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Abstract

A method of minimal substitution is used to obtain the electromagnetic
two-body interaction current operator associated with a relativistic sep-
arable interaction. The result is shown to satisfy a general restriction
obtained from current conservation using the Ward-Takahashi identity
within the Bethe-Salpeter formalism. It is shown that this two-body rel-
ativistic current operator can be reduced to an effective one-body form.
Applications of this method to nuclear few-body systems, relativistic
quark systems and hadronic resonance processes are discussed. The nu-
merical size of the interaction current for the pion charge form factor is

estimated.



I. Introduction

It is well known that interaction(exchange) currents should be introduced, in addition
to the one-body impulse current, to satisfy electromagnetic current conservation. The
nature of the interaction currents required depends on the dynamics governing the system,
and recently it has been learned how to comstruct such currents for two-body systems
described by relativistic wave equations!'??®, such as the Bethe-Salpeter or its reduced
equations®. A relativistic treatment is essential at the large momentum transfers available

today.

It is shown in Ref.1 that the proper form of the relativistic two-body current operator
can be derived in a quite general way using the Ward-Takahashi identities for the one-body
current operators and the relativistic wave equations for the bound states. Furthermore,
it was found that phenomenological strong and electromagnetic form factors can be intro-
duced without violating gauge invariance. In Ref.5, a schematic method for deriving the
gauge invariant interaction current for a general nonlocal interaction was introduced, and
the method was used to calculate the photo-pion production amplitude from a nonlocal
m-nucleon interaction lagrangian®. The electromagnetic field was introduced through min-
imal substitution in the momentum dependence of the vertex function, and this provided
a solid mathematical scheme for deriving the gauge invariant amplitude corresponding
to a vertex with an arbitrary functional form. In this paper, a phenomenological vertex
function is introduced as part of a separable interaction, which permits us to treat the

composite structure of hadrons.

The use of a separable Bethe-Salpeter kernel is an interesting and simple approach
to the relativistic description of bound states. It is not only a mathematically convenient
way to solve the relativistic two-body wave equation, but it also is a practical way to in-
vestigate the relativistic three-body problem”. Separable interactions also provide us with
a simple description of mesons as an extended quark-antiquark(qq) system. Here, quarks
are confined by a very complicated many gluon exchange mechanism, which is clearly a
nonlocal interaction. In fact, the instanton-induced nonlocal four quark interaction can be

8

expressed in a separable form®. Another example of the usefulness of a separable model
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19 which incorporates the

is provided by the Nambu-Jona-Lasinio model? of g§ mesons
physics of a gg(super conducting) pair by using the simplest form of separable interaction.

Separable interactions are generally expressed in terms of products of vertex functions.
It is therefore a simple task to apply the method developed in Ref.5 to the derivation of
the interaction current associated with the separable force.

In this paper, we derive the interaction current operators corresponding to a relativistic
separable interaction by using the minimal substitution method®. The results are shown
to satisfy the general constraint! obtained from the use of the Ward-Takahashi identity
and the Bethe-Salpeter equation. With an eye to applying the results to both relativistic
few-nucleon systems and covariant constituent quark models of hadron structure, different
forms of separable interaction are investigated. The matrix elements of interaction currents
are evaluated with bound state solutions of the Bethe-Salpeter equation. The results are
reduced into a simple form, so that the physical significance of this new current operator
becomes clear. In general, the gauge invariance of the matrix elements requires both the
impulse and interaction terms. Finally, a numerical evaluation of the matrix elements is
carried out for a simple separable model of pion, which we regard as an illustration of the
general method. The size of the interaction current contribution to the pion charge form
factor is compared with the impulse contribution.

This paper is organized into five sections and two appendices. In Section II, we formu-
late the general constraints on relativistic two-body current operators through the principle
of current conservation. The details of how the minimal substitution method yields the
interaction current operator corresponding to a simple form of separable interaction are
given. In Section III, the bound state matrix element is evaluated and a simple inter-
pretation of the new contribution is given. The illustrative numerical results for the pion
charge form factor are given. We expand the method to more general forms of separable
interactions in Sec. IV and summarize our results in Sec.V. A matrix representation useful
for the description of the fermion-antifermion systems is used in this paper, but methods
and conclusions are general, and apply to other systems, such as two-fermion or two-boson

systems.



II. Interaction currents of separable interactions
A. Bethe-Salpeter equation and conservation of electromagnetic current

We start with a general expression for the Bethe-Salpeter equation for fermion-antifermion
scattering amplitudes and derive the wave equation for the vertex function of a bound state.

The equation for the scattering amplitude(Fig.1a) is given by

ﬂ/-[aﬁ:é'y(k'vk';P) = Va,@:&‘y(krak; P)

. d4k” r 1 14 " P 1 P "
+2/ana,e,\(k,k i P) San(k"+5)Sce(k'—5) Magsy (K", K5 P), (2.1)

where k'(k) and P are the relative and center of mass four momenta of the system, respec-
tively, and V(k', k; P) is the interaction kernel. The fermion propagator with the mass m

is defined by S(p) = i[p — m + i€]™?, and Greek characters are used for the Dirac indices.

The presence of a bound state implies a pole at the mass Mp in the M-matrix,

Tap(k'; P)Tsq(k; P)
P2 — M2

ﬂfag,g.y(kr, k,P) = + Raﬁ:g-y(k,k'; P), (2.2)
where R is regular at P? = M%. Substituting eq.(2.2) into eq.(2.1) and evaluating the
restdue, limps_p1 €q.(2.1) x (P? — M%), gives the bound state equation for the vertex

function(Fig.2),

. dgk” " 1 ‘P " " P
Tap(k; P) =1 WVaa:e,\(k,k i P) San(k"+5) Tne(R"; P) See(K"—2). (2.30)

Applying the same procedure to the integral equation depicted by Fig.1b, we have the

equation for the conjugate state,



n : d4k” I P T n " P H
Ty, (ki P) :z/WS¢e(k ) Ta(E: P) Sa(k" +2) Vagon (', ki P). (2.30)

The conjugate vertex, I'(k; P), is defined by T'(k; P} = —’yoff(k;P)'yg, where 7° is the
Dirac matrix. The vertex function and the wave function are related by ¥,4(k,P) =
Saat(k + EP)FG’.@’("’!P)Sﬂ'ﬁ( - g)

If an external photon field couples to the bound state of the fermion(a) -antifermion(b)
system, the impulse amplitudes(Fig.3)} can be expressed in terms of the solutions of

eqs.(2.3ab),

<J;‘> = —i/ dik Tr{“xif(k';P')(—ie”#)‘p,-(k;P)s”( _g)}, (2.4a)

(2"
and
<J;‘> = —i/(;—:’)‘TTT{%(M;P')s—l(k+§)q:,-(k;P)(—iew#)}, (2.4b)

where k' = k -+ 2 and k" = k — £, f and 7 denote final and initial bound states(which
need not be the same)}, and e,(;) is the charge of the particle a(). The impulse form
factor(Fg; ,(¢%)) is given by FZ, (¢*)[P + P'|* =< J# > + < J} >.

In Ref.1 it is shown that electromagnetic current conservation requires the presence
of an interaction current associated with the two-body interaction, and the proper form of
the current operator is obtained in a very general way by using the wave equation and the

Ward-Takahashi identity. Here, we briefly review the method and derive the restriction.

With the use of the Ward-Takahashi identity,
. _ P - P
—ig =35 ’(k+"‘2“+fI)—5 l(k‘*‘*z‘)s (2.5)

the divergence of one-body current can be expressed as



() == [ te{ 5= D+ LRI R D re) Wik P

2m) 2
+
, dik — -1 f (L -1 _f
+zea/WT {\p (k+ Py 8 (k+2)lI'.(k,P)5 (k 2)}

4 41!
//d kd k _f k' P+q)lr-v(kf k+ P+q) V(k'_g,kip):l ‘I’i,&(k;PL
Ba:by
(2.6a)

where the last equality is derived by using the wave equation, eqs.(2.3a,b). Likewise,

<Iu>
4 LEA
j/d kd'k 5 T, (K;P+q) V(k’+g,k;P) V(K k=L Prg)| W (ks P).

(2 )8 2 Boby
(2.6b)

The divergence of the one-body current is not generally zero, and we rely on the presence

of a two-body current to satisfy current conservation,

<J“+J”+J{,‘“>k : (2.7)

Thus, we obtain a general restriction to the form of the two-body interaction current,
which we can express in terms of the two-body interaction. If the above relations are to
hold for any bound state wave function, the divergence of the current must satisfy the

following operator equation

Lo k' k5 Py g) =e, [V(k’—g,k;P) - V(k',k+§;P+q)]
_|_
[V(k +5,k; P) - (k'ak—:g;P“i'q)}, (2.8)

where e; = —ep is the charge of antiparticle b.



B. Separable interactions and interaction currents

We now derive the interaction current by minimal substitution® of the photon field

into a separable interaction. In coordinate space, separable interactions have the following

nonlocal form({Fig.4)

Vaﬁ:&w(m;::vrz : 3313332) = Aa,@(m; 3‘3'2)367(w1vm2)$ (29)

where we may write the vertex as a Fourier integral,

4 1.0 14
Aap(w),z5) /fd £rd kz Agslk,, k) )ekizieiki=s, (2.10)

The vertex function, A(ky, k) ( = A(k;P)) with k& = (ky — k2)/2 and P = ky + k2,
is generally a 4 x 4 matrix for the relativistic fermion-antifermion system, and can be
expressed in terms of a sum of Dirac matrices. In momentum space, the most general form

of the separable interaction could be expressed as

Vap:s-(k', k; P) ZC’“A (k'; PYA' 5, (k; P), (2.11)

where N is the rank of the interaction, and the channel couplings are Cyy. For simplicity,
we chose a rank-one interaction, since the generalization to cases of higher rank is apparent

but tedious. Then

Vaﬂ:&‘y(k’1k;P) = Aaﬁ(k’;P)_A_a-T(k,P), (212)
where
Aap(k'; P) = f(lky —k3])*)Qag,
Aaglk; P) = f([ky —k2|*)Qag

6



The matrices 2 and () are constant matrices, and f([k| — k4]?) and f([k, — k2]?) are scalar

functions of the relative momenta k' and k. (It will be clear after this simple derivation
that the results for higher rank interactions would give essentially the same conclusions.
More general types of vertices will be explored later.)

The charges e; and e; are assigned to a particle 1 and antiparticle 2, and the electro-
magnetic field is introduced through the minimal substitution of 8 — 8! + te;4#(z;) for
the momentum of each charged particle. The photon field induces a modification in the ver-
tex and a corresponding modification of the two-body interaction. Because the one-photon
absorption or emission processes depend linearly on the photon field, the modification can

he expressed in the following form

SV (zh, oy z1,22) = 6A(2),25) - A(zr,22) + A(2), 25) - §A(2y,22). (2.13)

Here, (), z}) and §A(z;, z2) are the modifications in the vertices Az}, x5) and A(z,z2)
induced by the photon field, and they are functions of the photon field operator. The two-
body current operator for the one-photon absorption process can then be obtained by
taking the matrix element of §V with the photon field, J% (=}, 2z}; v1,22 : g¢) = —(27)*(0 |
5V | al(q)), where ai(q] is the creation operator of a photon with the momentum ¢ and

the polarization €.

To obtain the detailed results, we start with the power series expansion, f({k; —k2]?) =

3, Cnlky — k2]*", in the Fourier integral of the vertex function,

d*kyd*h o
Awp(21,73) = //W,f([k]—kg]z)ﬂu,ge‘k““e"“""’. (2.14)

Here, C, are the expansion coeflicients.(It is not necessary to specify them because the

re-summation will be taken later.) This allows us to express eq.(2.14) as

Dapl(@r,2z) = Y Cal™(zy,22)ag, (2.15)

where



d*k,d*k , ‘
I(n)(ml,mz) = //w_zlkl _ kz]zne"kw‘e‘k?’“

//d4k d4kz ni___a_]Zn k121 gikazs
33.‘31 3232 -

Through the minimal substitutions, 8% — 8 +ie; A#(x;), the matrix element of the vertex

correction defined by §A#(z},z} : g) = (0 | 8A(z),zh) | al(q)) can be expressed as

5Aﬁﬁ(:ﬂ'1,a:'2 1q) = Z C’nﬂa,g<0 | 6I(“)(a:'l,m'2) | al(q)), (2.16a)
where
d'k; d“k' a 8 8 8 - '
{r} — 2ny, 2n :kl 1 :k,z,_
61" (xy, 2% ,/,/ { 31:] 6w2] >) [am, 3:.':2] } ¢
Likewise,
§Ang(T1,22 : g Zc Rap(0 | 61T 2y, 25) | al(q)), (2.16b)
where
d4k]d4k2 a .1 . .
(5.[1.(")(3:],:82) _ // { !2n>>_ ___]211} e—zklzle—nk;z-‘..
Oz,

Here, the double angular bracket is meant to be the minimal substitution,

oz - ] 1= [ +ieae - (G +imaeh)] . @17

for which we introduce the following notation,

2
([52—1 *3;:2} Y =T +4iZ + W, (2.18)

8



where

8 8
D]2”’(£_5’;‘;)

9AM(z;)  OAP(z2)

7 =
R

5} o
t2{erd(m) ~ e2d®(e) gz ~ 5}
and
W = {ielA“(.'.cj) - 'iEZAu(E:Z)}Z.
It should be understood that the differential operators at the last term of Z operate on
ciki T gikazy op o—ikiz1e—ikaza i eqs.(2.16ab). The photon field is quantized and has the

usual plane wave expansion, A (z) = [ mi:%{a”(q —ige -I—at 'q’} With this notation,

the inside of the curly bracket in eq.(2.16) can be expressed as

= (DIE +1Z + W)n*(Ulz)n
= (T +1Z+ W) (Ui +iZ + W)- - (The +iZ + W) - (Ts2) ",

= (Th2)" 16 Z) + (Ta2)* (G Z)(ha) + -+ - - + Us2(iZ2)(Ur2)"*"? + (22)(TTa2)™"!

-1

Z (Op2)* " ~M(32)(T52)".

M=0
(2.19)

Note that the third equality is valid for one-photon absorption or emission processes, where

(0| W | aI(q)) and (0 | ZN | aI(q))(N > 2) do not contribute. Then, we find a compact

expression



B dA k) R :
61’(")(.1-"'“::2 — /fd k (D‘]z)n-—l—M(iz)(D‘lz)h :klzle:k zy

I\J 0
(2.20a)
47, 41 "] . _
6_[1(")(1.1,1:2) — (— /fd k]d kz (Ulz)nml-—M(iZ)q(Ulz)M e—‘lkliﬂle—lkzZQ
1\/[ 0
(2.208).

The matrix elements, (0 | 6™ (zy, z;) | al(q)) and (0 | 5I1'(")(z'1,a:'2) | ai(q)) appearing
in eqs.(2.16), are easily evaluated by using eqs.(A.4) in Appendix-A. By using an identity,

rl (@) MM < 93{—%:, and making the re-summation with f(X) = }  C,X™,

we finally arrive at the following expressions for the vertex corrections,

§AL(zy, 23 1 q)

d*k] d* k)
B // TPl 2 Cnu(n)

d4k! d*k}
- // (2myiz o8

2k] —2k;—q)* | P
Lo g 1K~k —al?) - £, - R it et i
- + (2.21a)

UK =k - g7) = A~ ) etisteibiehmies |

. 12K} 2k} g
*(2k, —2k}+q) - q

and

10



65:;7(.'13] 1 L2 : q)

dikdik, — .
// (2m)12 Lo chw #n)

d‘*k]d‘*kz =
27,.)12 by

{e [2kq —2ky +gq|*
! (2’6] *2’92‘{"(]) g

F(lks—ka+q)%) = f([k1 —ks)?) | e Hr=remiham2gmiam
- t+ - (2.21b)

[2ky —2ko —q]* [ e
2 (ot ok g g |T B TR a) = (kR [ TR e e }

where u#(n} and w#(n) appearing in the intermediate expressions are defined in Appendix-
A. The momentum space representation of the interaction current operator{Fig.5) is ob-
tained from the products of the vertex(A) with the vertex correction(§A), so that the

kinematical variables satisfy momentum conservation ki +kj =k;+k2+q;

Jﬂ'

tnt

(ks ks ke ks : ) = Aap(ky, ky) 686, (K, ko 1 )+ 60%4(KY kg 5 q) Dgy(ka, ka), (2.22)

where the vertex corrections, 5Azﬁ(ki,k5 : ¢}(Fig.6a) and 53;‘1(k1,k2 : q)(Fig.6h) are

given by
K* , , K , ,
5% k3 ) fhop{ er i | F(S2)- (8 pea g (51157 |, (2230
and
. _ e K*
Stk kn )= ~Tap o1 gt | F(5)= H(5)|rert | (87) - £(57)] | (2290)

11



Here S¢) = k{7 — k() 50 = &) —&{) 1 g and K = 2k{) — 2{? £ q. The matrix
element of the interaction current is evaluated by using the solution of the Bethe-Salpeter

equation(¥(k; P))},

d"kd"k'
j / K3 P+ q)TE (K k : [P, ) ¥ilk; P), (2.24)

where the interaction current operator is expressed in terms of the interaction,

JE (k' k:[Pgl)=—c¢ Ky rV(JE:’ k -+ g) - V(k' k)- +e K" -V(k' _ 2 k) - V(k' k)‘
inl PR 2 qi) = IK.;.-q_ * 2 ) ] JK'_'q_ 2’ y |
_I_
K" 1 q ] K'# q ]
- = kL k- 2)-V(k' k V(K + 1 k) - V(K k).
ezK_-qu( y 2) ( ? )_+82K;-q ( +27 ) ( )
(2.25)
The divergence of the interaction current is given by
Ttk 3 (Pa)) = e V(K — £, 8 Vi + D)
r 9 ' q
+ e [V(k +§,k)—V(k,k—§)]. {2.26)

Here, e; and e; are the charges of the particle and antiparticle. We observe that the
interaction current derived here, by the minimal substitution method, satisfies the general
constraint(eq.(2.8)), obtained from current conservation.

Because terms linear in the photon field enter into the final results only, it is clear
that the conclusion given by eq.(2.25) and eq.(2.26) is still valid for the case of higher-rank
separable interactions. In Sec.IV, we extend the present result to separable interactions
having momentum dependences in the matrix ©, but continue to restrict ourselves to the

rank one separable interaction.

12



ITI. Matrix elements of the interaction current

A. Theoretical reduction
In this section, we evaluate the matrix elements of the interaction current operator
formulated in the previous section, by using bound state solutions of the Bethe-Salpeter

equation. We use the simplest type of separable interaction used in the previous section

Vagisy(k' k) = g f(Iky — k31°) f([k1 — ka]?)RapQss, (3.1)

where () is a constant matrix and g is the coupling constant, and there is no dependence
on the total momentum P. The solution for the bound state vertex function, obtained
from the wave equation eq.(2.3a), has the form I'(k) = N f([k1 — k2)?)Q2, where A is the
normalization constant. Note that V(k', k) = ﬁif‘(k')f(k) The eigenvalue condition is

4
1= ix% f (;’; {f(k)S(k + ;i)r(k)S(k - 1—2’)}. (3.2)

Throughout this section, the curly brackets are meant to be the traces of the Dirac
matrices and matrices describing the other degrees of freedom which enter the problem.
For example, in the quark model the traces of color and flavor matrices are taken.]

It is possible for the eigenvalue equation {3.2) to have more than one solution, cor-
responding to the existence of excited states. In order to treat the most general case, we
will assume at least two solutions to exist with masses p* = u? and p'2 = ”;2.

The Bethe-Salpeter equation and the interaction current operators are covariant, and
the scalar matrix elements should not depend on the frame in which they are evaluated.
We chose the Breit frame. The four momenta of initial and final states are given by
p=(P~q)/2andp’' = (P +q)/2 with their respective masses p and p', and the expression

for the current, eq.(2.25), becomes

13



Jh (k' k:q)=—¢€; (g% [V(k',k-l—g) - V(k',k)] —Eéwl% [V(k'—g,k)—’lf(k',k)])

+ (e2 — term), (3.3)

where £, = ([f:%rﬁ%i_‘a and &, = :::::)_q. Hereafter we drop the e; —term for simplicity.

The matrix element of the current operator describing the transition from a bound state

of mass u to one of mass u', both described by the same T', is given by

(o) - [ ] £

where
] !

{ J::u} = (S(K' =B )T(k)S(k'+2)] g (k' k : Q)apiay [SCR+E)TR)S (-] .

See Fig.7. The use of the Bethe-Salpeter equation considerably simplifies the matrix

element, giving

4 gql# . 3
<J=-'i-.a(q)> =i, [ (;i,,l;(fff)], q{ [f(k+§)—m)} S+ =20) T(k) s(k_%ﬂ)}
+
. dik [k - I)# Ptg. — p
—iey (2W)4(k_;)'.q{5( -EInmwster T et D-ren)| } 2)

The interaction current can be reduced further by shifting the integral variable, & —

k -+ 5’4;'1 in the first and k& — k + PTTQ in the second terms. We get

14



<Jf;:( )> :ielf((zt:r’;"(J[ckJrJr;)]f‘q

=, P+ea. =, P—q P—gq
x({[I‘(k+ o) Tkt )] S(k+ == )P(k+——

e TE s E o+ P -ree Tl s} ).

2
(3.6)
In the Breit frame, the kinematical variables are given by
1
P = 2(P~ )" = (B, —aq),
¢ 1
p* =3P +q) =(E[1-aq)
¢ = (0, q)
P* — (2E, 1 - 20]q), (3.7)

where a satisfles E = 1/u? + a2q? = \/u'? + (1 — a)2q?, and it is convenient to introduce
the orthogonal four-vectors ¢# and 7# = P* — (P - q/¢?)g”. Using the fact that the d*k
integration will turn &* into a multiple of ¢* and P*, we can project the four vector
[k + P/4)# in eq.(3.6) onto these vectors;

P nH P q“

[k-l-—‘:i]pt(k'*‘Z)‘T]n—"r-(k-i-z)'qq—z. (3.8)

This separates the matrix element of the interaction current into two terms, one propor-
tional to ¢* and the other proportional to n*, (J},,) = (J,.)q + (Jhi)n-
Using the eigenvalue condition eq.(3.2), the second and fourth terms in the ¢*-part

cancel in €q.(3.6), and the ¢g*-part can be written
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<J£;¢(Q)>q:iel_/ dlk g;{f(kJr M)[S(kﬁ ?) — S(k+ %)J ik + L)S(k))}

- fd%k g P N P

=1e; =S D(k+=)S(k+p')| —ig ) S(k + p)T(k+2)S(k)) ¢, (3.9)
(2m)t ¢? 2 2

where the identity S(A)—-S(B) = S(B)[SY(B)-S5"1(A)]5(A) is used to obtain the last

equality. Note that this matrix element, when combined with the impulse process, gives a

new relativistic impulse approximation(RIA) with the photon-fermion vertex 4# replaced

by v* — fg* /¢,

(Thiaw) =-er [y Tl B1stk 2|~ S ] skapire + D5 . (a0

Note that this new form of the RIA now explicitly conserves current, even if p # u'. To
summarize: the sum of the original relativistic impulse approximation(RIA) and g¢#-part
of interaction current ({(Jh;4(q)) + (JE,(9))q = (Jh;4(9))c) is equivalent to the result
which would be obtained using an effective photon-fermion vertex v# — gg*/q*(Fig.8) in
the impulse diagram. Furthermore, g,(7* —gq*/q?>) = 0 identically, so that this new RIA
is gauge invartant.

Return to the ##-part of the interaction current. We will write this as

(a)) =i /fT’;({?#(q)S(Hp)P(H Byste) - { S(k)f(k+§)5(k+p')af;‘(q)}),

where the effective “vertex-currents” (Jp(g) and JE(q)), which can be used in the single-

loop diagrams(Fig.9), are given by
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S (k+3)m ,[T(k+5)-T(k+5)]
Jr(g) =& n? n (k-iz-P/‘i)-q ) (3.12a)
and '
wo v (k+ D n [Tk+E)-T(k+5)]

From the form of this expression, the n*-part of the interaction current can be considered
to be a new contact interaction which arrises because of the structure of the bound state.
Because g,n* = 0, this new interaction current is gauge invariant by itself. Furthermore, if

w=pu',n* = P* and it can be seen that <J::“(q)> =0 when ¢=0. Hence the interaction

current does not contribute to the charge form factor, F{g?), at ¢* =0. This allows us to
determine the normalization of the wave function, N2, from the normalization of the RIA

process alone. [ To see that<.ﬂ‘ (0)> =0, note that u = p' implies that eq.(3.12a) and
7

ini
eq.(3.12b) have equal magnitude but opposite sign, and hence the two terms in eq.(3.11)
are identical when ¢ =0 or p=p’. Changing the integration over the time component kg

to k{ — Py/4 shows that the integrand is odd in kj, and hence the current is zero.

B. Example: the pion charge form factor

Here, we apply the formalism developed in the previous sections to a physical system.
We introduce a simple model of the pion as a relativistic quark-antiquark system inter-
acting via a sepé,rable interaction. We have found that such a separable model can give a
phenomenological soft prton wave function which successfully describes the pion form factor
and weak decay!!. In this paper, we use another separable model which is in some respect
simpler!?. In this section, we calculate the matrix elements of the interaction current
contribution to the pion charge form factor, and compare the results with the RIA.

First, we introduce the following model interaction
’Tiﬁ 'Yg-y

Vapox(E' k) = 9 5072y Drey’

(3.13)

where D{k?) = k? — A? with A ~ few hundred MeV, a typical hadronic mass scale. This
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separable potential is taken to be an effective interaction between constituent quarks form-
ing a meson, and the Bethe-Salpeter equation is solved for a quark mass in the range
m = 200 ~ 400MeV. The details of the calculation are given in Ref.12, including the
effect of vector meson dominance. Here, we focus on the evaluation of the interaction
current.

The bound state solution for the 7gg vertex is simply

5
I'(k} = %, (3.14)
where A is the normalization determined from the normalization of charge. This sim-
ple vertex actually gives a pion wave function which contains all of the four invariant
functions!® necessary to describe the wave function of a pseudoscalar meson. In addition,
the invariant functions now depend on both k% and & - p.
The normalization A can be obtained by calculating the RIA amplitude only, Fuj4(0)=

1, because the interaction current does not renormalize the charge. Introducing the color

and flavor wave function, the weak pion decay constant is given by

d*k m
\/_ / 2x)t D(k?)([k — B2 — m?)([k + £J2 — m?)’ (3.15)

where n, = 3 is the number of colors. The RIA to the charge form factor of the =+

given by

FRralg)p+p')*

_z [ A Trly*(#' + k+ my*(B + £+ m)y*(F + m)]
=N /( . (3.16)

27)! D([k+51?)D([k+5]2)([k+p'2 —m?)(|k +pJ* —m?)(k? —m?)

From the symmetric structure under the interchange of variables p « p', the right hand
side of eq.(3.16) is proportional only to [p + p'|#, reflecting the fact that the pions in the

initial and final states are real with equal mass p. Therefore, the g#-dependent part of

18



the interaction current, which can be obtained by replacing v* by gq*/¢® in the impulse
diagram, does not contribute. The other, n*-part, interaction current contribution is not

zero, and we calculate it.

Since the initial and final states are physical pion states, p? = Jp'2 = p? = u'?, it

follows that 5* = P¥ and q- P = 0. The effective “vertex-currents” defined by eqs.(3.12a,b)

become
IE) = Pl P 1) pu s & - :
F@=eps (T 5F A% ((k+ 5P - A7)
. . [TV
L P
P (kg - A0k B A7)
and
. k-P 1 pry?
Jh(g)= —e;N™* t . . 3.17b
r(q) et N ( p? + 4) (b + 22 - AZ)((k + 2] — AZ) ( )
Inserting into eq.(3.11), we get the correction to the charge form factor
Fﬂ(z)_isz d4k‘ 4kP+P2
PTTPEJ (am) ([e+ 81— A7) [k + B - A7) (2 —m?)
y m?+ B —(k+ L) m?+ & —(k+E)? . (3.18)
([F+ P AT+ —m?) | (k- Ak 1 1)

The numerical results for the interaction current correction (F,-,,,t(Q2 )) and the impulse
form factor (FRIA(Qz)) are presented in Fig.10 and Fig.11. Model parameters used in
the three sets of results are listed in Table.1, along with the results of the pion charge
radius (rEXP = 0.66fm) and weak decay constant (ffxp = 93MeV). The effect of the

”
interaction current on the charge radius is about a percent, as is seen from the slope of
the results in Fig.10. In Fig.12ab, we observe that the interaction current contributes a

significant amount to the charge form factor in the large momentum transfer region. This

reduces the total magnitude of the soft form factor( Frra(Q?) + Fint(Q?)).
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IV. A generalization

In the Section II, the interaction current was derived for a very simple form of separable
interaction, where the matrix in the vertex was assumed to be independent of momenta
associated with the charged particles. Here, we apply the same method to a more general
form of separable interaction which has a simple momentum dependence. It will be shown

that our result for the interaction current satisfies the general restriction from current

conservation, eq.(2.8).

We use a rank-one separable interaction,

Vageor (K 5 P) = Das(ky, kB (R, b (4.1)

which is a product of two vertices conserving the total momentum of the initial and final
states, P' = k} + ki = P = ki + k2. We introduce the momentum dependence in the

following form,

A(k; P)

= Z Fillks —ka]? )0 ( ke, k2)

Al 10 425 (kYO 4l ~kJOP At~k IO(EP )42
where & = (k; ~ k2)/2 and P = k; +kz, and O is & constant matrix to be chosen depending

upon the specific modeling of the interaction. The results obtained with this model can

be immediately applied to any interaction of this general form. For example,

V(k',k : P) = f2([k} - k}y|*) f2([ky — k2] )OF OP,

or

V(K k2 P) = 3 fi(18 k1) fy (o = k)02, (b0, )8 (ks k).

With the notation introduced in Sec.II, S(} = kg')—kg'), S(i') = kg')—kg'):l:q and K(i') =
Zkg') - 2k.£,') + ¢, the modification of the vertex, eq.(4.2), caused by the introduction of

photon field is given by
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6 Dap(e1,2s)
_ Z //d"k 1Ak, [ S(57)0 (kg k2) ) — fj(sz)gj(khkz)] Jikie gikses

_ Zf/%{[((fj(sz)»_f,-(sz) Qj(k1,k2)+fj(52)[<(ﬂj(k1,kz)))—Qj(k],kz)]}e”‘“"e”“””.

(4.3)

Here again the linear dependence on the photon field, which is a characteristic aspect of one-
photon processes, is used in the last equality. In this respect, the evaluation of two-photon
interaction currents appearing in two-photon processes, such as compton scattering, would
not be trivial at all. Note that the momentum of charged particle 1(2), ky(,), is replaced

y 16:1(,, in f;([k1 - k2]?) and Q(ky,k2). Using egs.(B.1), (B.2), (B.3) and eq.(B.4) in

Appendix-B, we can derive the following expression for the second term in eq.(4.3),

Z/fd4kld4k2 )[«Qi("’lakz))) 0k, ky)| ek g

d*kydtk,diq ;
) J[ -*me"““{a,..(q)A;-‘(kl,kz,q)+a1(q)A;-‘(kl,kz,q)},(w

2ﬂ- 12

where
Af(ky, ka,q) =0
A;‘m(kl ka2, q) = fl(:)(sz)elo7ue_iqxl —(+) fl(:)(si)ezo’r"e_iq“s

Ak ke, ) = F5(52)e10(rFs — Bav)e 0™ — f5(5)es 01 — Fry*)e 0%,
The first term in eq.(4.3), which we obtained in the Sec. II, can be written

//‘d“k 1d%ky [((f; 57 - f,-(.S‘z)] 2(ky, bz ek 71 gikams

//ddk 1dikydiq LY :lc:n{a (q)(:#(k,,kz,q)+a (q)C*(ky, ka, _q)} (4.5)

271- 12
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where

K* .

C‘u(klak2!q) - _BIK qZ[f](Sz) fj(Sz)]Qj(kl,kz)e_"qzl
K” —1 E ]

o Z,: [f,-(Si) - fj(Sz)] Q;(ky, ka)e 9%,

The vertex modifications are obtained by taking the matrix elements of eq.(4.4) and eq.(4.5)
for the one-photon absorption process. The interaction current is then the sum of products

of vertex and vertex modification terms which satisfy momentum conservation(k; +k; +q =

ky + kj)

J“(k;,ké;kl,kz . ) = 5A”(k;,k’ ) (kl,’cz) + A(k;,k;) 6Z(k],k2 H q), (46)

where the vertex modifications are

Sk 4 5
-—+e]{ A3 (511~ (S8, k) - s (57)0N ~ Fo( )07~ F(SIOG s Kir)
’ +
{ (547 - £(S™)] 0 (k;,k;)+f1(sf)o~r”—fz(523)o—r"+fs(s;?)ow;—W)},
and
F"(khkz: q)

(52 )= £5(57)| T (ks ko) + Fo(S2 RO+ fo S )yPO + f3(S2 ) (Bar¥ — 7%)6}

ol

_ez{ KT Z[fj(sz) fJ(Sz)] i(kyy k) — F1(S2 PO+ £(S2 )y O — f3(S2) (B v* - uk')@}.

K -q

Note that ZJ fjﬂj(k],kz) - f]Od m szﬁ - fgo(dkz —Egd) = ZJ fjﬂj(k] — 4q, kz) and
Z] fJQJ(kl,kz) - flOgj - ngé + ng(jk] —k]é) = Z] fjﬂj(kl,kz — q) With the use of

these identities we can express the divergence of the current in a very simple form

22



QAR K, 1 q) = + e Z{f,-(s'fm,-(k; g k) - f;'(S")ﬂj(ki,ké)}

7
+

b S HSDNELH - ) - (500, 4)

= b er (b 0. k0) — ALK x| ALK ) - A8,
(4.7a)
and

qnéz#(kl,kz . q) = —€] [K(kl + q. lﬂz) — E(k],kz):l —€3 {K(k],kz + q) - Z(k],kg)] . (475)

Finally, we observe the divergence of the interaction current to have the desired form,

qﬂj'u(k;,k’z;kl,kz : q): + E]A(k;—q,ké) E(kl,k2)+egé(k;,k'2 —q) K(k],kg)
+
— erA(ky, ky) Alky + g,k2) — e A(ky, k) Ak k2 + q)

:+81{V(k' —%,k:P)mV(k',k+

[ R

:P+q)}

+ ez{V(k’ + g-k . P)— V(K k-

b [

:P+q)}. (4.8)
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V. Summary

The present study uses the minimal substitution method to obtain the interaction
currents associated with a relativistic separable interaction. We start with the Bethe-
Salpeter equation for a fermion-antifermion system( for definiteness only) with a general
form of the interaction kernel. Using the wave equation of a bound state and the Ward-
Takahashi identity for the divergence of the one-body current, we demonstrate that bound
state matrix elements of the total current is conserved, provided there exists a two-body
interaction current. This interaction current must satisfy the general constraint eq.(2.8),

which can be expressed in terms of the interaction kernel.

The specific form of the interaction current is then constructed for a simple separable
interaction. Bound state matrix elements of this interaction current are evaluated, and
it is shown that the two-body current operator can be reduced into an effective one-
hody operator, which contains two terms. One term is a photon-fermion vertex correction,
eq.(3.9) or eq.(3.10), and the other is new interaction term involving the bound state vertex,
eq.(3.12). It is shown that the interaction current does not contribute to the charge form
factor at ¢g=0 for this simple form of the interaction, so that the normalization constant of

the wave function is obtained from the charge normalization of the impulse process alone.

As an example, the interaction current contribution to the pion charge form factor
is calculated in a model in which the pion is a bound state of a quark and antiquark
interacting through a separable interaction, V(k', k) ~ F(k')F(k)v®y®. The result shows
that the interaction current contribution is significant, especially in the large momentum
transfer region. However, the interaction current does not contribute significantly to the

charge radius.

Many applications of the formalism in this paper come to mind: For example, J. A.
Tjon and G. Rupp’ obtain relativistic wave functions of two- and three- nucleon systems by
using a separable two-nucleon interaction in the Bethe-Salpeter equation. The calculation
of the charge form factors, including the effect of interaction current, is quite possible

and interesting. Baryon resonance production, such as yN — A — 7N, can be studied
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with a separable interaction model, which incorporates nonlocal aspects!® associated with
the propagation of a resonance particle and its extended structure. Lastly, employing
the separable interaction technique presented in this paper to study NN physics is quite

possible.
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Appendix

Appendix A

By applying the plane wave expansion of the photon field, A,(z) = f (rg;f)‘; a,(gq)e "%+

al(q)ei‘?”, in the expression Z = e, 8‘4;:(;‘) +ey BA;:;’) +2{e, A*(z, )—ezA“(a:g)}[Fa,; - ;9%27 ,

we get a following useful formula,

i : d*
iZetkimigikaza - /(27:;4 {a#(q)F”(k;,kg,wl,mg)-I—a.l(q)G“(kl,kg,a:],mg)}, (A.1)

where

F'u(kh kz,ﬂh,mz) = 61[q + 2ky — 2k1]ﬂeik1=16ik:zze—iqm1

and

G"(h,kz,wl,wz) — 61[—9! + 2’62 _ 2k1]ueik131eik:zzeiq:l

+ €3] —q + 2k; — 2ky|tetkiTrethrTaoian,

Applying a D’Alembertian operator to F# and G* we get,

(Oi2)NF¥(ky, kg, @1, 72)
— El[q + Zkg _ 2k1]'u(—[k1 . kz - qlz)NeiklzleikZz,eﬁiqzl
+

ea(q + 2ky — 2k21#(—[ky — k2 + q]z)Neik‘”‘eik’”’e_iq”’, (A.2a)

and
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(012} GH(ky, k2, 21, 22)
— E’][—q + 2k2 — Zkllu(*[kl - kz + Q]z)

Neiklz,eik;zgeiqm

+
e2[—q + 2y — 2k *(— [ky — ks — g)F)VettiTrethaTaeins, (A.2b)

Therefore eq.(1.21a) can be expressed as,

&Im (EL'I,I'z
1

4 4 n-
// d'k, d kz (Dlz)n—l—M(,,;Z)(Ulz)Meihheikﬂ:

o e

A =0

§ {au(Q)(Dlz)"_l_MF“(kl k2,21, 22) + af(¢)(Ti2) M GE(ky b, ““"‘"‘"2)} (4.3)

With an algebraic identity, ZM pat ImM pM = %—:—g—", we arrive the following compact

cXpres sions N

= -

—
]

s —
153
b

——
32
g

\—v—/
=
e

2

dik d kadq
“one) = [[ [t w@wrn) + a

stinarz) = [[[ LR G gutem) 4 auaulem], ()

2‘7I' 12
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where

(k1 — k2 — q)*" — [ky — k2)?" ki) ikaza  —iges
(k1 — k2 — q)® — [ky — k2)?

u"(n) = E’}[Zk] — 2]62 - Q’]M

[ky — k2 + q]*" — [k1 — kzlzne:’k[zl
[ky — k2 + g% — [ky — k2|2

elkqt:ﬁ—lng’

+ ey|2ky — 2k; — q]*

and

(k1 — k2 + q)*™ — [k — k2™ ko) ikaes i
13 — by — 2 H LTy Ry QT
w (TL) 61[2 1 kz + (I] [k] _ kz + q]z - [kl _ k2]2 € €

(k1 — ky — q]*™ — [ky — k2|?" ikiz1 ka2 igzs
[y — k2 — g2 — [k1 — k2|2 '

+ e[2ky — 2k, + g|*

Appendix-B

This appendix presents the useful formulas used in Sec.IV. The external photon field

induces corrections in the matrix part of the vertices,

d*k, d"k : .
f/ 2 |:<Q kl,k2)>> Qj(kl,kz) etk1z|ezkzz:’ (B.l)

where the matrices £2;(k, kg) are defined by

(ks ka) =26 (j =1),

={kP—- Pk} (5 =3)

The double angular bracket means the minimal substitution of photon field in the momen-

tum of each charged particle, and k = (k1 — k2)/2 and P = ky + k3. Then, we have

dik,dikydiq pik1zy pikazs
8h,, = //f (27)12 ‘

X{au(Q)’r" (l’flf—’—i""zl T 62€—=‘qz,) + “I(Q)‘Y“ (elei"m (+)€23iqz’) }, (B.2a)
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and
50 = /f/d‘l’“zi’k]zd“q v
x{a“(q)(e,h#h — F2y*)e 9P — ey[y hy — kwu]e—iqm,)

t “;t(‘I)(El[’Y”kz — FayPle T — eg[y ¥y - ﬂl‘r“]e“"”) } (B.2b) |

Introduction of a form factor results in the following expressions,

j/fd“kzdwlif 2 £([ky —k2]?) {(([yl_h]))_”él_hl}eikme.k,:,
///m d4k2d4q s

x{au(qw (ers(57)eom —eas(strew) + af e (o ~a) } (B.3)

///f%fé—diqf([kl _kzlz){((WIEZ—%%]))—U‘HJ&:—¥2¥1]}ei’°1’=leikm

//‘/‘dkdkdq "

X{%(q)(flf(si)wz ~ bt e f(Dh - ble ) +af@)(a - ) } |

(B.4)

where Sy = k; — k2 £ q.
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Table captions

Table 1
Quark mass(m) and cutoff mass(A) used in the model of pion, and
the numerical results of static observables, r(pion charge radius) and

fr(weak decay constant).



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

FIGURE CAPTIONS

1
The Bethe-Salpeter equation for fermion-antifermion scattering matrix
M(k', k; P), with a interaction kernel V(k', k; P). The solid lines with

arrows are fermions.

2
The Bethe-Salpeter equation for a bound state vertex function(I'(k; P))

indicated by the open circle.

3
An example of impulse diagram((J#) ) for the charge form factor, where

a photon(wavy line) with the momentum g couples to the particle “a”.

4
A relativistic separable interaction as a product of two nonlocal vertices

indicated by the open circles.

5
A two-body interaction current operator expressed in terms of the prod-

uct of a nonlocal vertex and a vertex modification(hatched circle).

6
The vertex modification(8A) induced by the substitution of photon field
into the vertex{A).



Fig. 7
Matrix element of the interaction current operator, where the open cir-

cles are bound state vertex functions.

Fig. 8
The matrix element of the effective photon-fermion vertex, v* — gg*/¢%,

indicated by a solid circle.

Fig. 9
Matrix element of the n-part of interaction current. The solid circle is

meant to be the effective “vertex-current” defined by eqs.(3.12ab).

Fig. 10
The contribution of the interaction current in the charge form factor of

pion. Here, Q? =
mass) = 300MeV and A = 500MeV (solid line), m = 300MeV and

A = 750MeV (dash line) and m = 200MeV and A = 500MeV{dotted-

—¢? > 0. The meaning of three lines is; m(quark

dash line).

Fig. 11
The impulse form factor Frra(Q?). The meaning of lines is the same

as Fig. 10.

Fig. 12
Each contribution of the impulse( Frra(Q?)) and interaction (Fipn.(Q?))

form factors multiplied by Q2. The meaning of lines is the same as Fig.

10. The experimental data are taken from Ref. 14.



m{MeV] A[MeV) e[ fm] Fx[MeV]
300.0 500.0 0.64 108.0
300.0 750.0 0.56 123.0
200.0 500.0 0.84 81.9

Table, 1
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