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I. Introduction and Overview

In the past, the vast majority of nuclear physics calculations were carried out using
nonrelativistic quantum mechanics. Relativistic effects, to the extent they were considered
at all, were usually regarded as small corrections, primarily kinematic in origin. However,
as understanding of hadronic matter has developed, and as high energy accelerators capable
of probing hadronic systems to very high momenta have become available, interest in
relativistic methods has grown and theoretical techniques have matured. Until the early
1980's, most research was centered on methods for computing relativistic corrections to
calculations which are essentially non-relativistic. The idea was to find corrections to
lowest order in (v/c)?, where v is a typical particle velocity regarded as small compared to
nuclear energies and masses. Recent work goes far beyond such expansion methods.
Fully covariant approaches, in which the dynamics is closely connected to field theory, are
now being developed. Such methods have several advantages over the earily expansion
methods. Their close connectdon to field theory makes it possible to study fundamental
issues by applying dynamical models to a wide variety of physical processes in a
consistent way, and covariance insures that high energy calculations include (v/c)? effects
to all orders.

In this chapter [ will review both the early expansion methods and the newer, fully
covariant techniques. The former are still in wide use, and are the only methods available
for the treatment of complex nuclei. They also provide the student with a reasonable

introduction to many of the ideas and issues. The newer covariant methods have been

tThis work was done while the author was a visitor at the Institute for Theoretical Physics, University of
Utrecht, Utrecht, Holland.
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applied mainly to few body systems and infinite nuclear matter, but I will only discuss the
few body applications. Relativistic nuclear matter and the relativistic many body probiem
have been treated in 2 number of books [see, for example, CS86 and SW86).

This chapter is organized into three main Parts, each with several sections. The
remainder of this Part is devoted to a review of several processes in which relativistic
effects are known to play a role. These include (i) deuteron form factors and static
moments, (ii) deuteron photodisintegration, (iii) deuteron electrodisintegration and radiadve
neutron capture, (iv) three nucleon form factors, and (v) the M¥ interaction. In each case,
theoretical results will be stated and compared with experiment. Part [ will then conclude
with a discussion of the implications of the results presented, and an assessment of the role
of relativistic effects in nuclear physics. In Part II, the (v/c)? expansion methods for
calculating corrections to the deuteron electric form factors will discussed in considerable
detail, Two different methods, illustrating the different "schools” which have developed,
will be presented and compared. It is hoped that this somewhat detailed discussion will
provide sufficient background so that a reader unfamilar with this subject can persue the
older literature on her own. Sections 2.4 and 2.7 include summaries and discussion of the
work in Part II. The last Part will discuss the newer, covariant methods which have been
extensively applied to the study of few body systems in the last decade. Since the newer
methods are quite different, this last Part is developed in a way which is largely
independent of the discussion in the first two Parts. A final conclusion is given in sec. 3.3.

Many of these topics have been reviewed periodically in talks given to the
International Conferences on Few Body Problems [Gr76, 84a, Fr81, Ti87, and Po90] and
Particles and Nuclei (PANIC) [Gr77], and to the European Conferences on Few Body
Problems [Gr84b, 86, Ga86, Tj86c] and Nuclear Physics with Electromagnetic Probes
(Fr79b, P185, and Tj85]. There is also a discussion by Friar in the book Mesons in
Nuclei [Fr79a]).

1.1 Deuteron Form Factors and Static Moments

The deuteron is an important special case because all of the corrections which will
be discussed in this chapter have been applied to it, and there are also excellent high Q?



dara to compare with theory. Since the deuteron is a spin one particle, it has three form
factors, which will be denoted G, GQ ,and G,, for the charge, quadrupole, and
magnetic form factors, respectively [AC80]. The differential cross section for unpolarized
elastic scattering is

do _ do N, 2) mn2(&
fo - 2] [4@)+0(@) (3] ,

where @ is the electron scdttering angle, NS is the differential cross section for no
structure, and the four momentum transferred by the electron is denoted by g, with ¢2 <
0. [The conventions of BD65 will be used in this chapter, together with the SLAC
convention, 02 =~ qz.] The A and B structure functions are related to the form factors
by

A D)= D+ L AN+ L. ()

B(Q’)=3—f::—(1+:§i,:) A ()

(1.2)

where G,,(0) = i, in units of e/2Md (twice the usual normalization) and G,(0) = Q, in
units of °/Mdz )

All three form factors have been the focus of an extensive program of theoretical
calculations. In both the relativistic and nonrelativistic cases, the form factors will be
written ,

G.@h = G, @" D, @) +[2G,,@% - G, @] b @

G,(@H = G,@H D, @" +[26,@" - G5 @H] by @
G, ) =G, @%b @) +G, @) DIt @) 13
where G5 and G, are the isoscalar nucleon form factors [normalized to G0) =1,

GMS(O) = ¢ ], and the D's are body form factors which depend on the deuteron wave

functions. In the non-relativistic impulse approximation (NRIA) the body form factors are



(Ja56, Go63)
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where C(r) and Q(r) are convenient combinations of the reduced S and D state wave

functons of the deuteron, & and w

Cry=u(ry+ wir) , Q(r)= u(r)w (r)- F=wir) (L.5)

ju are spherical Bessel functions of order n, and 7= Qr/2. In the NRIA, both of the
D50 terms are zero.

In the relativistic case, the electric body form factors are
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where the identification and physical interpretation of the terms depends on the method
used to calculate them.

One method (referred to as the generator, or G-method in this chapter), is based on
the algebra satisfied by the generators of the Poincare group [see BT33, Fo61, 77, Os68,
KF70, 74, FK75, CO70, 71, CC70, Li73, Fr73, 75a, CO75, CH76, and CP82]. In the
language of the G-method, the terms labeled "DF" and "SO" arise form the Darwin Foldy
and spin orbit corrections to the single nucleon current [see, for example, Fr73, and sec.
2.1 below], and those labeled "B" come from the effects of boosting the deuteron wave
functions to a moving coordinate system, always necessary in a scattering process
[discussed in sec. 2.2]). To obtain the additional A correction terms in the framework of
the G-method requires consideration of the time ordered diagrams on which the underlying
physics is presumably based. This leads to corrections due to (@) retardation effects due to
the "recoil” graphs (in which the a meson is being exchanged at the same time the photon is
interacting with one of the nucleons), together with compensating corrections from the
diagonalization of the coupled NN and NNr states involved [TH73, JL75, BR7S,
Fr75b, 75¢, GH76b, 77, HG76, and DW76, discussed in sec. 2.5], and (b) contributions
from processes in which the off-shell nucleon is in a negative energy state when it interacts
with the virtual photon, often called “pair” diagrams [KT74, Fr75b, and GH76a, discussed
in sec. 2.6}. For a one pion exchange (OPE) interaction with pure ps (%) coupling, the

result for the A terms is

g 4 . & 4 .
Ac=mde2(fo+fo) Ag=mde2(Jz+Jz)
so_Q2 d ,, so'_Q2 d ..
TR T g (L7

where the J's are
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The same correction terms have been derived using and alternative method (referred
to in this chapter as the C-method) based on the use of covariant Feynman diagrams in
which one nucleon (the spectator) is restricted to its mass shell [Gr635, 66, CG67, and
ACR0]. In the C-method, the form factors can be expressed as integrals over the
relativistic wave functions of the deuteron. In addition to the familar large S and D state
components, there are two small P state components, denoted v, and v, for spin triplet
and singlet states, respectively [Re72, HG73, and BG79]. The correction terms in the C-
method arise from only three sources: (@) matrix elements of the one body charge
operator, discussed in sec. 2.3, (b) effects of boosting the deuteron wave functions, sec
2.3, and (c) contributions from negative energy or "pair” states, sec. 2.6. To first order in
(v/c)?, the corrections can be cast into the general form (1.6), but the interpretation of the
terms is different. Now the corrections labeled "SO" and "DF" are all part of the
contributions arising from the boost, with the one nucleon charge operator contributing no
spin independent corrections to this order. In this method, the A terms are written in a

form similar to {1.7):
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where the ['s, to first order in (v/c)2, are
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where € is the deuteron bindi'ng energy, and

ﬁ‘=[—;—z+m€) @=(—£—2-2-+—’%+ mE) (L12)
Note that (1.12) are the left hand side of radial Schrodinger equations for the reduced §
and D state wave functions, and hence can be exp'rcssed in terms of the NN potentals.
For this reason these correction terms have sometimes been referred to as "potential”
corrections.

The derivation of these equations using both the G- and C-methods will be
discussed in Part II. Both derivations were developed over a period of more than a decade,
and it was not until the end of this effort that it was found that, using the same
representation [in the sense of Friar (Fr77a, 80), see sec. 2.7 below] they give identical

results for OPE potentials with ps coupling [Gr78, Fr80]. This very satisfying result



gives confidence in both methods, which seem to treat the problem very differently.
However, in view of the large uncertaintics inherent in any anempt to extract reladvistic
corrections from non-relativistic calculations [see discussion in section 2.7 below], and in
view of the fact that C-method is the only one of the two which treats all effects in a
completely consistent manner, the agreement is perhaps most useful in assuring one that the
C-method relativistic wave functions have been defined in a physically sensible way.

The numerical size of reladvistic corrections to the A structure function, Eq. (1.2),
has become a benchmark for comparing the calculations of several different groups. Figure
1 compares the exact C-method result [labeled "fuil theory”], obtained without making the
(v/c)? expansion, to (a) the approximate (v/c)? result obtained by inserting (1.11) into
(1.6) [labeled "with potential terms”] and to (b) the approximate result in which only the
correction terms labeled "DF" and "B" are retained in Eq. (1.6) {labeled "without potential

terms” in the figure]. Note that the 4, or "potential” terms, are numerically the largest

effect at small Q2.
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Fig. 1. The ratic of the A struciure function of the deuteron, calculated with various approximate
relativistic formulas, to A calculated with the nonrelativistic formulas (1.4), All curves are for
the Reid soft core wave function and dipote nucleon form factors. The Friar argument shift was a
Ruess made in Fr73. [Figure from ACS80.]



In Fig. 2, three relativistic calculations using quite different methods are compared.
One is the C-method described above {[AGC is AC80], another is a calculation using the
Bethe Salpeter equation {ZT is ZT80}, and the third is a2 method using light front dynamics
[CCKP is CC88]. It appears that these very different methods give remarkably similar
results, when expressed as a ratio. If nonrelativistic model calcuiations of the deuteron
form factors are thought to be a better representation of the NN dynamics than existing
relativistic calculations, this ratio can be used to "correct” the nonrelativistic calculations.
Using this approach, Platchkov, er. al. [PA90] extracted an improved estimate of the
neutron charge form factor, G,, from their very preceise ed scattering data. Good,
covariant calculations of MV scattering are now becomming available [see, for example
GV90] and are being used in fully covariant calculations of the deuteron form factors
[HT89]. As these models mature, they will replace nonrelativistic calculations and
eliminate the need for making separate relativisdc corrections.

From Fig. 2, the slope of the correction at Q? =0 is about

AA
Ll (2 0r3) =
A (2 or )sm’- (1.13)

or two to three times the size of the Darwin Foldy correction alone, and comparabie to the

known slope of the neutron charge form factor at Q2 = 0. Hence, on a scale defined by
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Fig. 2. The ratio of the A structure function calculated fully relativistically to its nonrelativistic limit for

three different relativistic calculations described in the text. [From PAS0.{
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the neutron charge form factor this correction is important, and without it the measured size
of the deuteron, proton, and neutron cannot be reconciled with NN scattering dara
[CGeT].

At larger %, the relatvistic calculations indicate that the form factors cannot be
understood from the dynamics defined by the MV sector alone. Figure 3 compares the
theoretical results of Hummel and Tjon [HT89] with the excellent data available at high
Q. Note that their curve labeled IA (which is the RIA in the language of this chapter) falls
way below the data for A, and does not correctly reproduce the shape of B, in general
agreement with earlier relativistic results [AC80 and ZT80]. They are able to correct this by
adding contributions from the p £y, and @ € ¥ interaction currents, which completely
dominate the high Q2 results. Regardless of one's view of the reasonableness of such
currents, it is clear that they are not well constrained by the NV sector. Perhaps quark
effects are also important in this region. Reladvistic effects are exremely important to such

a debate because the nonrelativistic calculations of these quanities are generally quite
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Fig. 3. Relanvistic calculation of the electric and magnetic structure functions of the deuteron. A
and B. Nucleon form factors of Hohler et. al. are used except for the curves labeled GK, which
use Gari-Krumpelmann form factors.



different, and require very different additional contributions to bring theory into agreement
with experiment.

Finally, note that the relativistic corrections to the quadrupole moment of the
deuteron can be calculated by evaluating Eq. (1.6) at 0° = 0. A similar calculation of the
magnetic form factor gives the following result, to order (v/c)?, for the magnetic moment
of the deuteron [Gr75, AC80]:

]

M= “s(l-%Pd) +%Pd+ mﬁ{rd’r(u[y% v,~ vs]—w[v‘+7li- v,})

(1.14)
where P, is deuteron D state probability and 4, is in nuclear magnetons. The correction
term in (1.14) has the amusing property that it vanishes for pure OPE. Some time ago
[Gr75] the correction term was estimated to be = 0.015, requireing P, to be about 5.9% in
order to achieve agreement with the measured value. This estimate is comparable to that

given by Friar [Fr79a}, who reviews the long history of this subject.
1.2 Deuteron Photodisintegration

Relativistic corrections have also been found to play a significant role in deuteron
photodisintegration [CM82]. Calculations of the d(y, p)n differential cross section for
forward scattering, where the proton recoils in direction of the incident photon, are shown
in Fig. 4. The nonrelativistic calculation is the solid line, and it fails to explain the data by a
large margin. Corrections of two kinds were 6onsidcrcd, and are shown. In the language
of the G-method, including the DF and SO corrections to the one body current gives the
(lower) dot-dashed line. The effect is large, most of it comming from the SO term, and the
improvement is significant. However, when pair terms are included, they produce an
effect almost as large and in the opposite direction. The (upper) dashed line in the figure is
the effect of including the pair term corrections only, while the (faint) dotted line includes
all effects. The "final" result represents some improvement over the initial nonrelativistic
calculation.

The reason why relativistic corrections are so significant in this case is that forward

L1
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Fig. 4. Forward photodisintegration cross section, evaluated with the Reil soft-core potential.

The four curves are explained in the text. [From CM82.}

scattering would be impossible if the deuteron were in a pure § state and if the interaction
had no spin dependence [CM82, Gi84]. In the absence of spin dependent effects, the
nonrelativistic £1 transiton 'opcrator. which dominates the cross section at all other angles,
gives a cross section which is zero in the forward direction. The spin orbit correction to the

one body operator is therefore among the major mechanisms which permits the process to

occur.

1.3 Deuteron Electrodisintegration and Radiative Neutron Capture

Perhaps the most striking evidence for the existence of meson exchange currents
(MEC) comes form the radiative capture of neutrons, n +p — d + ¥, at threshold, and
from the threshold electrodisintegration of the deuteron, e +d — ¢’ + (7 + p), , where
the final np state has an exicitation energy of only a few MeV. Riska and Brown [RB72],
using the work of Chemtob and Rho [CR71], were the first to show that a full treatment of
the MEC contributions could resolve the long standing discrepancy between the measured
radiative capture cross section at threshold and theoretical calculations, which were too low
by about 10%. In the language of the G-method, the major effects come from (a) the pair
diagram {or, in the context of pv ( y°y# ) coupling, the seaguil diagram, see Fig. 5], (&)
interactions of the photon with the exchanged pion, and (c) diagrams describing the virtual
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Fig. 5. Diagramatic representation of (a) pair terms, and (b) the yNN seaguil, sometimes called
a "contact” or "catastrophic” term. The strengih of the seagull is fixed, through gauge invariance,
to the strength of the pv coupling, while the diagrams (a) give leading order contributions only
for ps coupling. In this chapter, as in the literature, the words “pair terms” are oflen used 1o refer
to either diagram, because the lowest order (in m™2) contributions from (a) in a pure ps theory
equal the lowest order contributions from (b) in a pure pv theory, as indicated by the double arrow
in the diagram. The time ordered Z structure of diagram (a) shows that the photon has produced a
virtual N-Nbar pair; in the equivalent Feynman form this arises from contributions in which the

nucleon is in a negative energy siate (see Fig. 12).

electromagnetic excitation of the A resonance. In a similar manner, the same mechanisms
explain the Q? dependence of threshold electrodisintegraton [HR73]. This success is
even more striking, because the nonrelativistic impulse approximation (NRIA) has a zero
in the amplitude which describes the transition to the S final state and which is normally
the dominant process. [The transition to the 381 final state is very much suppressed at
threshold, because the 351 - 3D1 scattering wave function is orthogonal to the deuteron
wave function.] The MEC effects completely dominate the cross section near the
minimum, filling in the "dip" and giving excellent agreement with data.

Study of sizes of the various contributions to both phenomena [GH73, HR73,
LF785, and Gr76] shows that the pair (or seagull) diagram is the largest of all the effects,
accounting for at least haif of the total contribution in all cases, and often explaining as
much as 70 - 80% of the result. Hence, in the framework of ps coupling, where the
contribution is a true pair diagram involving negative energy states of the virtual nucleon,
the largest effect is a relativistic "correction”, and these processes also provide another
example of a system where relativistic effects are important. They are important here for
preceisely the same reason they are important in forward photodisintegration; the

mechanism which normally dominates the reaction is highly suppressed. However, in the
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context of pv coupling, the true pair terms are very small, and the same effect comes from
the seagull diagram. In this case these contributions are true MEC, and relativistic effects
play a smaller role.

Of course, it makes no difference what name we give to these effects as long as
they are included and properly calculated! And this is the main point: to properly include ali
effects, without double counting or leaving things out, it is critical to (i) treat the mVN
coupling consistently, and (ii) build in the constraints implied by gauge invariance and
chiral symmetry. Both symmetries relate reladivistic effects and MEC to the underlying
dynamics. For example, gauge invariance insures that the lowest order contributions from
pair and seagull diagrams are equal, but the higher order effects are not. Pair terms will
generate isoscalar contributions of order m~2, while seagull diagrams are purely isovector,
and it might even be appropriate to use the axial form factor at the VN vertex [LF75].
Chiral symmetry will relate the ps coupling strength of the pion to o-like Z7ZZVN contact
terms. Again, lowest order effects will be independent of ratio of ps to pv coupling
strength, but higher order effects will not. The final result of a relativistic calculation will
depend on whether ps or pv coupling (or a mixture) is used, and processes where pair (or
seagull) diagrams dominate are expected to be particularly sensitive to reladvistic effects.

When pair terms are dominant in the language of the G-method, it means in the
covariant, or C-method, language that negative energy components are important. In the
covariant language, the cross section for radiative neutron capture by the deuteron from a

(pure) 'S, initial state is proportional to the square of the following matrix element [DG76]
M= G, [dr ur) yr)
0

+ GEijl;w { [u(r) +715 w(r)] () + 713- y(n) v:(r)} + A
0

(1.15)
The first integral in this matrix element is the usual overlap of the deuteron wave function
with the !S, scattering wave function, and the second integral gives the leading relativistic
corrections expressed as overlaps between large components and smaller relativistic

components. The first term in the second integral is an overlap between the large S and D

14



state deuteron wave functions and the small relativistic component of the 'S, scattering
wave function, denoted by z, and the second is an overlap between the large component of
the 'S, scattering wave function and the small relativistic component of the deuteron (only
the triplet component enters). Additional MEC terms are contained in A. It was shown in
DG76 that this expression could reproduce the nonrelativistic results, including the pair
terms.

It would be worthwile to apply this method to the threshold electrodisintegration
calculation. If the pion had pure ps coupling, the RIA, which automatically includes all
pair contributions, might do very well explaining the data, restoring the correctness of the
impluse approximation (but the RIA, not the NRIA). However, any realistic calculation
must use wave functions determined from an interaction which fits the NN data, and it
does not appear to be possible to do this with pure ps coupling [FT75]. But realistic
models with pure pv and some admixture of ps coupling are being developed, and fully
covariant calculations of these processes will be available soon.

Recently it has been found [MR90] that relativistic effects are also important to the
analysis of d(e, ¢’ p)n coincident experiments near the quasi elastic peak. Relativistic
calculations of these cross sections are especially important as 2 compliment to the program
of such measurements planned for the new generation of electron accelerators.

1.4 Three Nucleon Form Factors

Relativistic effects also seem to play an important role in the form factors of the
three body nuclei, *He and *H. The situation has come into sharp focus with the mature
three body calculations of the Hannover group (SH87] and the precision measurements
recently caried out at Saclay and Bates. Figure 6 shows their calculation without relativistic
corrections (solid line) and including the relativistic corrections outlined below (dashed
line). The relativistic corrections are large, and help bring the theory closer to experiment,

The corrections included in the Hannover calculation are those also included in the
deuteron form factor calculations outlined in section 1.1 above, except that here the

isovector parts of the correction terms also contribute. In the language of the G-method,
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the Hannover group includes the DF and SO corrections to the one body charge operator,
which give a very small contribution, and the contribution from pair terms, which gives the
bulk of the effect shown in the figure.

The precise role of three body wave funcdons, MEC, and relativistic effects in
building up the three nucieon form factors is presently uncertain. Recent calculations
[SP89], using very different MEC, give quite a good description of the form factors, and
this subject will continue to be a critical testing point for few body theory. The first results
from a new generation of covariant calculations are now available {[RT88, Ru90], and show
that relativistic effects may be important. More realistic calculatons should be available
soon.

The magnetic moments of >H and 3He are also sensitive to relativistic effects [see,

for example, Fr79b].
1.5 Nucleon-Nucleon Interaction

As a last example of the importance of relativistic effects, consider the ¥¥
interaction itself. Relativistic methods for treating the NN problem will be reviewed in
Part ITI. This section will review one aspect of the problem, which is closely related to the
role of pair terms discussed above.

An off-shell nucleon propagates as a superposition of positive and negative energy
states. As described above, the pair term contributions arise from the coupling of these
negative energy state components to the photon, and they give significant contributions to a
number of processes. It is natural to expect that they might also give significant
contributions to the NV interaction itself, and it appears that this is indeed the case.

A simple way to describe pair processes consistently is to use a covariant equation
in which one particle is off-shell and the other particle is on-shell {Gr69, 74, and 82a].
This spectator equation (sometimes referred to as the Gross equation) can be reduced to

nonrelativistic form with an effective potential of the form

3
(v )] v
2m (1.1

V) =V7i(n+
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where V¥ * is the usual nonrelativistic potential constructed from « spinor matrix elements
of the relativistic Dirac operators describing one boson exchange (OBE), and V'~ * is the
"off-diagonal” relativistic part constructed from matrix elements with the inital nucleon in a
u spinor positive energy state and the final nucleon in a v spinor negative energy state.
The second term in (1.17), which depends quadratically on the V= * potential, therefore
describes, in lowest order, the effect of virtual pairs on the NN interaction.

This quadratic term plays an important role in the NV interaction. To get a rough
estimate of its size and behavior [Gr74], 2 OBE model for V was used, and the parameters
of the model were adjusted to fit the Reid soft core potentials in all channels. Such a fit
shows that these terms play an important role in the description of the short range
interaction, as illustrated in Fig. 7. A complete calculaton, in which the equatdons are
solved exactly for 2 OBE model without making nonrelativistic approximations, and the
OBE parameters determined by a fit to the ¥¥ data, was recently completed [GV90]. The
results of this improved calculation support the conclusion that pair effects can be important
in the V¥ interaction.

1.6 Conclusions, Discussion, and Assessment
Several conclusions can be drawn from the previous sections, and from the

supporting discussion in Parts [T and III (see sections 2.4, 2.7, and 3.5 below). The major

conclusions from the all of this discussion are collected here:



(i) While the best evidence for reladvistic effects undoubtedly comes from atomic
physics [Fr79b, 81], there is ample evidence for the importance of relativistic
effects in nuclear physics. These include: (a) corrections to the charge radius of
the deuteron necessary to reconcile nuclear force models with data, (b) corrections
to deuteron photodisintegration in the forward direction, also necessary to
reconcile theory with data, (c) contributions to radiative neutron capture, deuteron
electrodisintegration, and the three nucleon form factors arising from pair (or
seagull) processes, and (d) contributions to the NN interaction which are helpful in
model building.

(ii) Relativisitc effects are most likely to play an important role when (a) the
dominant mechanisms are suppressed (as for deuteron photo- and electrodisintegra-
tion), (b) precision measurements are to be compared with a precise theory in the
attempt to extract a small effect (as in the case of the deuteron form factors at low
02, or the charge radius and static moments), or (c) theory and experiment are

compared at high ©? (as for the deuteron and three nucleon form factors).

(1ii) Contributions from pair processes, which play a decisive role in the electrodis-
integration reactions and three body form factors, and make important contributions
to the NN interaction, cannot be unambiguously distinguished from MEC effects.
They are intertwined by the requirements of current conservation and gauge
invariance, and coupled to other mechanisms by chiral symmetry. The importance
of such mechanisms which are intertwined with relativity, gives a strong
motivation for the development of covariant techniques closely connected 1o field

theory.

(iv) Using different methods, identical relativistic corrections may arise from
different physical origins. There is no unique, method independent way, of
determining the size of relativistic corrections arising from the nuclear current, the
boost of the nucleus, or from pair terms. However, using different methods, and
summing all corrections consistently within each method, may give the same

result.
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(v) The size and nature of relativistic corrections depend on the dynamics used to
describe the underlying NN interaction. If this dynamics is not specified, it is not
possible to determine relativistic corrections uniquely. This makes it difficult to
combine calculations of relativistic effects with phenomenological nonrelativistic
model calculations. The only way to insure consistency (count everything and
avoid double counting) is to base the calculation on a fully relativistic approach.

(vi) Successful, fully relativistic approaches exist for the reatment of few body
systems, and are rapidly being developed for many body systems.

This concludes the overview of relativistic effects in the electromagnetic interactions
of few body systerns. Part II will present a detailed discussion and derivation of the results
of sec. 1.1, and Part IIT will review the fully covariant methods.

I1. Relativistic Corrections to Order (v/c)?

In this Part, lowest order relativistic corrections to nuclear electric form factors will
be reviewed in some detail. Some of the resuits obtained will be applicable to nuclei of
mass number A, but all detailed calculations will be given only for the deuteron form
factors. Corrections come from four effects. These are (i) matrix elements of the single
nucleon charge operator, (ii) boosting of the nuclear wave functions, (iii) retardation, or the
dependence of the NV interaction on the relative time (or energy), and (iv) "pair” terms, or
the coupling of the electromagnetic current to nucleons in their negative energy state. Each
of these effects will be discussed separately in the following sections.

Two methods have been developed for calculating these effects. The generator
method (G) determines the boost operators from the algebra of the Lorentz group. The
covariant method (C) determines the transformation of the wave functions from an

examination of their relativistic structure.
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2.1 Corrections to the One Body Charge Operator

Begin by considering the electromagnetic interaction of a nucleon in the nuclear

medium. The electromagnetic current operator in Dirac space is usually taken to be

¢
/= R @Y - i a0

where F| and F, are the Dirac and Pauli form factors, respectively, y#and o #Y are
Dirac matrices (I will use the notation of BD65), and g # is the four-momentum transfered
to the nucleon (by the scattered electron). The form factors are normalized to F(0) = ¢,
and F,(0) = k), where ey and K, are the charge and anomalous magnetic moment of
the nucleon. Using the isospin formalism to describe the nucleon, these quanities are

operators in isospin space:
=-;-(1+ 1:) sy = rplz(1+ r3) + rn%(l— 13) 22)

If the nucleon is on shell, so that its four-momentum squared is equal to its mass squared,
p?= p“pu =m 2, the form (2.1) can be shown to be the most general possible. For
bound nucleons, which are off-shell, more general forms are possible, but (2.1) is
generally used. If the nucleons are weakly bound their Dirac structure is well approximated
by the positive energy spinor «, and the corrésponding matrix element of the nuclear

current is

.P' m2 ;_ B . za#qu
<J )'—" (W) u(p) Fl(qz)'fu + F,(q°) 5 [4(P)

(2.3)
where E(p) = V(m2+p?) is the energy of a particle of mass m. The VE factors in (2.3)

insure that the charge, <j 0>, is normalized to ey at qr2 = 0. Expanding the matrix

element in powers of the particle velocity v2/c% = m™2 gives, fo order m™2,
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2
.0 (p'—p)J q-(p-p)
=F|1- - F
(j ) ( 8m2 2 4m2

iO-(p'xn)+F io - (g x[p +p])

+ F
2 2 4m? 2.4)

I

4m

which holds for arbitrary p', p, and q. If p' — p = q, then (2.4) reduces to a well known
form [Fr73]

2 s
(j%=F -(F +2F2)|: i _2 (q; p)]
Lol 8m 4m (2.5)
Expressed in terms of the Sachs form factors,
Gy =F+-LoF , G, =F +F
E~-"17 422 M 172 (2.6)
this becomes
" _
. 0 q iog -(qx P)]
=G 1—-——J+ 2G,, - I:——-——-—————
(J ) E( 8m 2 ( M z) 4 2 . @7

Since G is the form factor which corresponds most closely to the charge distribution of
the nucleon, the additional terms in (2.7) are interpreted as relativistic corrections. Such
terms also occur in the non-relativistic reduction of the Dirac equation. The q2/(8m2) term
is sometimes referred to as the Darwin-Foldy (DF) term, and originates from
zitterbewegung [see BD635]. The last tem is the spin-orbit (SO) term and describes the
interaction of the nucleon magnetic moment with magnetic fields seen by the proton as it
moves through an electric field (in this case created by the passing electron). It is this term
which gives the large effect in the photodisintegration of the deuteron, described in section
1.2 above.

In making comparisons between relativistic and non-relativistic theories, it is
particularly convenient to work in the Breit frame in which the electron transmits no energy

to the nucleus. In this frame the three-momentum transfer is simply related to the four-
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(g x[p +pl)
am? (2.4)

n (2.4) reduces to a well known

(q x p)}

m? (2.5)
2 (2.6)
(qx p)]

am? 2.7
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bit (SO) term and describes the
ic fields seen by the proton as it
passing electron). [tis this term

he deuteron, described in section

1 non-relativistic theories, it is
| the electron transmits no energy

fer is simply related to the four-

-q2, and we may assume that scalar functions of g2 generalize,
scalar functions of g2 = — 02 (the SLAC convention). [See
of this fact in a special case.] The non-relativistic impulse
he starting point of all calculations. It is obtained [Sc64] by
gnetic scalar potential of the passing electron may be treated as a
‘time, and that the total charge operator may be taken to be the

operators for each nucleon in the nucleus:

A
(Jz?a)= 2(1“’)0, et "
a=1

(2.8)

of the o?® nucleon. Denoting the isospin operator of the ot

perator of the o2 nucleon is

M Cy 7(1+ ) +G, (A 1(1- 73)

vV
Gy (q%) + 3G[ (V7] 29
L and neutron charge form factors, respectively.

e deuteron charge form factors will be evaluated {Ja56, Go63,

rm factors can be obtained from the charge operator, which is

+ P) Fo(g)

Fr=F-9 2”0[5}55 G (@% +(%:)su(q) G, (q%}

f,JaRd v v} R (1) v (RD)

(2.10)

Jor Operator
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s Y & a4

12(@ = Py £ % , ain
& and !jfare spin-one polarization vectors of the incomming and outgoing deuteron (in
their respective rest frames), and G and GQ are the covariant monopole (sometimes
called the "charge") and quadrupole form factors [see section 1.1]. In the second line of
(2.10), the general form for the tensor structure of the electric matrix element has been
expressed in terms of three-component vectors in the Breit frame, where P; = Pp= po
(for a general covariant treatment, see AC80). This defines and normalizes the monopole
and quadrupole form factors. The third line gives the NRIA matrix element, expressed as

an integral over total and relative position coordinates of the deuteron, defined by

1
1~ "2 2 2 (2.12)

The deuteron wave functions are a product of a plain wave depending on R, and an internal

wave function ¢ depending only on r:

INERY iP-R-iPt
¥p (R, =(3) 60 (2.13)

Note that the time dependence of the form factor vanishes in the Briet frame. Doing the
integration over R, and using the facts that the deuteron has isospin zero and that ¢(r) =
¢(-r), the NRIA integral for the form factor reduces to

s ¥ iqir
Fp(@ =G () _[dr b (e "7 9. (r) (2.14)

The non-relativistic wave function for the deuteron can be written in a convenient matrix
form [BG79]:
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o =2,0 (1) %

RN 2P LN

where u and w are the reduced S and D state wave functions and x; and ¥, are the

two-component spinors of the two nucleons. Summing over nucleon spins, the form

factor is quickly reduced

Fi(@ = GUPf & ofo'4r) o 0] 45
= Gi( qz)j dr —4—179—2[( &+ wz) 6} & - ‘\/E(uw—- -‘—;—}? wz) Slz(r)j' e*'q-l,-r

= GUA[ & &, D + VI Sy F(P)]
(2.16)
with Fjy and F, as defined in Eq (1.4).

The DF and SO corrections to the charge operator, Eq. (2.7), modify the NRIA.
Referring to the full results presented in Eq. (1.6), the DF and SO corrections give the
-(0?/8m? factors in D c and DQ [labeled DF in those equations] and the first terms in the
expressions for the DSO form factors [eveything except the 450's, which come from the
pair terms]. These results, in this form, were obtained by Friar [Fr73]. The DF correction
is obtained by inspection from Eq. (2.7), but the SO correction requires some calculation.

The next two sections will discuss the nuclear boost effects, derived in two

different ways.
2.2 Nuclear Boosts - Generator Method
If the nucleus is initially at rest, it will recoil when souck by the electron. Since no

frame can be found in which the initial and final nucleus are both at rest, nuclear motion is

always present. In the Breit frame, the nuclear motion is divided equaily between the



incomming and outgoing wave functions, which have momenta -1f2 q and ‘fz q.,
respectively. Nuclear motion introduces important relativistic corrections arising from
Lorentz contraction and time dilation effects.

Two methods have been developed for calculating boost effects. [As it turns out,
they also calculate the other effects in a different way as well!] The generator method (G-
method), which will be discussed in this section, determines the boost operators from the
algebra of the Lorentz group. A second method, the covariant method (C-method),
determines the transformation of the wave functions from an examination of their
relativistic structure, and will be discussed in the following section.

The inhomogeneous Lorentz group, or Poincare group, is described by 10
generators. There are three momentum operators P;, three angular momentum operators I,

three boost operators K, and the hamiltonian H, which satisfy the following algebra:

[Pi’Pj]=0 [P,.H]=0 [Ji’H]=0 (a)
[Ji’Jj]= isijkjk [Ji’Pj]zieijkPk [Ji ’Kj:l:iaiijk (b)
[Ki,Pj]=iH5ij I:Ki,Kj]=--it»:ijklk [K,,H] =iP, (c)

(2.17)

The Galilian group also has 10 generators, which satisfy the same algebra except for the
first two relations in (2.17c¢), which become instead
K.,Pl=1i .. LK1=
[Ki-PjJ=im 9 [Xi-K;]=0 (2.18)
These algebraic relations show that the generators are not all independent of each other.
The central idea behind the generator approach is to use the Poincare algebra to express the
boost operator in terms if the dynamical coordinates and interactions of the system, and
then to calculate the recoil effects from this operator.
A "solution" of the equations (2.17) which expresses the generators in terms of

momenta, p,, coordinates, r,, and spins, s, , of the ath particle was found by

Bakamjian and Thomas [BTS53]. For a single particle o, the solution is
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Sg *(Tg X Pg)

h, =.,/m2 +p§

[
R
il

1 XPa
S{rq hg} - 2 2 _+p
“a = 3{'a mg+hy T (2.19)
where m_, is the mass, and
[Fia* Pjg]=1%;i% (Sia *5i8 ]= Eijk Sxa %ap (2.20)
For A non-interacting particles, the generators are the sum of the independent generators

(2.19),

When interactions are included, it is convenient to introduce collective coordinates.
The older literature contains considerable discussion of methods for defining collective
coordinates (relativistic center of mass) and for introducing interactions into the generators
[see BT53, Fo61, 77, Os68, KF70, 74, FK75, CO70, 71, CC70, Li73, Fr73, 75a, CO75,
CH76, and GM81]. A major problem is to find generators which satisfy the cluster
separability property, which states that any subset of the A particle system, when removed
to infinity, should satisfy the same dynamics that that subset would if it were interacting in
isolation (except for the requirements of energy momentum conservation). This interesting
problem has been solved [CP82], but will not be discussed here. The following discussion
parallels the work of Friar [Fr75a], which in turn is based on the work of Osborn [Os68]
and Krajcik and Foldy [KF74].

Introducing the following collective coordinates

A
R=(Fl')zlmara Pa=T; R
a=
A m,
P= 2 Pq Ta=Pg — 5 P

a=1 (221)

where M = L m_, , the generators can be written
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A\
P= ZIpa

a=1

A A
J= Djg =S+ ®xP) where S= D {(PgXTq)+Sq}
oa=1 a =1

AI A p2
H= Dh, +U =M + o© U

a=1 =1 a

A A
K = Zka +V=MR-:tP+ Zz;nl';“{(l’i ry +TgP2) =258, Xpy}+V
a=1 a =1

(2.22)
The momentum and angular momentum operators are the same for the Galilean group, but
the hamiltonian and boost operators change their form in the nonrelativistic limit, which is
also given to order m~ in Eq. (2.22). The interactions are contained in the scalar term U
and the vector term V which appear in the total hamiltonian H and the total boost K. The
generators (2.22) satisfy the commutation relations (2.17) provided U is a scalar
independent of the total coordinate R, and that the interaction boost is a vector under
rotations, refated to U through [KF74]

[Vi , Pj:|= iﬁijU

(2.23)
In addition, the components of V must satisfy the following conditions
A A
[vi Dk, ,-]"[V,- Dk, i}+|:vi : vj].—- 0
a=1 a =1 (2.24)

The remaining task is to solve equations (2.23) and (2.24) for V, and evaluate the recoil
corrections implied by the solution.
The problem is solved to order m~2 by expanding the hamiltonian and boost

operators and solving the equations systematically to this order. To this end, first examine
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the lowest order problem, which is equivalent to treating the Galilean invariance exactly.

For this case the generators are very simple,

H0 M
K0=MR—IP (2.25)

and it is easy to see that, along with the P and J given in (2.22), they satisfy the algebra of

ils, 8]

the Galilean group. Using the identity €° tho Bt , which holds provided the

commutator {a,b] commutes with both g and b, one obtains

2
i8-K iMe. n—.{ .m% M):

e M) > = ¢ 10>

. P’
iP- R~ M4t
M
= € ‘{ ) 0> (2.26)
where 8 = P/M is the "velocity" the boost imparts to the state (P is used to denote both an
operator and a ¢ number). Note that (2.26) gives the result expected for a non-relativistic
state of momentum P.

2

Mext, consider relativistic effects to order m™. Note that the choice

=1
=5(RU + UR) 2.27)

is consistent with (2.23) if the approximate form of K given in (2.22) is used, and also
satisfies (2.24) to lowest order in m~2. [Unfortunately, this choice is not unique; see the

discussion in sec. 2.7 below.] To evaluate the boost, use the following identdty

= (1+b+30a, b1+ yla. (a, bl + gla.[a. [a,61) & 550

which is valid to first order in b, provided the four-fold commutator [a,[a,[a.[a.b]]]] =

0. Taking a =i 8:Kg, and b =i 8-AK, where AK is the extra term of order m=2

obtained from the approximate form of K given in (2.22), using (2.27), and working out
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ail of the commutators, gives the following expression for the boosted wave function, valid

to order m=2:

e,-e.(:lc,ml() em‘I0>=(l- iX - itg) oM o-R-im(1+10 )f|0> (2.29)

with
2
_ 1 Ra 1 1 (Sg X Ty )0
x——i (m—*-ixa'era‘e‘FhC + ‘iz—m_a'——‘
p
1 T a :I 1 2 1 4 i .2
=-{RO-=:0 + | -=MBO*RO+—-r MG +—8
Xr ( ) Z)[ZZma 6 o7 3

(2.30)

To obtain (2.30), the operator P has been eliminated by working it to the right and

replacing it by its eigenvalue M. Next, observe that the first term in Xg can be further
reduced by allowing the term in square brackets to operate directly on the internal
coordinates of the state 10>, which gives (minus) the binding energy of the state Mg-M.
This term corrects the mass in the exponential, replacing M by the correct bound state

mass My in the lowest order terms. Note that the last term changes the non-relativistic

norm of the state. The total effect of xj is therefore

(i_ iz eme-n-m(u-;e’)

1,2y M8 R(1+587) - is,{ 1+6°+210")
=(1+30%) e @31)

To interpret these corrections, recall that the magnitude of the relativistic boost angle is

related to the magnitude of the particle velocity by

6 =tanh” &)= v +5v3

and hence substituting v for @ in the exponent of (2.31) gives the expansions, to order

m~2, of the correct relativistic bound state energy and momentum. This permits x5 to be
removed from (2.29) and gives [Os68, Fr75a]

30



. E (PO .
(K +AKY _ R -
RLTC )_e‘M'[O>=(1-lz)( 2 ) JIPSR=ER)
B

(2.32}
with 6 = Pg/Mp in z. The factor of VE, on the right hand side of (2.32) is expected; it
changes the non-relativistic normalization, but preserves the covariant relativistic norm,
with volume element

4P
Id4PB s(M;-P)) =I—27:.—5-

(2.33)

To obtain the boost corrections implied by (2.32), note that the nuclear charge
operator (2.8) can be modified, to order m~2, to include the extra factors in (2.32)

l

[E(P::f m) v (1 i PP L) (1= iz ) ¥, - {3 ,) t{q(f’m) v
A {x(%m(f,’r)—(ﬁ)xt—

2

(2.34)
where the right hand side has been specialized to the Breit frame.

Now apply (2.34) to the deuteron. The energy factor, Ep, is exactly the same as
the Breit frame energy factor PY, so this factor cancels, and the first term on the right hand
side gives the one body corrections discussed in sec. 1.1. The second (boost) term can be
simplified using

1
Pim==P=3r
T EoE=- i (2.35)

so that terms in ¥ with an odd power of these variables sum to zero. Finally,

x= 16,,, —=(q-Vgr+qrq-V) (2.36)

and a simple evaluation of this term gives the boost corrections [Fr73] to the electric form

factors. They are the terms in Eq. (1.6) labeled with a "B".
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The covariant method for calculating these corrections is developed in the next

section.
2.3 Nuclear Boost - Covariant Method

An alternative way to derive relativistic corrections is to express form factors (or
other matrix elements) in terms of relativistic wave functions, and then to expand these
wave functions in a power series in (q/m)?, where q is the momentum of the recoiling
system (the C-method). The first term in this series is then the wave function in the rest
system, and it is assumed that this can be approximated by a non-relativistic wave function.
The next term gives the boost correction (to order m~2) in terms of this non-relativistic
wave function. However, once the amplitudes and wave functions have been defined,
there is nothing in the method which requires the expansion in powers of m~2 and with
modern computers it is perhaps just as easy to evaluate the matrix elements without making
such an ¢xpansion, giving results valid to all orders in m~2. Early work [see Gr65, 66,
CG67] calculated the correction terms only to first order in m~2, but later [AC80]
corrections were calculated to all orders. This technique has now become one of the fuily
covariant methods which will be discussed in Part [I1.

Related work using the Bethe-Salpeter equation to derive (v/c)? expansions can be
found in Refs. BP68, and 69, and similar work using the Blankenbecler-Suger equation is

]

F(YEXF

(7,238 1,

Fig. 8. Diagramatic representation of the relativistic vertex function I described in the text. The
nucleus consists of A constituents, with A=1 of them on-shell (denoted by the x on the nucleon
line in 'he diagram), The momenia are labeled.
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Fig. 9. Diagramatic representation of the RIA integral (2.39) for the nuclear form factor. The
A-1 spectator nucleons are on shell, and the virtual photon interacts with the off-shell nucleon.
There are A diagrams of this type, one for each constituent.

in JW84, For a nice discussion of the comparison of the G- and C-methods, in the
context of field theory, see GM81.
~ Expanding on ideas previously published, the relativistic vertex function of an A
body system, from which the relativistic wave function is constructed, is defined as shown
in Fig. 8. The resulting covariant matrix element for the nuclear form factor, in the
relativistic impuise approximation (RIA), is shown diagramatically in Fig. 9. In the
figures, the oval represents the covariant vertex function describing the coupling of the
bound state to A—1 on-shell nucleons and one off-shell nucleon. Energy and momenta are
conserved at each vertex, so if the four-momentum of the n** physical nucleon is p,, and
the four-momentum of the bound state is P, then the four momentum of the off shell
nucleon is
A-1
p=P- 30,
n=l (2.37)

and it is easy to see that pz < m? if the system is bound. Denoting the vertex function by

I", the relaidvistic wave function is
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1 a(pu’ P)"’ A_l l |' (pl pz"‘pA_lv P)

=S A PYE(PIT (D) . TPy TPy Py Py_yn P)E,

J_aa

=5 r (p,, P
./;; act?) Talp ) (2.38)

where S is the propagator of an off shell nucleon, & is the polarization vector of the
nucleus (assumed to be spin-one with an eye to applications to the deuteron), and the
relativistic normalization factor for an integral spin particle, *JZPO, has been added so that
the norrnalization of ¥ agrees with the non-relativistic convention. An additional
normalization constant, N, has been added for convenience, and will be chosen later. The
structure of " may be very complicated, but only two facts about it are irnportant for the

coming discussion:

(i) it is manifestly covariant and its transformation under boosts is known;

(i) in its rest frame it depends only on the three-momenta, p, , and spins, A, , of
its on-shell constituents, the spin of the overall nuclear state, and on the energy
state (+ ov =) of its off shell nucleon. Only in this latter way does it differ in

structure from a non-relativistic wave function.

These two features of the wavefunction will be discussed further below after the form
factor has been defined.
Using this wave function the nuclear form factor, in the RIA illustrated in Fig. 9,

can be written

m
P,+P) F(P= A
(Pr+P) Fulé N? @2n) &p,)

S e

M
(P P)) Jua ¥ P P)}

2 {7

(2.39)

34



where the factor of (Pf + P,) on the left hand side is the correct relativistic tensor structure
for the elecromagnetic interaction of a spin zero system [BD65], and is also convenient for
treating the electric interactions of a spin one system (for nuclei with other spins,
appropriate factors should be used to define F, but the right hand side of (2.39) would be
unchanged.) The non-covariant normalization factors introduced in (2.38) are cancelled by
identical factors multiplying the integral on the right hand side of (2.39), and hence it is
covariant. The factor A counts the A diagrams of Fig. 9 which contribute to the form
factor, which are identical for nuclet with an equal number of neutrons and protons.
Eq. (2.39) can be obtained in two steps:

(i) use the Feynman rules to construct a diagram like that shown in Fig. 9, but with
all internal particles off-mass shell. In addition to the integrations given above,
this will involve integrations over the virtual energies of the particles pno;

(if) eliminate the internal energy integrations by using the residue theorm, but keep
the positive energy poles of the spectator particles (those A-1 particles not

interacting with the virtual photon) only.

The last step involves the replacement

dpg m+ g, m _
sz mz-Pi =(E(Pn))§‘u(pn’ln)“(pn’)'n)

(2.40)

which accounts for the factors of m/E in the integrations in (2.39) and the natural
appearance of the free spinors u in the matrix elements in (2.38).

The original physical justification for this method is given in GréS, and details of its
application to the deuteron have been reported in Gr66, CG67, and AC80. In Gré5 in was
demonstrated that, for loosely bound systems, the Feynman integral is dominated by
contributions from the region where the spectator (only one for the deuteron) is close to its
mass shell, and that this region is well approximated by the replacement (2.40). In
addition, the replacement (2.40) is a natural covariant extension of the physical idea that

interactions with a loosely bound system are dominated by the one body terms (i. e.
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meson exchange effects are small), which is also the physics used to justify the original
NRIA. Extension of this treatment to A > 2 body systems does not appear to have been
given previously in the literature.

The next task is to use the covariance of the wave function, and its decomposition
into + and — channels, to reduce (2.39) and find the boost corrections. The covariance will
be discussed first. Using the representations of the Lorentz group on the Dirac spinor
space [BD63] the free spinors can be shown to ransform as follows [see, for example,
ACS0]:

S 18,1 w40 = u(py. 2,3 DL, (R)
£, A0 S “B.1= E(pedn) DD (R
o i SR S (2.41)

where S[B;] (not to be confused with the propagator used in Eq. (2.38)] is the Dirac
representation of the boost operator, B8; , which carries the four-momentum of the initiai
nucleus from rest, Pp = (Mp,0), to 'P‘-, and D is the spin 1/2 rotation matrix which
describes the (Wigner) rotation, R, , of the nuclear spin under the boost. The vectors

p"["J are p, in the rest system, i. .

an
B, pn =pp (2.42)

1
Hence, the relativistic wave function (2.38) is boosted from its rest frame to the moving
frame by the boost operator, B;, as follows [AC80}:

¥, (P P)= /T:Saa-[BP,] FaralPn Mp) DG (R (2.43)

where the Wigner rotation operator in (2.43) is a shorthand notatdon for a direct product of
A-1 D's , one for each spectator.

The next step is to decompose the wave function into the positive and negative
energy parts referred to above. This follows from the decomposition of the propagator of

an off-shell nucleon:
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(m+pg)
o

S _(p)=
e ¢ m?~ p*- ig

_(_m )z[ua(m l)t?a.(p.l)-— ve(=p. M)V (- p, A.)J
E(p)) <= E(p)- p¥~ ie E@)+p®-ic (2.4

where the sum over u spinors describes the propagation of the nucleon in its positive
energy state and the v spinor sum describes the propagation in its negative energy state.

Using this identity, the relativistic wave function can be written in a two channel form:

o~ E{(p.) m
*f'&,(,(pnf):(l'l\/ = ) [

n=l

Z{ua(p,l)‘f’; l(Pn’P)-l-Va(—p,l)'P; l(Pn»P)}
A ' ' (2.45)

where relativistic normalization factors Vm/E associated with both the on-shell nucleons
and the virtual nucleon have been included in the definition of ¥'* and ¥ ~. Since such
factors are not present in the total '¥, they must be cancelled, and this is the origin of the ¥
factors in the expansion. [The additional factor of m/E from (2.44) accounts for the
unsymmetric appearance of these factors in (2.45). Note that, for the deuteron, all these
energy factors cancel if the decomposition is done in the rest frame; in agreement with
[AC80].] With this definition, ¥ * now has the structure of a non-relativistic wave
function, but the ¥~ component is purely relativistic and will be discussed further in

section 2.6 and Part I11. ‘
UUsing (2.43) and (2.45) to reduce the form factor (2.39) in the Breit frame, gives

(S deam (M)
FA(QZ)_AJLII((stfIPn)J(PD)Nz

{'T'a_--( 21, Po) ﬂ ‘FA.( 2. P D(f_).. 2. B‘f' B‘.)}
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i AJ’ﬁl[d’pﬁ/E(sp&”)E(p‘:P) J(A;OR) L

2" Hpy
17309 (i) vy (Ar) 8D, 575}
k o) La-a (81 B (2.46)

where Dirac indicies have been supressed, and the decomposition (2.45) was used in the
rest frame of each nucleus. The transformed one body charge operator is

‘ 0 -
j4=S18,1;°57'B;]

2
a .
Q 7+ F2 3 d
8m m (2.47)

0
=F Y -F

with

-y 10

(2.48)

The relativistic corrections can now be evaluated. Note that the arguments of both
the initial and final wave functions can be related to the integration variables through the
Lorentz transfomation B; , which, in the Breit frame is a boost in the direction of —q with

boost angle @ = tanh~! [Qr2m):

—1
AEY: Pn

F1_ _
Pn =5 ' pa= 8, Py (2.49)

Because the spectator particles are on-shell, it is sufficient to give the three-components of

the momenta, which can be determined uniquely
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il m i s P méeE
= .—""""'P"i'P - -
Pr=Pa="n ( M 2mM zvf)

. 2
Ps'“[-l (ﬂ(:l) L me

=n[l']_P( + }
oA z2M  2mM M
. . 4
—_-n[:'+%(—q'n[:] + (=) + "'E}
aM  2mM M (2.50)

where 7t [{] are the same momenta defined in Eq. (2.21) and the binding energy £ =
M-M p appears because of the difference between M, which appears in the definition of

®, and Mp, which occurrs in the transformation. The p[fI are obtained from (2.50) by
changing q to —q. Using the ransformation (2.50), the wave functions can be expanded in

Taylor series to compute the corrections to lowest order. The result for the incomming

state is, suppressing the superscript [i] on the ©t variables,

wrpll 0y =1 El -qn, %y meld o |y 0
PO 2\ T e )2 T
=

- ﬁ(%) [1- iz, ]| ¥ (x,, 0)

el (2.51)
where Xp is
A-1 2
_ 1 —q- N, T p me| 9 Pa
Xp= 7 ( aM Tomt M) oM T
n=1
EVOSN IAWAY Gl (. N & me)q'P
= #(6= 2M)+2 aM tTamT M) am e (2.52)

Note that the energy factors in (2.51) are just sufficient to cancel the same factors in (2.46),
and that the resulting boot phase, ¥, is equal to the y of Eq. (2.30), plus an extra term
involving ® and p for the struck particle, where © = -Ix, and, for equal masses, p =

-2p, - Finally, choosing N2 to cancel the factors of 27, gives the following
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F(P= Afrlfp-{wl.tﬂﬂﬁ)D+iff(%®]x
(—-—”’-’f,ﬁ](;,)[l-:x‘; 0] ¥} .(x%0) D) ) Ne s 3)}

P
(2.53)
This is the general formula for the charge form factor of a nucleus with A nucleons,
including relativistic corrections to order m2.

Now (2.53) will be evaluated for the deuteron, where there is only one spectator
with integration variable p;. Three quanities must be calculated: (i) the matrix element of
the new charge operator, Eq. (2.48), (ii) the boost factor, Xg . and (iii) the Wigner
rotation. The new charge operator can be obtained from the general formula, Eq. (2.4), by

substituting

G ]

p=n=x [1
R
T

==P;- 4q

p=n == P+ 4 (2.54)

and adding the extra term given in (2.47). The resuit is

2

_ q ic-(qxp)
(12)=Ge(1‘32m2J“(2GM'%GE)[ 4m? !] (2.55)

The factor multiplying G is cancelled by the (MRIPO) factor in (2.53), and the resulting
one body current does not agree with the results obrained in Eq. (2.7). [To compare,
rember that p; = —p .] Before discussing the significance of this, the calculation of the
other terms will be finished.

The Wigner rotation term gives another spin dependent correction factor [AC80]:

io - (q X p 1)
8m? (2.56)

D(;') (R;l Rl) - 1=

where the spin operator here is the spin of the spectator, and not the struck particle, as in
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(2.55). However, the deuteron is symmetric in the spins, and hence (2.56) may be
combined with (2.55) where it restores the factor of 2G, ~ G obtained previously. The
SO correction obtained in the two methods is seen to be identical!

Finally, the effect of the boost is easily calculated by ransforming the integral to
position space, using

[1- iz ' - 3] *(x)0)
. 3 . N
=[1- iz (- 30] j—d L ¥(r) o M (Peria)

Jary

3 , )
= | AL DT - L]t
@x)’

(2.57)

where yp’ is obtained from zsm of Eq. (2.52) by the replacement p; = -r, and ©, =iV
¢ - Note that the same formula holds for the final wave function, so that, performing the

integration over p, , the new expression for the spin independent part of the form factor is
. - C :'q-';r .
F(d) = G, f a PO[1+izggGale T [1-ig(-70] ¥ 55

As previously noted, the first term in yp' is identical to that obtained using the generator
method, and gives the result labeled "B” in Eq. (1.6). The new term can readily be
evaluated from (2.58), and gives the missing DF terms in Eq. (1.6), plus the corrections
A-and AIQ reported in Eqg. (1.10) and (1.11).

2.4 Interlude: Discussion and Comparison

So far, the two methods give identical spin orbit corrections [Eq. (1.6) with A50's
=(0], but these corrections arise in different ways. In the G-method, the SO terms come
entirely form the nucleon current; in the C-merhod they come partly from the Wigner
rotations of the spin of the spectator, which occurs when the wave functions are boosted.

However, the spin-independent corrections, which contribute only to the body form
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factors, D and Dy , are different (so far).

When these results were first compared, it seemed remarkable that the two methods
gave identical results for the SO terms and “"most" of the spin-independent terms. In the
original C-method calculation [Gr66] very complicated formulas were obtained, and they
were simplified only later [Fr73] when the G-method resuits were in hand. The extent of
the agreement was gratifying, but the similiarity also emphasized the differences! The
differences, contained in the A correction terms, can be reexpressed in terms of matrix
elements of the NN potentdal by using the Schrodinger equation. For this reason they
were sometimes referred to as the "potential” corrections, and much effort was devoted to
attempts to derive them in the context of the G-merhod. Note especially the work of
Coester and Ostebee [CO75], who exploited the fact that solutions different from (2.22)
can be found, and of Glockle and Muller [GM81], who used a field theory model to
determirie the boost operator, and obtained results similar to the C-method ones presented
here. These attempts were finally successful, and eventually [Gr78, Fr80] it was shown
that the two methods, under reasonable assumptions, give identical results for all
correctiens to the deuteron form factors.

The modern derivation used in sections 2.2 and 2.3 shows the differences and
similiarities of the two methods. Briefly, both determine the boost operator; one using the
Poincare algebra for the generators, and one using the general form for the dependence of
the relativistic wave function on covariant variables. The difference in the distribution of
correction terms between nucleon current and nuclear boost is due, in part, to the fact that
in the above treatment these corrections are evaluated in different frames in the two
methods, and the separated corrections are not frame independent. The major difference is
the appearance of the "extra” term in Eq. (2.52). Note that this "extra” term contributes
both the SO correction and the A corrections, so the A corrections cannot be discarded
without also loosing the well known SO correction. This suggests that some corrections
are missing from the G-merhod. In the next sections it will be seen that this is true, and
that thers also additional corrections to the C-method. When all of these are taken into

account, agreement can be reached.
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2.5 Retardation Corrections

To set the stage for the discussion of retardation and pair term effects, return to the
RIA defined in Fig. 9 above. For simplicity, consider a two body system only, and
suppose that the MV interaction is described by a one boson exchange (OBE) model. In
this case the two body bound state satisfies the equation shown diagramatically in Fig. 10a
(and discussed in Part [ below). The equation may then be used to rewrite the RIA form
factor as shown in Fig. 10b. Through this series of arguments, one may consider the two
Feynman diagrams shown in Fig. 11 to be the general definition of the current "operator”
(consistent with OBE). Each of these relativistic diagrams can be decomposed into 6 time
ordered diagrams [Gr76], as shown in Fig. 12. The focus of this section will be on the
famous "recoil” graph, diagram (12¢) which describes the interaction of the photon with the
nucleon while the exchanged pion is "in flight". Because this contribution is included in
the Feynman diagrams used to calculate the RIA [Wo735, Gr76}, it must not be added to
other results obtained from the C-method discussed above. However, retardation effects

__Q_ _ :
(a)

0200220

b)

Fig. 10. (a) Diagramatic representation of the OBE model for the NN interaction, and (b) use of
this model 1o rewrite the RIA for the twe body form facior.
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q
¢

Fig. 1. The relativistic current operator for the RIA, consistent with the OBE model, is given
by the two Feynman diagrams shown in Fig. 10.

have not been explicitly included in the treatment of the G-method developed so far, so in
this case it is a new effect which must be added to the results previously obtained. It will
give "potential” terms similar to those given in Eq. (1.11),

The first calculations of this effect [JL75, BR75] evaluated the diagram (12c). This
gives a very large contribution, which is cancelled in lowest order completely, and largely
cancelled even in higher orders [TH73, DW76]. This cancellation was systematically

)
SR S
- ,
'_- + .___-'" +

- Y

(F) (a) (b) (c)
+ 7 + ¥ —
d (e) ()

Fig. 12. The single Feynman diagram shown above is equal to 6 time ordered diagrams.
Diagrams (a) and (b} are time ordered diagrams describing the interaction of the initial state
{time flows to the left), (c) is the "recoil” graph, and (d) - (f} are "pair” terms. The equality
holds only if all external particles are on-shell; otherwise it is only approximate.
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L, . 1

i P- D i P P

Fig. 13. The infinite series of time ordered diagrams which are summed by the integral Egs.
(2.59) are shown up to 4% order in the upper box. The lower box shows a diagramatic
representation of the Egs. (2.59), with momenta labeled.

studied by Friar [Fr75b and 75¢] and by Gari and Hyuga [GH76b, 77, and HG76}.
The pion may be emitted by the first particle and absorbed by the second, as shown
in Figs. 12b and 12c, or emitted by the second and absorbed by the first, as shown in Fig.

q
\ p+iq) p-iq P+3q/ P19
*5 qw( J-1a v "1 + yy ——1h
-p -p’ -p'

Fig. 14. Diagramatic representation of Eq. (2.60), with momenta labeled,
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12a. The VN interaction generated from such time ordered diagrams is shown in Fig. 13.
These diagrams are summed by the following set of coupled equations

(B, + By P) ¥(P) =

d e
j \/_p3,/— Vo= o+ Vo - 20 }
(V2r) V2w

Viip-p")
(E,+ EJ+ @ - P)¥(p,p) = ! 3 (p?)
(‘\/ 2::) V2w
V,(p-p"
(E\+ Ej+ @ - P)¥y(p.p)= 2 3 #(p)
(V2z ) V2w

(2.59)
where 'Po is the wave function for the NN channel, and 'f’l ,‘Fz are wave functions

for the NNr channels where the subscript refers to the nucleon from which the last pion
was emitted. In this language, the charge form factor arising from the NRIA plus recoil

terms can be written

1 0 1
Fp= Zf ap ‘f{,(p+ 79 (1) Fy(p - 79
L t D *
+2 [dp ap {Wp+ta,-p- Lo (/) %p-1q, ~p+ Lo
1 .1 0 1 vy, 1
+ ‘ﬂ;(p+ 74, - P~ 790 (1) Y(p-39.-p'+ :,:Q)}
(2.60)
This equation is shown diagramatically in Fig. 14, where the momenta are also defined.

The coupled equations (2.59) and the normalization condition [obtained from (2.60) at q =

0] can be cast into a convenient matrix form

— T —
PV =H ¥ ¥ p¥=1 2.61)

where matrix multiplication includes integration over p, or {p . p' } if required, and the
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specific form of the matrices, in 1 x 2 block form, are
¥y(p) 1 0
¥ = . p=
¥opp) 0 o

(g, +E)s(p-x)  Vip.kK) o
V (pp’k) (E, + £+ @ )5 (p—k) 8 (p- k")

(2.62)

where the 2 x 2 sector is

. #(p.p) , (P =P8 (p-k)

(p.P) = V(ppik)= - —L—

PP e o, @)=~ (=7 v - 995 -0
(2.63)

Note that H is not hermitian, because of the metric p, but that it does have the correct

structure to preserve the norm t2.61). Introducing the new states, @,

0
=(l ] ¥ dla= o
0 a (2.64)

and suppressing all reference to the momentum variables, the equations may be cast into a

compact unitary form

P,® =H®
H, V'

H= . V=aV
V Hg (2.65)

To treat the recoil corrections properly, the orthogonality and normalization of the states
must be preserved at the same time effects from the recoil graphs are calculated, and this

requires diagonalizing (2.65). This procedure will cancel most of the recoil contributions,
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giving only a relativistic correction of order m.

The solution to this problem is discussed in detail in GH76b. The unitary matrix

which diagonalizes the problem is written in the form

1

(1+ﬁr)7 —*(1.+FF*)z

ty ¢
F(1+F'F) (1+7F") 2.66)
where, to first order in the interaction, the operator F must satisfy the relation

H,F-FH =V 267

Letting the H's operate on their respective spaces, and denoting the resulting energies by

1
- (54)
Ex - £ (2.68)

Egand £, gives

and the states, expressed in terms of an approximately diagonal NN state, @y, are

Pnr L= %(‘F:LE:')VTV(T{T;)] Prr
+

= U =
0 -V (E_l_ET) Pnr (2.69)

Restoring the original metric by undoing the transformation (2.64), gives finally

=[1-4 () Vo (7)o

Fre= - V('E'l_ﬁ) e (2.70)

43



Substituting these into the form factor (2.60) gives

Fp=2f do yp+ 20 /) #elp - 10

. Zj 3;‘; ¢TNR(p + %q) Precail (JD) Pnr(P= Tl{q)
2n 2.71)

where the second term is the recoil correction, including the effects of making the two

channels orthonormal. The correction factor in (2.71) is

Pt = — 52— (&)
il 3
el (2m) 20 P 2.72)

where the denominators are

()] St e
D/ | (E+o-E')(E'+ 0-E) (E;+w-E) (E,+ 0-E))

(@) (b)

1 1 1
"i(( E,+ 0-E)(E+ 0-E)  (E,+o-E) (£, +a-E;)
() (d)

1 1
¥ (E + o= E) (E+ - £y ¥ (Es+ 0- E)(E+ o- Ef))]

(e) (£
{2.73)
Evaluating V, and V,, and expanding out the denominators in (2.73) gives finally
__(_g_i'_)z__r‘.'_i {p-p) o-(p-p") ¢ (p-p)
Precoit = =\ 2'm 2 mot GrP=R) GUPP) QPP (2.74)

[When the charge operator is added, this formula agrees with that quoted in GH76b.]
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The next task is to evaluate this term for the deuteron. This is most easily done by
Fourier transforming (2.71) to position space, and noting that the @™ term can be
expressed as the derivative of the potential with respect to the pion mass. For the case of
one pion exchange (OPE) without form factors, a short calculation gives the J;, and J,
contribudons to the form factors reported in Egs. (1.7) and (1.8). These are new
corrections to be added to those previously obtained using the G-merhod, but are not to
be added to the results obtained using the C-method, as already discussed above.

The occurance of the NN potential in these corrections suggests that these may be
related to the terms (1.10) and (1.11), previously derived using the C-method. This is
rue. To compare, use the Schrodinger equation (in OPE approximation) to reduce the /,

and /, terms in (1.11)

B(ry=k[Yolx) ulr) + /8 Y, (x)w(r)]
dry=k, [Yo(x)w(r)+ﬁYz(x)(u(r)-j%-w(r))]

(2.75)
It then turns out that these are identical to the J, + /' and J, + J, terms in (1.8)
I = J,+ ', / = L+ J)
ol pe 0" Yo 2|OBE 272 2.76)

and thus the /, and /, terms in may be interpreted in the language of the G-method as
due, at least in part, to retardation effects. However, the G-method has produced only
some of the additional terms; to obtain final agreement between (1.8) and (1.11) it is
necessary to consider the "pair” corrections mentioned above. These contributions will be

discussed in the next section.
2.6 Pair Contributions
Pair contributions arise from the electromagnetic interaction of the off-shell nucleon

when it is in a negative energy state. The Feynman propagator insures that such a state

propagates backward in time, and can be reinterpreted as an antinucleon, produced in the
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interaction, propagating forward. Figs. 12d-f are time ordered diagrams describing this
process; the interaction produces a virtual nucleon-antinucleon pair for a brief instant. It is
a remarkable fact that such contributions give significant corrections to order m™2.

Both methods discussed above generate pair contributions, which will be discussed
now. A new ingredient in both calculations is the mamix element on the nucleon current
(2.1) between u and v spinor states. To lowest order, these matrix elements are

0 mz z— ' [ 2 . O.Oqu]
) = (W)v(—p | FaDP + Ef Pt u(p)

,,_[@- 0-(p'~p)+Fa-q]

I 2m 2 2m
c-q 0-(q-p'+p)J .0
h[G"‘ m CeT m - - )+- @17

where (2.77) holds for arbitrary p’, p, and q. For use with corrections calculated with the
G-method, where the spinors are evaluated in the Breit frame, p'-p = q, so that the G E
term cancels. However, when using the C-method where the wave functions were
boosted to their rest frames [recall discussion leading to Eq. (2.55)], the G term does not
cancel. In this case, p'-p = q/2 and the two terms combine just as in the spin orbit case.

For the deuteron, the two cases give
), = =1, - o

~c ‘[2 Gy — G ]2‘4;:""9" 2.78)

In conclusion: with the C-method pair terms contribute only to the correction terms 450
[Eq. (1.6)]; with the G-method they contribute to all of the A's,

The specific form of the pair term corrections can be easily extracted from Eq.
(2.53). In terms of the wave function for the negative energy channel, defined in Eq.

(2.45), the lowest order result for a general nucleus is
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FA@D) o= AJ’Hde,.[‘T”—(E[f’O) <f'?w)_

r 7 (0) (S v (10)]

¢* (z%,0)
.

(2.79)

Evaluation of this result requires a calculation or estimate of the negative energy wave
functions. These components for the deuteron have been systematically studied [Re72,
HG73, and BG79]. In analogy with the Dirac wave function for the hydrogen atom,
which has a large S state upper component and a small P state lower component, the
deuteron has two small P state components {spin singlet, s, and triplet, /) which are
companions to its large § and D state terms. These smaller components can be written in

a convernient matrix form [BG79]:

o7 =2Lo7(0 x

) ___Lvs(,.)__*_l__v:(r) . .-‘]im
HOEFNE- [‘ﬂ“".ﬁf 7z m lored-rd)| 5 (2.80)

Writing the matrix element (2.79) for the deuteron, and Fourier transforming to position
space, gives the contributions to the A50's defined in Egs. (1.10} and (1.11)

This completes the analysis of the m~2 corrections to the deuteron electric form
factors using the G-method. The total result, given in Egs. (1.6), (1.10), and (1.11), has
now been obtained.

To compare with the G-method results, the coupled equations which give the v's
in terms of u and w can be solved in the lowest order OPE approximation [HG73, Gr74,
and Gr78]. The solution depends on the type of pion coupling used. If the relativistic

coupling is a mixture of ps and pv terms

(1-A4)
Ag = 8n [l y 3+ prouml 4 % F(Pf - pi):“] (2.81)

where the mixing parameter A is defined so that the coupling (2.81) is independent of it if
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both nucleons are on mass-shell, then the solution is

m

v,=‘\/-3-l( ixm)Yl(x)[\/_iu+w]

Kyq
v, = V32 (WJYI(x ) [u - ‘\/Ew] 2.8)

Using A = 1, for pure ps coupling (to be discussed further below), inserting these into

(1.11) and doing some rearranging, gives

=4, 5] =
o = % o= % .

Thus, separating the terms into G and G,, contributions, for the moment, the Gz
contriburions from the pair terms calculated in the C-method, (2.83), cancel some of the
G contributions previously calculated, (2.76), giving exacily the same result as the G¢
corrections obtained in the G-method approach. Since the pair terms from the G-method
have not yet been estimated, but since they depend only on G, , the G¢ corrections from
both methods have now been found to be the same (in OPE approximation with ps
coupling).

Evaluation of the pair corrections in the G-method requires that the time ordered
diagrams shown in Figs. 12d and 12f (and their counterparts with all lines reflected) be
evaluated. The other diagram, 12e, is smaller because it invoives two energy denominators
with an NV-Nbar pair, while the others have only one. Using the labeling for momenta

given in Fig. 14, the operator is

9 Ag & v
=28 o6 : 2
j)plir i (p-pP) o q[ v Gt GMrZJ +(le2) 2384

[This operator agrees with [GH76a], which is consistent with [HG76], if their ¢=1,
d=~1, but disagrees with the Hannover group {SH87], who use c=1, d=0.] The
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simplist way to evaluate this contribution to the deuteron form factors is to cast the matrix
elements [of the form Eq. (2.60)] into position space, where the integrals can be simplified
by integration by parts, and the Y, function appears naturally. The J,' and J,' terms
reported in Eq. (1.8) are then obtained. Hence, with this final contribution, the results
obtained from the G-method and C-method agree (in the OPE approximation with pure
s coupling).

2.7 Conclusions

After considerable effort, two different methods have been found to give the same
lowest order relativistic corrections to the deuteron electric form factors [Fr77a, 80, and
Gr78]. The agreement is satisfying and gives considerable insight into the nature and
origin of relativistic effects. The final agreement was achieved only after all effects were
taken into account, leading to the conclusion (iv) drawn in section 1.6 above.
Furthermore, effects identified with a single physical origin do not appear in the same
manner in the two methods, showing that attempts to classify and name relativistc effects
can have only limited value.

However, further reflection shows that the agreement between the two methods is
less significant than it appears at first sight. While all of the contributions obtained from
the C-method were calculated used the same theoretical framework, this was not the case
for the G-method. In this approach, the algebra satisfied by the Poincare group was used
to calculate boost effects, and the time ordered formalism was used to calculate the recoil
and pair term contributions. Unfortunately, some additional assumptions about how to join
these two parts of the calculation are needed before a final answer can be obtained. For
example, it turns out the the solution (2.27) for the interaction term in the boost operator is
not unique; other choices are possible and this non-uniqueness has been discussed
extensively in the literature. It must be assumed that the solution (2.27) is the cormrect one
to use with the retardation effects calculated from the time ordered analysis discussed in
section 2.5. If we had used a solution different from (2.27), we would have obtained a
different answer. Coester and Ostebee [CO75] did just that, and were able to obtain
retardarion effects consistent with the C-method results without inclusion of any recoil

corrections. Adding the recoil corrections calculated in section 2.5 to the CO75 result
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would have given an answer twice as large.
Friar {Fr77a, 80] has discussed this ambiguity in terms of the freedom to use a

unitary transformation to redefine the wave functions. For example, if the wave function

¥is transformed by a unitary transformation I/

¢=U¥ (2.85)
then matrix elements of a physical quanity O are related by
(lf'*ow)—(dfow) o'=vou
= ’ - (2.86)

In this way relativistic effects may be shifted in or out of the wave function, and if there is
no inforrnation about the dynamical content of the wave function, it is impossible to decide
which operator to use, and it is possible to get any effect one wishes. Friar [Fr80] writes
his operators in terms of .two parameters which describe this freedom. This has lead to
much uncertainty in the community over what corrections to apply. Recently, Truhlik and
Adam [TA89], in their study of threshold electrodisintegration, observed that this un-
certainty is large numerically [see their Fig. 8].

Fortunately, the C-method does not suffer from such ambiguities, at least as long
as the relativistic wave functions defined by the method are used to estimate the relativistic
corrections. Furthermore, the corrections obtained from the C-method show how the
corrections obtained from the G-merhod should be joined, or, in Friar's language, they fix
the representation. This is even the case for the differences between ps and pv coupling
for the pion; the form of the result (1.11) holds for both couplings, but the numerical value
of the integrals is quite sensitive to the nature of the coupling because the size of the
negative energy wave functions are [recail Eq. (2.82)]. We conclude that the C-method is
the only one of the two which can yield answers systematically and without ambiguity, and
are thus lead to one reason why fully covariant methods are needed in future work.
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ITI. Covariant Methods

A number of covariant relativistic equations have been developed for the dynamical
treatment of few body systems and their interactions. These include the Bethe-Salpeter
equation [SB51], the Blankenbecler-Sugar equation {[BS66, LT63], and the spectator
(sometimes referred to as the Gross) equation [Gr69]. Applications of the Blankenbecler-
Sugar equation to the treamment of form factors can be found in JW84. A few remarks
about the light-front (sometimes referred to as the Weinberg) equation [We66, and see
JK88], not discussed in this chapter, will be given below. Other equations are described in
Refs. To71, W73, and WMB89. This Part will review recent work using the Bethe-
Salpeter (BS) and spectator (G) equations to describe the two and three nucleon systems

and their interactons.
3.1 Introduction and Comparisons

The equations we will discuss are linear integral equations. For the scattering

amplitude M they have the following form

M(pp, P=V(pp, P~ [dkVpk Py Gk, P) M(k p} P
= V(pp P~ [dkV(pk P) G(k P V(kp', P)

+J-dkdk'V(Pk. P) G(k, PyV(kk',P) G(k; P)V(k'p;, P) .
(3.1)

where V' is the kernel, or relativistic potential, and G is the propagator for the NN or

NNN system, and for a two nucleon system,

P=p+p, p1=-é-P+p

p= %( Py = Py) Py= ';'P -p (3.2)

with P the total, and p the relative, four-momentim of the system. As the second line in
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(3.1) suggests, a covariant equation can be regarded as a tool for summing an infinite class
of Feyninan diagrams, and must be used whenever the physics requires such a sum. This
is necessary when treating bound states, because a bound state appears as an s channel
pole in the M matrix, and if it is truly composite, no finite number of Feynman diagrams
has such a pole. It is also necessary when treating elastic scattering at threshold where it is
important to treat unitary exactly; again, no finite number of Feynman diagrams is unitary.
Of course, when the kernel is strong, the solutions of the equation will exist when the
corresponding series diverges, and the solution can then be regarded as the analytic
continuation of the infinite series from a region where it is properly defined to one where it
diverges. But the series is a useful starting point for several reasons: (i) it is closely
connected to field theory and provides answers to dynamical questions which may arise,
(ii) it tells how to construct, or derive, the equation, and (iii) it shows that the equarion is
covarian: because the diagrams on which it is based are covariant.

Before continuing with this discussion, it is well to clarify what is meant by
“covariant”. If the interacting nucleons are off-shell, which is always the case for
equations of the type'dcscriqu in (3.1), the decomposition of its kemnel (usually a finite
sum of relativistic Feynman diagrams) into a finite number of time ordered diagrams,
which was illustrated in Fig. 12, does not hold. As a consequence, no equation with a
kernel consisting of a finite number of time ordered diagrams is covariant. This also holds
for the 7 ordered diagrams encountered in the light front approach; strictly speaking, the
light front equation is not covariant. In is not manifestly rotationally invariant, and
dynamical constraints must be imposed in order to obtain rotational invariance [see, for
example, JK89, and references therein).

The bound state equation can be derived from the scattering equation by postulating
that a bound state will show up as a pole in scattering matrix

F(p
M(pp, P =- ””:2) (Pf D Rpp P
8~ (3.3)

where I is the bound state vertex function, and R is a remainder function regular at the

bound state pole. The relativistic bound state wave function is defined by
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UpP=N'G(aP Nph 3.4)

where & is a normalization constant. Substituting (3.3) into (3.1) and requireing that the

equation hold at the pole, gives the bound state equation
G aPWp.P=-[dkVipk P ¥ kP 35)

and the normalization condition for the relatvistic wave function

Gk P

\=[aF(kn="22 Mien
Pz=m='
- [f dkax B(x.p) QVikk: P) ‘ W k' P)
Pz=m" (3.6)

The definition of the domain of integration dk and the propagator G differs for
each equation. The BS equation is defined by

+ & + i
dk::»j J‘k Gk, P) = (”‘2 )y (m 2)22
et (mz—kl-'-is)(mz—kz-ie) 3.7)

where the subscripts on the projection operators are a shorthand notation for the Dirac
indicies of each particle. The G equation, for the case with particle 1 on-shell, is defined
by

m+ K (m + &)
dk k,P)= 1) 22
J =”(zm (E(U] cl.m ( 2m

| (m2- k2~ ie)

1
J\:l=mz

(3.8)
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with k,2 = m? weated as a constraint in all kernels and wave functions, and the kernel
must be explicitly antisymmetrized in order to insure that the Pauli principle is satisfied.
The covariance of the G equation is easily displayed using the identity (2.40). The
constraint means that the projection operator for particle | can be replaced by the sum over
u spinor states only, so that the states have only 4 x 2 =8 spin components instead of the 4
X 4 =16 components of the BS equation. In addition, the internal energy is fixed by the
mass-shell constraint, which is, in the CM

= B - (3.9

with the convention that W = P% in the CM. This means that solutions of the G equation
have the same number of momentum variabies as in the nonrelativistic case, differing only
in the presence of the extra spin components associated with the negative energy degrees of
freedom of the off-shell particle. The G equation can therefore be written in a form similar
to a Schrodinger equation, except with relativistic kinematics and additional channels

resulting from the the negative energy degrees of freedom.

(a) )] ()
(d) (e) ()
(g (h) (i)

Fig. 15. Ladder and crossed ladder diagrams to 6** order in the meson-nucleon coupling constant.
Diagrams (a)-(c) are ladder diagrams: the rest are crossed ladders. With respect 1o the BS equation,
only (a), (d), and (g)-(i) are irreducable.
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(@) (b)
G " -
e o et 3 e e > s
@ (b) () (d)

Fig. 16. Irreducable kernels to 4** order for the BS and G equations. The x on the lower line
means the particle is on-shell. For the G equation, diagrams (c) and (d) together can be regarded as
a single diagram which adds the difference between the fuil box diagram (¢) and the iteration of the
2" order kernel (d).

Once the equation is chosen, its kerniel is fixed by the choice of the infinite class of
Feynman diagrams one wishes to sum. This choice is determined, in turn, by the physics.
For the treatment of elastic scattering below the meson production threshold, a minimal
choice of diagrams is the sum of all ladder and crossed ladder diagrams [WJ72], shown in
Fig. 15. In order to sum these completely, the kernel must be an infinite sum of all those
diagrams which are irreducable, which means they cannot be constructed by iterating
lower order terms in the kernel. It is easy to see how this works for both the BS and G
equations, and the 4™ order irreducable kernels corresponding to each equation are shown
in Fig. 16. Note that the 4% order kernel for the G equation requires two terms (diagrams
(c) and (d) will be lumped together as a single term), while only one is required for the BS
equation. ‘

The G equation is only one example of an infinite class of relativistic equations
which all have the property that they reduce the four-dimensional integration of the BS
equation to three dimensions [WJ73, Gr82a]. These equations are sometimes referred to as
quasipotential (QP) equations.

The advantages and disadvantages of the BS equation, or any of the QP equations,
has been the focus of some study [WI73, MG78, ZT81, Gr82a}, and remains a topic of
considerable interest. A definitive answer can be given in the special case when one

particle has spin zero, isospin zero, and is heavier than the other. Denoting the mass of the



spin zero particle by M, and the lighter particle (any spin) by m, we expect that, as M —
oo , the rwo body equation should reduce to the exact one body equation for the lighter
particle moving in the instantaneous potential created by the heavier. This requirement,
which will be called the "one-body limit", emerges from the physical idea that a particle
with no internal structure (zero spin and isospin), should decouple from the description of
the lighter particle as its mass becomes infinite. It can be easily seen that the G equation
has the one body limit. Its kemel, in OBE approximation, already gives the one-body limit:

88,9, - 82829
Hp-k) - [ELp- E(0] Fp-k) 40

V(pk, P)=

To see why this happens, look at the irreducable kernels for the G equation shown in Fig.
16. Examination of the three 4\t order terms [diagrams (b)-(d)] shows that they cancel
each other as M —se , and furthermore, it can be shown [Gr82a] that this cancellation
occurrs to all orders. Hence, in the M — eo limit, the simple kernel (3.10) sums all
ladders and crossed ladders exactly. The BS equation does not have this property. Each
term in the infinite series for the BS kernel remains finite as M — o, and therefore ail
(an infinite number) are needed to recover the one body limit. From this point of view, the
BS equation is ineffecient in summing ladders and crossed ladders, and does not have a
smooth nonrelativistic limit.

However, the cancellations leading to the one body limit have not been proved for
the general case of charged meson exchange between two spin ‘/2 , isospin ‘/2 particles of
equal mass (the MV system), and the massive spin zero example described above is far
removed from this practical case of interest! Unil more is known, interest in the use of

both equations to describe the NN system is high.
3.2 Current Conservation
Before any equations can be applied to the study of electromagnetic interactions of

few body systems, it is necessary to know how to construct a gauge invariant interaction in

order to insure that current is conserved. This is also a requirement of nonrelativistic
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theories, of course, but the demand is somewhat more critical when the theoretical
approach purports to be more fundamental. The problem is almost trivially solved for
isospin zero elastic form factors, where the symmetry of the system allows a proof that
even the RIA is gauge invariant [ZT80]. The full problem cannot be avoided when dealing
with inelastic processes, and for many years it was a serious obstacle to progress. The
issue was addressed by de Forest [dF83], who developed a prescription for modifying the
one body current so that the impulse approximation conserves current, but the soluton
introduces some arbitrary features and is not entirely satisfactory.

While the general problem is not solved, and there is still not a fully satisfactory
way of conserving current for the (e, ¢’ p) reaction from complex nuclei (for example), a
method was recently found [GR87] for treating the few body problem which works even
in the presence of phenomenological strong form factors. The method also permits the use
of different (appropriate) electromagnetic form factors for each of the particles with which
the photon interacts, so that, for example, the experimentally determined nucleon form
factors may be used in the one nucleon current, the pion form factor may be used for the
“true” pion exchange-interaction, and F, , or the axial form factor, F, ,-may be used for
the pair contributions. The common belief that gauge invariance requires a common
electromagnetic form factor, or that a gauge invariant calculation is impossible without a
microscopic theory of the structure of the meson-nucleon vertices, is false.

Briefly, the construction of the conserved current requires that (@) the single
nucleon or meson currents satisfy an appropriate Ward-Takahashi identity, (b) the
interaction part of the current operator be constructed from the irreducable kernel by
coupling the photon to all possibie places in the kernel, and adding appropriate contact
terms wherever there are momentum dependent couplings, and (¢) the initial and finai
relativistic wave functions in the matrix element be calculated using the same relativisitic
equation with the same kernel. The last requirement makes this method inappropriate for
complex systems, and the second places a premium on using simple kernels (OBE, for
example). Finally, the method requires that the strong form factors be written as a product
of functions, each of which can depend on the (virtual) mass of only one of the particles
entering and leaving the vertex. Furthermore, if a particle is involved in more that one
vertex (as the pion is in the WVN and AN couplings, for example) the function carrying

the pion mass dependence must be the same in both cases (a kind of universality
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requirement). These conditions are satisfied in the typical case of form factors which
depend on the meson mass only.
The remaining sections describe some recent results using the BS and G equations.

3.3 Applications of the Bethe-Salpeter Equation

The BS equation has been applied by Tjon and his collaborators to the ¥V and
7NN coupled systems, to the three nucleon problem, and to the description of two and
three bocly form factors. Some of this work has been reviewed at international conferences
[T)835, 87], and is published in various summer schools [Tj86a, 86b, 89, and90]. Related
work on the scattering of polarized nucleons from nuclei is not reveiwed in this chapter.

The NN problem was first studied [FT75] using 2 OBE model consisting of six
mesons: 7, p, @, £ (an isoscalar, scalar meson), & (an isovector, scalar meson), and 7.
Form factors were used at the meson-nucleon vertices. Using the helicity representation,
the equation can be expanded in partal waves, much as is done for the nonrelativistic
problem, with the Wigner spin rotation matrices replacing the usual spherical harmonics
(Ku72]. Because of the extra degrees of freedom, there are in general 8 coupled partial
wave states instead of the 2 which occurr in the nonreladvistic coupled spin triplet
channels. The resulting "radial” equations are two dimensional, and can be cast into a
Euclidean form by a Wick rotatdon [Wi54]. By adjusting the meson parameters, and using
pv coupling for the pion, a reasonable fit to the NN phase shifts up to 250 MeV can be
obtained. One interesting feature of the results is that the negative energy states are
replusive in all partial wave channels J < 2, except for the 'S, channel, in which they
supply an added attraction. This result is qualitatively different from that found using the G
equation, where the negative energy channels are always repulsive. A realistic deuteron
wave function was obtained, and was used to calculate the deuteron form factors [ZT80,
81}, giving results reviewed earlier. A more recent version of the same model with meson
exchange contributions {HJ89] does quite well, and results were described in section 1.1
[see Fig. 3].

To extend this work to intermediate energies, above the pion production threshold,

7NN intermediate states were included by adding NA channels, first with the A given a
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width dependent only on the total NN energy [vI84], and later with the A propagator
modified so as to satisfy three body unitarity [vT86). Fits to the NN scattering
inelasticities come out somewhat too low, but are improved by adding the nd channel, and
the P wave phase shifts are not well fit in the neighborhood of 800 MeV. To obtain the
- best fits, it is necessary to use a form factor at the NAx vertex with a strong cutoff,
corresponding to a large spatial size, and the form factor must depend on the relative
momentum between the pion and nucleon. This latter feature means that the recent method,
reviewed in sec. 3.2, for constructing electromagnetic interactions which are gauge
invariant in the presence of strong phenomenoiogical form factors cannot be used in this
case.
tecently, progress has been made with the relativistic three nucleon problem. The
BS equation for three scalar particles has been solved using a rank-one separable potential,
an approach which neglects all D state admixtures and treats spin in a nonrelativistic way,
and the solution applied to the calculation of three nucleon form factors [RY88, Ru90]. At
the same time, rank-one separable solutions were found for the nonrelarivistic problem, and
two different quasipotential equations, and the results compared to those obtained for the
BS equaiion. The binding energy obtained for the triton was greater using the BS equation
than for the other equations, with the corresponding form factor more rapidly decreasing
with @2, as expected. A multirank separable approach, neglecting negative energy states
but retaining spin degrees of freedom for the positive energy sector, has also been used for
the deuteron and the deuteron form factors [RT90]. Resuits similar to other work on the
deuteron have been obtained.
Work using the BS equation to describe the electromagnetic interactions of few
body systems is proceeding at a rapid rate. Numerical solutions of the equation do not
pose the problems they once did, and a number of calculations, which can be compared to

data and other relativistic approaches, will be available in the next few years,
3.4 Applications of the Spectator Equation

As described in section 3.1 above, the spectator (G) equation has a propagator

which restricts one nucleon to its mass-shell [Gr69]. It is designed to have a smooth non-



reladvistic limit, and these features have already been reported in sections 1.5 and 3.1
above [Gr74]. A OBE model for the deuteron was solved exactly [BG79], and the
solutions used to calculate the deuteron form factor [AC80], but the OBE model used to
determine these deuteron wave functions was not fit, at the same time, to the rest of the
NN scattering data, so the wave functions obtained were, to some extent, unrealistic.
Recently an accurate fit to the NV data below 300 MeV was obtained [GV90], and the
resulting wave functions are being used to calculate electromagnetic observables.

A novel feature of the OBE model used in all of these calculations is the ZVN
coupling, which has the mixed form given in Eq. (2.81). The mixing parameter, A,
gives the fraction of the total coupling which has the ps structure, with 1-A giving the
remaining fraction which is pv, and the two terms normalized so that the total coupling is
independent of A if both the initial and final nucleons are on-shell. When one nucleon is
in a negative energy state, however, the coupling is very sensitive to A , being directly
proportional to it in the nonrelativistic limit. One of the goals of the recent work [GV90]
was to systematically study this sensitivity to A. To this end, two, equally good fits to the
NN data were obtained. For one case (referred to as Model I} A was fixed at 0
(corresponding to pure pv pion coupling) and the parameters of the 6 mesons previously
used in the BS model were varied. For the second case (referred to as Model ), A was
allowed to vary in the fitting process, but only four mesons were used. The goal was to
see if the results suggested by the nonrelativistic "fits” to the Reid potential {Gr74] could be
reproduced in a careful fit to actual data, and confirm that the additional fresdom introduced
by A would make it possible to fit the data using only the four mesons believed to be
really essential to any OBE description of MN scattering (specifically, the #, &, p, and
w). The original nonrelativistic "fits” gave A = 0.4, while the result obtained for Model [
gave 4 = 0.23. It appears that an admixture of ps pion coupling is helpful to the
phenomenology, and that the low energy data can be accurately fit by only four mesons.

Putting one particle on the mass-shell gives the G equation a very unsymmetrical
structure, and the Pauli principle cannot be recovered by antisymmetrizing the final
solutions unless the kemnels are antisymmetrized from the beginning. If this is done,
however, the Pauli principle is exactly satisfied, and ail recent solutions have been obtained

with antisymmetrized kernels. A second technical problem is that the procedure of putting
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one particle on mass-shell tends to introduce unphysical singularities into the kernels of the
equation [ZT81, Gr82a]. These have their counterpart in the BS equation, and are avoided
there by performing the Wick rotation, but a similar method has not yet been found for the
G equation. These singularities disappear if either the initial or final state is on-shell (i.e.
both particles on-shell), so no physical matrix element is singular because of them.
Furthermore, they cancel if the kemnel is treated to all orders, so droping their imaginary
parts is justified, giving real, hermitian kernels. The remaining principal value singﬁlarities
are small and distant from physical regions, and recent studies [GV90] show that they give
negligible numerical contribudons. They remain an inelegant feature of the G equation, but
seem 10 be unimportant otherwise.

The spectator equations for the three body system have been written down [Gr82b],
and decomposed into partial waves [Gr83). The extension of the spectator idea to the three
body sector requires that two of the three particles be restricted to their mass-shell,
producing fully covariant equations of the Faaddev type with the same number of
continuous variables as in the nonrelativistic case. The equations therefore have the same
structure as the corresponding nonrelativistic equations, but with a doubling of channels, as
in the two body case. The two body amplitude which drives the equations satisfies the
same equation as it did in isolation, so the cluster decomposition property is exactly
satisfied. A systematic proceedure for applying the spectator formalism to a variety of
electromagnetic processes is being developed [for reviews, see Gr86, 88, 89a, 89b, and
90]. More results from this method will be available in the next few years.

3.5 Conclusions

Discussion and conclusions to various topics covered in this chapter have already

been given in sections 1.6, 2.4, and 2.7. To conclude this Part and the full chapter, I

emphasize that fully covariant methods for treating few body systems (using either the BS

or G equations) are now well developed, and can be used to give a consistent, gauge

invariant description of electromagnetic interactions of few body systems. Both equations

-are closely tied to field theory, and can therefore base their phenomenology on a well
defined dynamics. Older, expansion methods which try to graft relativistic effects onto

nonrelativistic theories have taught us much about the physics (and were reviewed so



thoroughly in Part II for this reason), but cannot address the next generation of problems,
which are concerned with achieving a high level of internal consistency. Nonrelativistic
models, if they are phenomenclogical, are not able to tell us unambigously what additional
effects must be added to them simply because they do not tell us enough about what effects
they already contain. And, there is no longer any reason to use phenomenological models
(at least for few-body systems) because covariant models can be fitted to data just as well,
and give us much more information about how to extend them consistently to other
processes. As experiments and theory go to the higher momentum transfers available with
the new accelerators, the need for consistent and accurate covariant calculations will grow.

The foundations for such calculations have been reviewed in this chapter.
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