflection and directed into an infrared Michelson interferometer. By measuring power at
the output port of the interferometer as a function of A in the delay path, the autocor-
relation of Jo(t) may be obtained. It is important to note that in general, the transition
radiation field expressions for oblique incidence are considerably more complicated than
those for normal incidence. However, as shown in Appendix II, for large -, the field expres-
sions about the axis of specular reflection are well approximated by the normal incidence
expressions derived in the previous section.

The interferometer, illustrated in figure 3, consists of a fixed mirror, & movable mirror
and & splitter/combiner. These elements are arranged so that the incoming radiation is split
into two beams. One of the beams is then delayed by a distance A before recombination
takes place at the output port. In order to simplify the analysis of the interferometer, the
optical elements are assumed to be non-dispersive. If the mirrors and splitter /combiner are
modeled as thin conductive surfaces, it can be shown that the reflection and transmission
coefficients for these elements are the same for incident waves with polarization in the plane
of incidence and normal to the plane of incidence except for an overall sign change with
the reflection coeflicient. Because power is being measured, the sign difference between the

8



reflection coeflicients for the two polarizations is irrelevant. Therefore, the optical elements
can be characterized by single reflection and transmission coefficients which are valid for
all incident polarizations. As indicated in figure 3, the transmission coefficients for the

splitter/combiner are designated as S,; and 531, respectively. Both mirrors have reflection
coefficients of 1.

Beam 1 (t) Foil
> —
Transition radiation —————»
Inputport| A
d
M Y  Splitter/Combiner
8 A d
S+5 S11 SS9 Detector
== < > >
Delay path dz
— Output port
Si4=1
11 A
-—‘2’- Fixed path
4

S;=1——M,

Figure 3. Michelson interferometer.

The simplest way to determine the power measured by the detector is to image the
radiation source at the foil into two sources separated by a distance A (figure 4). As shown
in figure 4, image source 1 corresponds to the fixed path in the interferometer while image
source 2 corresponds to the variable delay path. In this case, the fields at a point p; at
the detector due to each source are given by:

— 5115212, I . ~

By (r1,61,w) = = zzlwr: D(w)ewjkorls(al)ﬂ (31)
S I 3 —

E} (ra,82,0) = 225 0050(0) a5 5, ), (32)



Po

V=Af,

T, = I, + Acos,

2
6,= 0, (1-A/r)

A A AL
0, = 6, cos¥ +1, sin¥

2 A 1

Figure 4. Source imaged through interferometer.

The pertinent coordinate and unit vector transformations between systems 1 and 2
are indicated in figure 4. These relations were derived using small angle approximations
and A << r1,7;. In fact, #, and 8, are both on the order of 1/ which is extremely small.
In addition, A, which is on the order of the bunch length is extremely small compared
to r; and r; which are both approximately equal to the total distance from the foil to
the detector including all reflections in the interferometer. Therefore, the transformations
given in figure 4 may be further approximated as follows: r; = r; = » for magnitudes,
r3 =71+ A = r+ A for phases, , = 6, =0 and 6, = §; = 4. Using these approximations,
the total electric field at py becomes:

511521201

12000) pmhor(y 4 ekt (3

-= =4 =
E (r,ﬂ,w) = .E; +E2 =

Dropping the overall phase factors in (33) and transforming to the time domain yields:

[S11521|Z0 5(8)

2rr

Eo(r,0,t) = [Io(t) +Io(t - 7)] (34)

where 7 = A/c. Because the radiation is confined to a cone of half angle 1/, it may be
assumed that the detector mesasures the total available power. In this case, the total power
detected as a function of T becomes:

Py(r) = 'i’_s’;-'-ﬂ[zv +i? In(t)Io(t—-—r)dt] (35)

where Pz, is defined in (28).
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Cleazly, the second term in the brackets of equation (35) represents the autocorrelation
of the beam current, which in turn is proportional to the autocorrelation of the bunch
profile repeated periodically with period T'. As an example, P4(7) for the CEBAF beam
described in the previous section is plotted in figure 5. In figure 5, the typical value
of |$1152:1| = .09 for a half silvered splitter /combiner has been used. As shown, the
autocorrelation of a uniform rectangular bunch is the well known triangle function. In this
case, the base width of the autocorrelation is twice the width of the rectangular bunch.
Typically, 7, = 1.8 psec for the CEBAF beam.

Autocorrelation of
bunch profile

161 —» =W, =Ty,
oL €27 P

- T —P

> T
Figure 5. Output from interferometer for CEBAF front end test beam,

Ascertaining information about a function, f(t), from its autocorrelation, F(r}),is a
common problem in many branches of physics and engineering. Because the autocorrela-
tion is obtained by a power measurement, all phase information is lost making it impossible
to construct f(f) from F(r). However, because F(r) is essentially & smoothed out version
of f(), a significant amount of qualitative information about F(t) is obtainable from the
autocorrelation.

In addition to providing a qualitative feel for bunch profile, the autocorrelation func-
tion can be used to obtain a quantitative measure of bunch length. There are a multitude
of quantitative definitions for the width of a function in common usage.[?l One definition
which is particularly suitable for describing bunch length is equivalent width, defined as:

_Z 9(z)dz

We = g(zmu)

(36)

From (36) it is seen that W, is the width of a rectangle of height equal to the maxi-
mum value of g(z) and of area equal to the area under g(z). As indicated in figure 5, the
equivalent width for a uniform rectangular bunch profile is invariant under auntocorrelation.
Therefore, since most bunch profiles are expected to be close to rectangular, the equivalent
width of the autocorrelation is an excellent measure of bunch length. When considering
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bunches whose profiles are significantly different from rectangular, the definition of bunch
length becomes somewhat arbitrary. Therefore, in all cases, it is not entirely unreasonable
to define bunch length as the equivalent width of the autocorrelation. Finally, it is men-
tioned that the bunch spectrum is easily obtained by taking the Fourier transform of the
autocorrelation.

Present and Future Efforts

Efforts are presently being directed towards experimentally verifying the theory pre-
sented here by performing a series of experiments at the 45MeV point of the CEBAF front
end test. By replacing one of the standard phosphorescent view screens with a thin con-
ducting foil, the emission of transition radiation in both the infrared and visible regions
will be verified. Concurrently, an investigation into the design or purchase of a suitable
interferometer will be conducted so that ultimately, a bunch length measurement can be
made using this technique.
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Appendix I

The integral in equation (14) is a specific case of the general form:
w . .
b= smBP(o/i —)emdn (A11)

Using the asymptotic large argument approximation for H((,z)(z) and transforming to spher-
ical coordinates gives:

¢ - 2 ej% ./oo g(’?) e—jr(sin 0\/kg—q’-qcosﬂ)dn (A.1.2)
V 7rsind —co (k2 —72)%

where: 2 = rcosf
p=rsind

The integral in (A.1.2) has the form of & continuous weighted superposition of radial
waves. Examination of the argument of the exponential reveals that propagating waves
exist only for —ky < 1 < ko. Outside of this range, the waves decrease or increase
exponentially with 7. At large =, the exponentially decreasing waves contribute negligibly
to the integral and the exponentially increasing waves violate the boundary condition
requiring the fields to approach zero as r — oco. Therefore, (A.1.2.) may be written:

2 ;= ko 9("?) —jrh
~ i AV e—irh(n) g A13
v ——r -/—ko (k2 —n?)i © 7 ( )

where: h(n) =sindy\/k — 52 —ncosf

For large r, the exponential term in (A.1.3) oscillates rapidly as a function of n except
in regions where h(n) exhibits an extremum. Because the multiplying function g(n)(k3 —
1;')‘% is comparatively slowly varying, the integral averages roughly to zero except in
the neighborhood of these extremum or “stationary phase” points. The stationary phase
point(s), 7o, is easily obtained from h'{ny} = 0. The result is:

10 = Tko cos d (A.1.4)

Of these two points, 7p = —kg cos @ is used because it corresponds to exclusively outward
propagation when substituted into h(n).

Because the contributions to the integral in (A.1.3) are basically zero except at 7,
it may be approximated by moving the slowly varying function of 5 outside the integral
and evaluating it at 7. In addition, k(%) may be expanded in a Taylor series about 0.
Retaining only terms up to second order, 4 is now approximated by:

. 2 ';- g(no) —irh ko YL 2
~elt jrh(na) iEh {no)(n—no) .1.
Yye .(m'sinﬂ) (kﬁ—ng)%e ‘/_koe 7 dn (A.1.5)
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The remaining integral in (A.1.5) is a Fresnel integral with solution:

j"" -3§h" (n0)(n—no)? g (__2” )é 1 (A.1.6)
€ | arge r 1.
—ko 7 jrh ('TO) &

Substituting (A.1.6) into (A.1.5) and evaluating k() and h”(n), the final result is ob-
tained:

P = f g(ﬂ)ng)(P k2 — ﬂz)ej"‘dz r = oo 529(—ko cos 6) e~ Fkor (A.1.7)
oo r

From equation (14):
k
g(n) = i

Therefore: ] f( ) X
I . “JHedolW) _spor
As(r,8,0) = 21r (k"‘,’ cos? § — k’) (A.1.8)
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Appendix II

In this appendix, the properties of transition radiation for the case of oblique incidence
are examined.

Referring to figure A.2-1, consider a line charge distribution, p1(21,t) = qu(t + 2/ Be),
travelling along the z; axis at an angle §; from the normal to the foil. Corresponding to
p1, there will be an image charge distribution, pa(22,t) = —g(t + 22/ Bc), travelling toward
the foil along the z; axis. Following the conventions in the main text, the corresponding
currentis are:

Ii(21,t) = —Beq(t + 21/Bc) = —Io(t + z1/B¢) : (A.2.1)
Iy(23,t) = Beqe(t + 22/Bc) = Iy(t + 22 /Be) (A.2.2)

22

v
%
o
%
w—-
P
<

Pz N

Xs Foil X,

Figure A.2-1. Image geometry for oblique incidence.

Repeating the analysis in the main text for each current‘individually yields the following
vector potentials:

— _ —jpolo(w)eTkom 1 3

Al(rl’algw) = 41"‘] (k n ko con 01)21 (A.2.3)
- _ jpufo(w)c‘-""ﬂ"” 1 -
Aa(rz, 02,0) = 4rry (k + kg cos 8 ) #2 (4.2.4)

The total vector potential is the sum of (A.2.3) and (A.2.4).
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The vector potential may be referred to the axis of specular reflection, z,, and its
associated coordinate system by making the following coordinate and unit vector transfor-

mations:
TN=Ta=r,=17p

cosf; = —cosd,
cos 8, = cos @, cos 26; — sin B, cos ¢, sin 26; (A.2.5)
22 = -2,

21 = 2, cos26; — &, 8in 20;

Substituting these transformations into (A.2.3) and (A.2.4) results in a total vector poten-
tial possessing &, and 2, components given as follows:

- o
Az, (7': an‘ﬁuw) = JF:;}W)

[ sin 261

—jkor
k + ko(cos 6, cos 20; — sin @, cos ¢, sin 23.’)] € (A.2.6)

_ _ ~inelo(w) 1
Az. (f) 0” ¢Hw) - 4mr [k —_ ko cos a‘

+ cos 26¢ ] —jk,r
k + ko(cos 8, cos 26; — sin 8, cos ¢, 8in 26;)

(A.2.7)

For normal incidence (§; = 0), A,, goes to zero and A, reduces to equation (16).

It is clear from the presence of ¢, in expressions (A.2.6) and (A.2.7) that in general,
for the case of oblique incidence, the fields are not symmetric about the axis of specular
reflection. The field patterns can of course be computed from (A.2.6) and (A.2.7) for the
general case. However at this point, it is interesting to examine the relativistic beam (large
7v) case.

Based on the results for normal incidence, it is reasonable to expect that the radiation
is concentrated in the 8, = 1/v region. Using small angle approximations for functions
- of 8, and the usual relativistic relations between 8 and 7, (A.2.6) and (A.2.7) may be
approximated by:

j,.(‘l‘, 9., ¢l,“’) ] j‘i_"ﬂl‘g"i)(t&n 9‘.)8-,1'}.01' (A.Z.S)

- -, ~dsalo(w) 2
An (1,80, ¢0y0) 8 =0 [1/7=+93

+ =(1 — tan? oi)]e‘f"" (A.2.9)

1
2
For large v, (A.2.8) and (A.2.9) are valid for all incident angles except for those approaching
90° (grazing incidence). The first term in the brackets of equation (A.2.9) is on the order

of 4* for small 8,. Clearly this term dominates the second term in the brackets and tan 6;
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in expression (A.2.8). Therefore, for large v, the vector potential for the case of oblique
incidence is well approximated by a single component in the direction of specular reflection:

T -~ —jpodo(w) 1 —jkor
A4, (r,0,,w) ~ Py (1/‘72 +03)e (A.2.10)

Expression (A.2.10) agrees with expression (16) in the main text for large y. Therefore

all of the field expressions for normal incidence are valid for oblique incidence for relativistic
beams.
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