CEBAF-TH-90-02

Many-Body Correlation Effects on the Longitudinl Response
in the Quasielastic (e, e’) Reaction
Patrick M. Boucher
Continuous Electron Beam Accelerator Facility
Newport News, VA 23608

J. W. Van Orden
Department of Physics, Old Dominion University
Norfolk, Virginia 23529-0116
and
Continuous Electron Beam Accelerator Facility
Newport News, VA 23606

CONTINUOUS

ELECTRON

BEANI _

ACCEII_ERATO

U

my

FACIL.ITY

S U RA Southeastern Universities Research Association
CEBAF

fie Continosss Eicies Asam Ampaiersier Faslly

Newport News, Virginia




Copies available from:

Library

CEBAF

12000 Jefferson Avenue
Newport News
Virginia 23606

The Southeastern Universities Research Association (SURA) operates the Continuous
Electron Beam Accelerator Facility for the United States Department of Energy under
contract DE-AC05-84ER40150.

DISCLAIMER

This report was prepared as an account of work sponsored by the United States
government. Neither the United States nor the United States Department of Energy,
nor any of their employees, makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would
not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, mark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States

government or any agency thereof.



Many-Body Correlation Effects on the
Longitudinal Response
in the Quasielastic (e, €') Reaction

P. M. Boucher

Continuous Electron Beam Acceleralor Facility
12000 Jefferson Ave, Newport News, Virginia 23606

J. W. Van Orden
Department of Physics, Old Dominion University, Norfolk, Virginia 23529-0116
and
Continuous Electron Beam Accelerator Facilily
12000 Jefferson Ave, Newport News, Virginia 23606

A study is made of the influence of many-body corrections on the longitudinal
response function for the inclusive quasielastic (e, e') reaction. This response
function is well known to be suppressed, by about a factor of two, when com-
pared with theoretical predictions based on the concept of single nucleon ejection.
This is a characteristic of the data that persists through a wide range of different
nuclei and suggests a violation of the Coulomb sum rule. It is here shown how an
estimation of the effect of many-body correlations, including a consistent treat-
ment of inelastic final state interactions, can be computed through a relationship
to the nuclear optical model. The approximations are such that the Coulomb
sum rule is guaranteed to remain satisfied providing the optical potential is her-
mitian analytic. Calculations of the longitudinal response are carried out within
the Fermi Gas Model using phenomenological parameterizations of the nuclear
optical potential. The reductions in both the peak strength and the total in-
tegrated response are significant, but not sufficient to explain the discrepancy
between theory and experiment. The resulting distribution of strength is char-
acterized by the energy-weighted sum rule which remains satisfied to the level of
the approximations, about 5%.



L INTRODUCTION

Several recent measurements'~7 of the inclusive quasielastic (e, €') cross section
have spurred considerable theoretical effort to understand them. The need for such
attention is partly a consequence of the failure of traditional models to explain the
separated longitudinal response. Even the simplest model of quasielastic scatter-
ing, the Fermi Gas Model in the impulse approximation, appeared to be extremely
successful at explaining the unseparated data.® It thus proved surprising that this
model fails by a factor of two to fit the longitudinal response functions alone. This
suppression of the response is a systematic feature, observed in nuclei ranging from
12¢7 to 28y, for several values of the momentum transfer between ¢ = 330 MeV and
g = 550 MeV.

Even more importantly, the data suggest a violation®!° of a sum rule, first pro-
posed by Heisenberg,!! that demands the large ¢ limit of the integrated response
for point nucleons be Z, the total nuclear charge.!? This apparent violation of the
Coulomb sum rule has led to considerable speculation on the physical origin of the ob-
served suppression. Several Random Phase Approximation (RPA) calculations have
been carried out!*-% and have provided a qualitative description of the longitudi-
nal response at low momentum transfer. Above momentum transfers of 400 MeV,
one-particle—one-hole (1p-1h) RPA effects tend to be very small,’® and the need to
include more complicated configurations through the second RPA (SRPA)™~15 have
been recognized. Thus, within the framework of nonrelativistic physics, the predom-
inant explanation has been the effect of 2p-2h*3~1% and further many-body!? correla-
tions. It has also been suggested that the suppression may be due to modifications of
the nucleon size within the medium (the “swollen nucleon” hypothesis),’®~3" quark
clustering exchange effects,?® and relativistic dynamical effects.?7-34

While the influence of these more speculative mechanisms generally improve the
agreement with experiment, they need to be considered cautiously to ensure that
their appealing features are neither accidental nor pathological. Relativistic RPA -
(RRPA) calculations, for example, exhibit substantial suppressions that persist to

135 representation of the

large momentum transfer, but have relied on the o—w mode
residual particle-hole interaction; it has recently been shown that this theory is not
even qualitatively stable with respect to a loop expansion®® and it is unclear to what
extent the calculated suppression will endure a more realistic representation of the
nucleon-nucleon interaction. In addition, renormalized RRPA calculations that use
pointlike interactions are known to generate unphysical singularities at large momen-
tum transfers.3”

The assumption that a description of quasielastic scattering can be predicated on

the concept of single nucleon ejection is difficult to justify. The momentum and energy



transfers involved in the experiments clearly allow scattering into many final state
channels involving multiple nucleon ejection and a calculation of the inclusive response
should involve contributions from all open final state channels. Many calculations
have ignored the final state interactions because the total flux must be conserved;
it is important to recognize, however, that the strength will be redistributed as a
function of momentum and energy transfer due to differences in the coupling to the
available phase space.

Currently, the most satisfactory way of including the effects of the final state interac-
tions is the optical model Green function approach originally presented by Horikawa
et al.:3® a one-body approximation to quasielastic electron scattering can be con-
structed by exploiting the relationship between forward virtual Compton scattering
and inclusive electron scattering. The result is a doorway model with the virtual
photon being absorbed initially by a single nucleon that can couple to more com-
plicated final channels through the final state interaction. The original motivation
for this approximation was found in multiple scattering theory, but it was shown in
the recent comprehensive study of final state interactions by Chinn et al* how this
approach can be derived using projection techniques.

Similar projection techniques have also been used'” to account for the influence
of many-body correlations on the longitudinal response by constructing an effective
current operator to be used in the evaluation of the transition matrix element. This
effective operator is related to the optical potential by using the projection techniques
to account for the coupling to states more complicated than 1p-1h in an approximate
way. Thus, it is possible to study the role of many-body correlations in a more con-
sistent way by including the final state interactions through the optical model Green
function approach. By exploiting the relationship to forward virtual Compton scatter-
ing, the projection techniques can be used to relate the exact many-body expression
to a simplified version given in terms of the optical potential.

This is the formulation to which this paper is addressed. Because of the connection
with the optical model, the final state interaction can be constrained by means of
elastic nucleon-nucleus scattering; also, the substantial body of work on the derivation
and properties of microscopic optical potentials can be exploited.*®~! By introducing
a reasonable set of approximations, the full many-body problem can be approximated
by one in which the basis states are simply one-body states; this is at the expense of
introducing effective current operators, but they are related to the energy dependent
optical potential and are not unwieldy. Such a formulation allows the use of traditional
models of quasielastic scattering to evaluate the full many-body longitudinal response.
In particular, the simplicity of the Fermi Gas Model allows it to be used to study the
role of many-body correlations in a comprehensive fashion.



The paper is organized in the following way. The general formalism is presented in
the first part of the next section. The second part of that section is used to show in
detail how the adopted set of valid approximations can be used to simplify the general
expression so that the result is calculable. It is also proved that the Coulomb sum
rule has not been compromised by the set of approximations. In Section III, details
of the calculation within the Fermi Gas Model are presented. Some emphasis is
placed on the way in which phenomenological optical potentials were used, especially
at large momentum and energy transfers. Attention is drawn to the limitations of
describing the nucleus as a Fermi gas in the appendix where the somewhat remarkable
result, that the contributions from the single nucleon knockout channel vanish, is
presented. Numerical results of the calculations are then discussed in Section IV.
There is some sensitivity to the choice of optical potential parameterization seen.
In addition, energy-weighted sum rules are used as a test of the consistency of the
method. The final section is used to summarize the results and inferences that can
be drawn from this study.

II. FORMALISM
A. Many-body corrections to the Longitudinal Response

Both the longitudinal and transverse response functions are defined in terms of the
nuclear tensor, W*¥(q,w), which involves the matrix elements of the virtual photon’s
interaction with the nuclear electromagnetic current,

RL(Q&“’) = th(q’w)
Rr(q,w) = W'(q,w) + W¥(q,w), (1)

with

W (aw) = LX) (1 @IS(Er - B - ) (2)

The ¥ is used to denote an average of the A-body initial states |i) while {f) is a
particular A-body final nuclear state. The electromagnetic current operator, J#, is
a function of the four-momentum of the virtual photon ¢ = (w,q}. Note that only
the diagonal components of the response tensor are needed to define the inclusive
response functions. These components can be written alternatively as imaginary
parts of the virtual forward Compton amplitude, T##, i.e., the contribution from the
elastic scatiering of virtual photons from the bound nucleus,

Wes — __l_ImTuu (3)
T
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where

T = 3 (T4~ q)G(E; + w)I*(q)li) (4)

and G(E) is the full A-body propagator.

At this stage, Eq. (4) retains all of the complexities of the many-body problem.
From a practical standpoint it is useful to try to relate the exact expression to a
simplified version given in terms of the optical model. This can be achieved by using
the Feshbach operator projection method.?! For simplicity, the derivation given below
neglects complications associated with the antisymmetrization of the wave functions.
It has been demonstrated, however, that a completely antisymmetrized theory can
be constructed which retains the form of the simple unsymmetrized theory provided
that an appropriate identification of the optical potential be made.3?#7=5% The form
of the results obtained here is not, therefore, dependent upon this assumption and
the generalization to a completely antisymmetric formalism is straightforward. Fur-
thermore, it is assumed in the following derivation that the target nucleus has zero
spin in order to simplify the labeling of states and to remove the average over initial
states. This assumption can easily be eliminated and does not affect the form of the
results obtained below.

In the Feshbach approach the A-body hamiltonian H is divided into two pieces:
the first is an {A—1)-body interacting hamiltonian plus a kinetic energy term for the
A* nucleon, and is denoted by h; the other term is the residual interaction between
the (A—1)-body system and the A* nucleon and is denoted by V. That is,

H=h+V (5)
A projector onto an eigenstate of A can be defined as
Py = |a){(e] (6)
where
hla) = Eq|a). (7)

In this case a subset of the eigenfunctions of h corresponding to a finite set of excita-
tions of the (A—1)-body system will be chosen. In interpreting the physical content
of the approximations made below, it is useful to think of these states as the result of
a hole being placed in the various filled shells of a closed shell nucleus. The projector
onto the subspace spanned by these states is

P=) P, (8)



The orthogonal projector onto the remainder of the Hilbert space is, then,

Q=1-P (9)
Note that by their definitions, only V and not h, connects the two subspaces:
PhQ=QhP=0 (10)
implies that
PHQ=PVQ and QHP =QVP. (11)

Using these definitions, it is possible to project the A-body Schrédinger equation
for the initial state [¢) using

H(P + Q)l) = Eil). (12)

Projection of Eq. (12) on the left with P and @ give the equations

(PHP + PVQ) i} = E;P|1) (13)
and
(QVP + QHQ) ) = EiQ). (14)
Eq. (14) can be solved to give the Q-space projection of |i) in terms of its P-space
projection,
Qlz) = go(E:)QV Pz}, (15)
where
ge(E) = EhQIIIQ+£n (16)

describes propagation in the @-space only. Using Eq. (15), the initial state can be
" expressed in terms of only its P-space projection,

[i) = Pli) + Ql) = (1 + 9o(E:)QV P) Pli). (17)
Furthermore, Eqs. (13) and (14) can be solved to give
(PhP + PVP + PVQgq(E:)QV P) Pli) = E;P|3). (18)



which is an effective Schrodinger equation for P|z).
A similar, but slightly more complicated, approach can be used with the A-body
propagator G(E). The propagator can be written as

G(E) = Go(E) + Go( E)VG(E)

_ Go{E) + G(E)VGo(E) (19)
with
‘GD(E) = -Et—h]—"m (20)

Projection of Eq. (19) on the right and left by P and Q yields a set of coupled
equations that can be solved to give

G(E) = (1 + go(E)QVP) PG(E)P (1 + PVQgq(E)) + go(E) (21)
where
PG(E)P = PGo(E)P + PGo(E)}P (PVP + PVQgq(E)QVP)} PGP. (22)

Using the expressions in Egs. (17) and (21), the Compton amplitude defined in Eq.
{(4) can be written as

e = (] (P.]:‘ff(—q, E:, E; +w)PG(E;: + w)PJ (g, E; +w, E)P
H(P + PV Qaq(EN)*(~a)ga(B: + w)(a)(P + 5o(B)QVP))li) (23)
where

PJ (g, B, E)P = (P + PVQgq(E"))J*(g)(P + go( E)QV F) (24)

is an effective current operator in the P-space. Note that Eq. (23) consists of two
terms. The first of these can be expressed entirely in terms of effective operators,
states and propagators in the P-space, while the second involves intermediate propa-
gation only in the Q-space and is not readily described in terms of effective P-space
operators.

At this stage, Eqs. (18), (22), (23) and (24) should be viewed as matrix equations
expressing the coupling of the various P, subspaces. The expressions can be simplified
considerably by assuming that each of three important pieces is diagonal in the P.’s:
the effective current operator of Eq. (24); the second term of Eq. (23}; and, finally,
the effective potential that appears in both the effective Schrédinger equation, Eq.



(18), and the equation for the projected propagator, Eq. (21). The forward Compton

amplitude then becomes

THE = Z(t! (PuJ:ff(_q'; E, E + w)PnG(Ei + u:)PaJ:‘”(q, E;+w, E,')Pa

o

P + PaVQo(E:)T*(~0)ga(Bi + 0)J*(g)(Pa + 90 (B)QV Pa) ) i)(25)

The projection of the propagator P,G(E)P, can be identified as the optical model
Green function for the a channel, and satisfies the equation '

P.G(E)FP, = G ,(E) = G5(E) + G5 (E)Vp E)Go(E) (26)
where
G5(E) = P,Go(E)F, (27)
and the optical potential is defined as
Vot(E) = PaV Pa + PaVQgo(E)QV Pa. (28)

Note that the eflective Schrédinger equation for the projected initial state, Eq. (18),
then becomes

(Puh Py + VE,(E:))} Pali) = EiPoli) (29)

where the optical potential is real below the @-space threshold.

It is evident from Eq. (25) that a consistent treatment of the Compton amplitude
requires a consistent construction of the optical potential, the effective current op-
erators and the contributions represented by the second term in Eq. (25). While
it may be possible to approximate the theoretical optical potential with some phe-
nomenological interaction, the other elements in the calculation of Eq. (25) are not
generally amenable to such treatment. However, the particular characteristics of -
the nonrelativistic charge operator allow for a reasonable set of approximations that
permits the calculation of a realistic estimate of 7%, and thus R, using only infor-
mation derived from phenomenological optical potentials. This involves corrections
to previous calculations®?333% based on the optical model that used the free charge
operator in place of the effective one and neglected the contributions represented by
the second term of Eq. (25). The approximations used below are similar to those
introduced earlier in the context of the orthogonality problem in DWIA calculations
of the (e, e'p) reaction.’ A more distantly related approach,®® imposes conditions on
the optical model propagator to obtain results which bear a superficial resemblence
to those presented below.



The one-body charge density operator can be written as

A L
p(a) = J%q) = Fi(d*) ) %[1 + r{jefans

= Zpi(Q)! (30)

where it has been assumed that the Dirac form factor of the neutron vanishes and
that any exchange current contributions to the charge density operator are of higher
order in v/c. The operator form of the continuity equation requires that

q-J(q) = [H,p(q)]- (31)

The current operator can be divided into a one-body contribution and a two-body
meson exchange contribution. That is,

I(q) = IW(q) + I)(g). (32)
If the hamiltonian is written as
H=T+YV (33)

where T is the kinetic energy, and V is the two-body interaction potential, then the
continuity equation for the free hamiltonian requires that

q-IM(q) = [T, p(q)}- (34)
This implies that
q-3%(g)=V,p(g)} =0 (35)

owing to the fact that the exchange current contributions to the three-vector current
are predominantly transverse. The only remaining contribution to {H, p] comes from
Eq. (34). The one-body current contains contributions from the convection and
magnetization currents. Since the magnetization current is totally transverse, the
only contribution which remains is that of the convection current. The commutator
can thus be written as

(H,p) = [T,p] = %m 2_eig)la’ + 29 pi
= ﬁ 2 ei()d’

= Eqp(q) (36)

where



= L (37)

and because the angle-average of the scalar product q- p; vanishes, terms involving it
have been neglected. This is an approximation that can easily be checked numerically
and was found to have a negligible affect on the calculations presented below.

The final, and most critical assumption, is that the charge density operator is
diagonal in the P, subspaces. That is

lp, Pa] =0 (38)
which implies that
lo, P] = [p,Q] = 0. (39)

These approximations can now be used to simplify the expression for T% given in
Eq. (25). Consider the relationship

p(q) [Pa + 9q(E)QV Po] = [Po + 9q(Ei + E,)QV Pu] p°(q); (40)
where
p*(£q) = Pap(£q)Pu. (41)
and Eq. (40) follows from Egs. (38) and (39), along with the results
p(9)9q(E:) = go(Ei + Eg)p(q) (42)
and
[Vip(g)] = 0. (43)

The first of these expressions, Eq. {42), is a consequence of Eqs. (16), (36), (38) and
(39), while the second, Eq. (43), follows immediately from Eq. (35). It can similarly
be shown that

[Pa + PaVQgo(E:)] p(—9) = #*(—q) {Fa + PaVQgo(E: + E,)] - (44)
Using Eq. (40)
pos (a0 Bi + wy Ei) = Fapess(q, Ei + w, Ei} P
= [P + PoVQgo(E; + w)]p(q) [Fa + 90(Ei)QV Pa)

= [Py + PaVQgo(Ei + w)] [Fa + 9o(E: + Eq)QV Fa] p(9)
= [Pa + PaVQgo(Ei + w)go(E: + E,)QV Fa] p*(q)- (45)

Using

10



1
w— E,

9o(Ei + w)go(Ei + Ey) = [90(Ei + w) — go(E: + Ey)| (46)
and using the definition of the optical potential in Eq. (28), Eq. (45) can be written

as
p% (a0, Bi + w, Ej) = [1 — T*(E; + w, E; + E,)] 0°(q) (47)

where
1

(B, F) = 3~

Ve EB) - Val(E)|. (48)

Similarly, using Eq. (44)
0% (—q, Bi, Ei + w) = p*(—q)[1 = T*(E; + w, E; + Ey)] . (49)
Using Eqs. (40) and (44), the second term contributing to T% in Eq. (25) can now

be rewritten as

[Pa + PaVQgq(E:)] p(—q)g0( Ei + w)o(q) [FPa + 9o(E:)QV Ful
= p*(~q)[FPa+ PaVQgo(E: + E,)) go(E: + w) [Pa + gq(Ei + E,)QV Fo]p%(q)
= p*(—q) [Pa + PaVQgo(E:i + Eo)gq(Ei + w)go(E: + Eg)QV Fa] p%(g)

= °(~) = [[*(B: + w, Eo + By) - Vi Ec + By)] °(a) (50)

where V,%(E) is the derivative of the optical potential with respect to energy and we
have used the identity

9q(E; + E,)gq(E; + w)go(E: + Ey)

= (w_lEq) [gQ(Ei+w)—go(E;+Eq)]— w—_lg;géa(EeJrEq) (51)

with g, (E) representing the derivative of the ¢J-space propagator with respect to the
energy.
The forward virtual Compton amplitude 7% can be written as

T% =3 (il P“(—Q){ll —T%(E; + w, B + B,)] Gopy(Ei + w) [1 - T*(Ei + w, Ei + E,)|

[+ 1

1

+w—Eq

[P°(B + 0, B+ E4) — Vil + )] o @) (52)

In order to establish a simple connection to the optical model in the above deriva-
tion, it was convenient to assume that all effective operators acting in the P space

11



were diagonal in the P, subspaces and that the single-nucleon charge operator also
had this property. As a result we have eliminated the dynamical coupling of P, sub-
spaces through either effective potentials or the charge operator. This implies that
we have not included long range correlations of the RPA type; we therefore have not
included collective excitations of the nucleus in the calculations of the forward virtual
Compton amplitude Too and thus in the longitudinal response Rr. Consequently, cal-
culations based on this model will not properly reproduce the longitudinal response
at low values of the three-momentum transfer where previous calculations have shown
the collective degrees of freedom to be important. Equation (52) is most applicable
to the determination of the effect of short range correlations on Ry at relatively large

momentum transfers.

B. Coulomb Sum Rule

A nonrelativistic calculation of the type approximated above can be shown to satisfy
the Coulomb sum rule'?

: Ri(q,w)
Hm 5 = ] dw————— = 7. 53
T oo o(9) alos Jo+ Fi{(q?) (53)

A reasonable constraint on any approximation to such a theory should be the re-
quirement that the Coulomb sum rule remain satisfied. It can be demonstrated that
the expression Eq. (52) leads to a longitudinal response function that satisfies this
constraint.

The first step in a proof of this result is to note that the opiical potential as defined
by Eq. (28) is hermitian analytic; that is

Val(E) = Va(E*), (54)

and the analytic structure of V3,( E) can also be deduced from that of the propagator
go(E)} appearing in Eq. (28). Thus, the optical potential must satisfy a dispersion
relation in the energy variable; since the imaginary part of the potential is asymptot-

442 51,38,42

ically constant?, a subtraction is necessary:

(E')
E)

The dispersion integral begins at o, the threshold energy for Q-space processes. This

coa!E'I Ve
Re V2,(E) = Re V2,(0) + 'Pf - (55)

dispersion relation can be used to deduce the asymptotic behavior of Re V3, (E),
which is evidently logarithmic. Given that the optical potential is changing at most
logarithmically at large energies, it is clear that the large E, behavior of I, as defined
by Eq. (48) is dominated by the factor (w — E;)~! and therefore

12



lim FG(E,' +w,E; + Eq) = 0. (56)

Eg—o0

Given this and the fact that V,%(E} must vary as E~! for large E,

lim

Eg—oo @) —

[I‘“E+wE+E) Ve (E; +E)]} (57)

The remaining contnbutmn to the Coulomb sum rule is then the same as in previous
optical model calculations of R;, as described in Refs. 32, 33 and 38. That is we have
demonstrated that

Jim S = = lim 2 [ o S mlile(-0)G5 B+ @) (59)
In this expression the only contnbut:on to the imaginary part of the matrix element is
from the discontinuity in the optical potential. Since the optical potential is hermitian
analytic, the optical model propagator can be expanded in a complete biorthogonal

set of scattering wave functions.

5 E)) (g5 N E)]

G (E
(E) = g E— Eg+in (59)
where
(PahPa+ VE(E)) [$57(E)) = Egly3 ™ (E)) (60)
and
(H5 N E)| (PahPa + V3, (E)) = (45" (E)|Es. (61)
Using this,
lim So = lim dw I (il (—a) 3 g E: + w))
laimoo 0 lal—w Jo+ F2(q?) 5 pATe 3 o '

x8(E; + w — Es)(«,b“‘*’w,- + w)]p%(q)]5)- (62)

The factor F; *(g?) cancels the form factors in the charge operator so that the only
remaining dependence on w is contained in the §-function and can be removed trivially
by the integral over w. The completeness relation for the scattering wave functions

z wg (BN (5 (B =1 (63)
can then be used to give
1
Jim_ S0 = D (ilPaz (14 7) Pali) = Z , (64)
qf—oco p

provided that the set of P, subspaces is chosen to approximately saturate the spectral
strength. This demonstrates that the approximation represented by Eq. (52) will
satisfy the Coulomb sum rule.

13



IIT. CALCULATIONS

The effect of the many-body correlations on the longitudinal response has been
evaluated within the context of the Fermi Gas Model, described in detail in many
standard texts.’* The use of such a simple model is advantageous, at this stage, since
it can readily be adopted for application to different nuclei and offers an opportunity
to test extensively various features of the formalism, such as the saturation of the
Coulomb sum rule and the degree to which other sum rules are satisfied. In this
section, the methods used to implement the formalism presented in the preceeding
section are described in detail. The numerical results and discussion of them are
reserved for the following section. The wave functions used in the Fermi Gas Mode!
are plane waves. This is because the model is characterized by the assumption that
the nuclear system is large with periodic boundary conditions imposed over some
normalization volume.

The final approximation made in evaluating the result presented in Eq. (52) is that
the optical potential for each channel is the same,

VaE) = Vil E), (65)

with V,, being the specific one-body optical potential associated with the initial
target nucleus. As a result of this assumption, Eq. (65), the factor I' defined in Eq.
(48) is also unchanged between different o channels,

FG(E,' + w, E,' + Eq) = P(E, + w,E{ + Eq) = [V,,pt(E, + w) et VQPE(E,' + Eq)] .

1
w— E,
(66)

In the numerical calculations, spin-independent phenomenologically determined po-
tentials are used. Since the system is infinite, the optical potential should have no
radial dependence; for the calculations, the central value of the potential was adopted.

Inserting complete sets of states into Eq. (52) and introducing the wave functions |
expliatly, allows the expression for the Compton amplitude to be written in terms
of a simple integral over occupied momentum states. The first term in Eq. (52) is
closely related to the Compton amplitude in the absence of correlations,

3Z

T = g FA) [ dk 8(ke = KDL = T(E: +w, E: + E,)|Gaps(k + @,k + g, Ei +w)
F

x[1 —T(E; + w, B; + Eg)|0(|k + q| — kr), (67)

Note that the usual expression for the longitudinal response function in the Fermi
Gas Model can be recovered by setting the optical potential to zero; this amounts
to replacing the optical model Green function with the unperturbed Green function,

14



Gy, and setting T' = 0. The second term in the Compton amplitude is related to a
density-density correlation function and is calculated in the same way. Within the
context of the Fermi Gas Model for a spin-independent optical potential, it takes the
form,

3Z

00 _
To) = s

F2(q?) [ dk 8(ks — IK)

1
w— E,

X IT(E; +w, B + E) - Vi (Ei + E)| 0(Ik + a] - kr). (68)
The evaluation of the longitudinal response thus becomes a matter of performing the
numerical integration of the integrals appearing in Eqs. (67) and (68):

1
RL(q,w) - —;T—Im(T(T) + T(%(]))- (69)

It is always judicious to exercise caution when considering a model that treats the
nucleus as an infinite system, since there are obvious limitations inherent in such an
approach. In the appendix, it is demonstrated that the contribution of the single
nucleon knockout channel to the response vanishes in the Fermi Gas Model. This
seems initially surprising but is merely a reflection of the impossibility of ejecting a
single nucleon from an infinite system with an absorptive potential.

Several comments are needed to make clear the way in which the phenomenological
optical potentials were handled. Parameterizations of the optical potential rely on
data determined from proton-nucleus and neutron-nucleus elastic scattering experi-
ments. Consequently, the parameterizations are valid only over a limited range of
energies for which the data have been determined reliably. It is desirable to have a
potential that can be used at larger energies for two reasons: first, experiments at the
largest momentum transfer values have provided data at reasonably large excitation
energies, often beyond the highest energy at which a parameterization is expected
to be reliable; second, it is important to understand the large momentum transfer
saturation of the Coulomb sum rule value in the presence of many-body correlation
effects.

A distinction need now be drawn between the “generalized optical potential” in-
troduced by Feshbach®! and the phenomenological optical potential that is deduced
from experimental data. The nonlocal generalized optical potential must satisfy the
dispersion relation, Eq. (55}, but there is no guarantee that the phenomenological
potential will do so because of the assumption of locality. The energy dependence of
the empirical potential arises from both nonlocal effects and the dispersive nature of
nuclear matter. At low energies, the construction of an optical potential depends on
an energy average because the presence of resonances is important.®1'4? At sufficiently
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high energies, the distinction between the two potentials disappears. The application
of the dispersion relation is, thus, justified only if the dispersion integral is dominated
by the high energy contribution. The analysis by Passatore!’ was carried out, in
part, to show that this is the case and that the dispersion relation can be used reli-
ably to extend the optical potential to larger energies. At the same time, a potential
was constructed semi-phenomenologically by fitting only the imaginary part of the
optical potential with data and calculating the real part directly from the dispersion
relation. Thus, this potential was adopted for the calculations of the many-body
longitudinal response function. As a potential constructed specifically to have the
correct analytic structure, it is particularly useful in studying the large momentum
transfer behavior of the response and the saturation to the Coulomb sum rule value.

In addition, a more realistic low energy potential constructed by fitting indepen-
dently the real and imaginary parts to experimental data, was considered. For this
purpose, the more recent parameterization of Schwandt et al*' was adopted. This
potential was fit with proton scattering data up to 180 MeV. The real part of the
potential was logarithmically parameterized and includes a small constant symmetry
energy term; the imaginary part was cubically parameterized. The real part thus be-
haves at larger energies in a manner consistent with expectations from the dispersion
relation, while the imaginary part does not. Simply extending the real part to arbi-
trarily large energy and invoking the dispersion relation demands that the asymptotic
value of the imaginary part be r times the coeflicient of the logarithm. In the case of
the Schwandt potential this asymptotic value is, then, —54 MeV, a value consistent
with the Passatore and other optical potential analyses. So, in using the Schwandt
potential, the real part was simply extended, but the imaginary part was artificially
bounded to be > —54 MeV.

In the figures presented below, a comparison is made between the present calculation
and a previous calculation!” to which allusions were made in the introduction. It
follows from using the projection scheme directly on the transition matrix element:

R (q,w) = 3 [(flo(q)i)*6( E: + w — Ey) (70)
f

with

(fle(a)ls) = 3 _(flPap(q)[l — T*(E: + w, E; + E,)| Fali). (71)
Evidently the calculation of this quantity both ignores the contributions of the final
state interaction between the ejected nucleon and the residual nucleus, and does
not treat as consistently the various pieces that enter into the expression of the full
response. That the present treatment is to be preferred, because all of the pieces of
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the calculation are treated equally, will be particularly evident from the discussion of
sum rules presented below. For comparison, the calculations of RE—_,") have been carried
out using the Schwandt parameterization of the optical potential.

To compare with the available experimental data, the fit to the nucleon form factor
produced by Hohler et al.’® was used. Substantial differences in the predicted response
functions can be produced with alternative choices of the form factor, but the use of
the Hohler fit provides a fair evaluation of the nonrelativistic response.

IV. RESULTS

The evaluation of Eq. (69) for the longitudinal response, Ry, has been carried
out with a Fermi momentum value of k7 = 268 MeV. While data are available for
several nuclei, the Fermi Gas Model calculations are largely insensitive to differences
between nuclei. The assumption of an infinite system eliminates the sensitivity to
any shell structure particularities. The Passatore parameterization of the optical po-
tential makes no distinction between nuclei and while the Schwandt parameterization
contains a symmetry energy term, it is small. There are no significant differences in
the resulting response functions of, for example, ¥°Ca, **Ca and (except for a scaling
of 26/20) *6Fe. It is thus prudent to focus on the calculations for *°*Ca which typify
the Fermi Gas Model calculations.

The excitation energy dependence of the response functions is displayed for a range
of momentum transfer values from 410 MeV to 550 MeV in Fig. (1). The results
of the full many-body calculations are shown by the solid and short-dashed lines,
corresponding to the use of the Schwandt and Passatore parameterizations of the
optical potential respectively. These are to be contrasted with the free Fermi Gas
Model calculations shown by the dotted lines and the R([:’) approximation of Eq. (70)
shown by the long dashed line. The effect of the many-body correlations is seen to
redistribute the strength. A significant contribution to the response functions is seen
at large energies. It is apparent that the results using the two parameterizations
are similar despite the significantly greater tendency for strength to be pushed up in
energy when the Schwandt potential is used. This is primarily a consequence of the
behavior of the imaginary part of the Schwandt potential; it is considerably deeper
in the energy range associated with the experimental results. As the momentum
transfer increases, one can see that the difference between the free and many-body
curves decreases: at 410 MeV, the peak height is reduced by about 35%, while at
550 MeV it is reduced by about 25%.

The role of the different pieces involved in the total many-body response function is
exhibited by Fig. (2), where only the Schwandt parameterization is studied. Again the
{ree Fermi Gas Model and R(;J results are shown by the dotted and long dashed lines
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for comparison. The results show systematically the effect of including different pieces:
the short dashed lines show only the role of the final state interactions determined
from the calculation when I' = 0. The tendency for the strength to be redistributed to
higher energies is partly a consequence of the imaginary part of the optical potential.
There is also a well-known tendency for the Fermi Gas Model response function to
spread as a result of the reactive real part of the potential. The second term in Eq.
(69) has very little influence; the contribution to the response from it is too small to
be seen in the figures. The solid line shows the final result, with all of the pieces of the
calculation included. The peak of the response function is only modestly decreased
by the final state interactions, and the predominant supression of the response is seen
to result from the role of the many-body correlations. The peak height supression
due to the final state interactions is typically about 5 to 10%. The difference between
the results of the preliminary calculation of RE’) and the present, fully-consistent
calculation is also significant.

The final figure, Fig. (3), is used to show the resulting sum rule values for the
full calculations as functions of the momentum transfer. In part (a), the integrated
response in the absence of form factors, Eq. (53), has been normalized to Z. The
saturation of the sum rule with increasing ¢ is seen to be retained. In part (b), the
response function has been integrated with the form factor to allow a comparison with
experiment. As anticipated, the influence of the many-body effects is greatest at low
momentum transfer values and slowly die as q is increased. A careful examination of
the figures will reveal some features that may at first appear peculiar. First, there is
an apparent cusp in the Schwandt potential results; this is an artifact of the arbitrary
floor imposed on its imaginary part. Notice that this occurs only near the greatest
momentum transfer values tested experimentally and that the general trend is still
manifest. Second, the results using the Passatore potential appear to be converging to
a CSR value slightly less than Z; this is because the imaginary part of the Passatore
potential more slowly reaches its asymptotic value, achieving it only well above 1 GeV.

In part {c) of Fig. (3) a further test of the consistency of the technique is carried out.
The energy-weighted sum rule is a construction that depends on the completeness of
the set of excited states reached by the density operator acting on the ground state,
subject to the approximations made in the evaluation of the response:

s f°° JAew) | ¢
il F¥q?) 2m

2

(72)

The energy-weighted sum rule has been normalized by {g*/2m)Z for display in the
figure. The present calculations are much more satisfactory than those which follow
from Eq. {70) since they can only describe the suppression of the response at lower
energy without clearly showing how it must be redistributed and reappear at larger
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energy. The deviations of the present calculations from the sum rule value are less
than 5% and are greater when the Schwandt potential is used. This should be viewed
together with the findings of Horikawa et al.® which indicated that sum rule violations
up to 10% could be expected when using phenomenological potentials. That the
Passatore potential was constructed on the basis of its theoretical analytic structure
is the reason why it does so much better. Again, a careful examination of the figure
will reveal a subtlety. The energy-weighted sum rule value of the results using the
Passatore potential dips slightly at low momentum transfer values. This can be
attributed to the fact that the potential was constructed with the dispersion relation
and high energy behavior in mind. Consequently, the imaginary part of the Passatore
potential does not vanish at w = 0 and a small fraction of the low energy strength is
lost.

That the sum rules remain satisfied by this calculation means that the effect of the
many-body correlations is to redistribute the energy-weighted strength in a way that
reduces the total non-energy-weighted integrated response. It has been suggested by
Noble®® that such a mechanism is inconsistent with existing experimental data. His
argument is based on the relationship between the Coulomb and energy-weighted sum
rules, defined in Eqs. (53) and (72). Since the effect of correlations is to push the
strength to higher energies it is frequently argued that reductions in the quasielastic
region should be accompanied by a corresponding increase at energies larger than
have been measured. Noble has used the fact that this mechanism will affect the ratio
S1/S5 to determine from experiment the effective energy at which missing strength

o [(1 0(2) -(2) ], (73)

where y is the fraction of the non-energy-weighted strength that is missing. Simple

should reappear:

calculations then reveal that w,sy lies in the experimental region. Data were available
for Noble to perform his calculations at momentum transfer values < 410 MeV; using
recent data at larger values of the momentum transfer, the effective energy is larger
(relative to g?/2m) but still within the experimental region. This observation has
been partly confirmed by these calculations which show the redistributed strength
still to lie mainly within the experimental region although there are some long high-
energy tails that would be difficult to measure. It should be emphasized, however,
that the reductions in the integrated response are significant and that the discrepancy
from experiment is reduced by the inclusion of correlations. Furthermore, it is now
well known that the overall shape of the data is not as narrowly peaked as suggested
by simple theories and that a simple scaling of the theoretical curves is not sufficient;
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the correlation effects appear necessary to broaden the response functions so that the
shape is more in line with experiment.
A very recent study®? has concerned itself with the inverse energy-weighted moment,

RL q1
fdw T (74)

which is proportional to the nuclear polarizability. The authors of that analysis have
performed a constrained Thomas-Fermi calculation and found the calculated polariz-
abilities to be in good agreement with the values determined from the experimental
response functions. They have, thus, cautioned that mechanisms invoked to explain
the quenching of the longitudinal response and CSR should not severely affect the po-
larizability. In the case of the noninteracting Fermi Gas Model, the polarizability can
be computed analytically and is consistently greater than the experimental results by
factors of 1.5 to 2.0. The effect of the present calculations on the polarizability is to
decrease it at low momentum transfer and have it increase steadily with ¢, reaching
the free value near 500 MeV and continuing to increase beyond. The agreement with
experiment is not significantly better or worse than achieved with the free Fermi Gas
Model. In any case, the technique presented here is not particularly well-suited to
reproduce the low energy part of the response to which the polarizability is most
sensitive. That the agreement with the inverse energy-weighted moment is not sig-
nificantly improved by this method of including many-body correlations should not

be viewed as a serious flaw.

V. SUMMARY AND CONCLUSIONS

The effects of many-body correlations on the longitudinal response in the quasielas-
tic (e, e') reaction have been studied. Using standard projection techniques, an ap-
proximation to the longitudinal response function, including many-body correlations
and final state interactions in a consistent way, has been derived. The technique"
relates full A-body states, through an optical potential, to the projection of those
states on a subspace spanned by a finite set of excitations of an (A—1}-body system.
The principal result of the paper is summarized by Eq. (52).

A numerical study of the contributions from different effects has been carried out
within the Fermi Gas Model, using phenomenological parameterizations of the opti-
cal potential. The role of the correlations is significant. The integrated longitudinal
response is suppressed by about 30% at a momentum transfer of 330 MeV. The
suppression decreases steadily with g, reaching about 15% at 550 MeV, the largest
momentum transfer studied experimentally. This trend is in line with both physical
intuition and the general formalism: it has been shown that the effect of the correla-
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tions must vanish asymptotically if the optical potential is hermitian analytic. This
is borne out by the numerical calculations, which heal above 1 GeV.

The effect of the correlations can be characterized in terms of the energy-weighted
sum rule, which demands that the energy-weighted integral of the response, at a
fixed momentum transfer value, not vary as a consequence of their inclusion. This
sum rule has been tested numerically and is satisfied to the level of the approximations
made, about 5%. To simultaneously reduce the non-energy-weighted strength and still
satisfy this sum rule, the strength is redistributed to higher excitation; substantial
contributions appear in long high-energy tails that would be difficult to measure.

The choice of optical potential is important. Two parameterizations have been
compared, one determined entirely from phenomenology (Schwandt4!} and the other
(Passatore??) determined semi-phenomenologically with a dispersion relation. While
the qualitative features of the results using each of them are similar, their particular
characteristics manifest themselves in the resulting response functions. For example,
the Schwandt potential was fit only up to 180 MeV; the asymptotic behavior can be
deduced from the dispersion relation, but there is an influential region in the extension
above 180 MeV that has a deep imaginary part. This tends to push more strength
to high energy than the other parameterization. By contrast, since the Passatore
potential was fit only to the imaginary part, it is not as reliable in the energy region
accessible experimentally.

In conclusion, it should be emphasized again that many-body correlation effects
make substantial reductions in the longitudinal response, but not sufficiently to ac-
count for the discrepancy with experiment. A natural extension of this work would
be to perform a microscopic finite nucleus calculation. This would overcome any
ambiguity associated with the properties of infinite nuclear matter. The fact that
the present results still overestimate the response suggests that other mechanisms are
also important and that the full explanation of the problem is likely a combination
of effects.
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APPENDIX

It is worthwhile emphasizing that the Fermi Gas Model is inherently limited as
a model of the nucleus, and that one must be cautious in interpreting results of
calculations using it. An example of this is proved in this appendix: the Fermi
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Gas Model predicts that the contribution to the response from the single nucleon
knockout channel is zero. This is surprising, especially since the free Fermi Gas Model
calculations were predicated on single nucleon knockout. To see that this is the case,
consider operator discontinuities, defined to be the difference between operators and
their hermitian adjoints, AA = A4 — Af,

Ry = o= S (IATON). (75)

T

[= 4

In this expression, T'% is the operator sandwiched between states in Eq. (52). After
noting that the one-body current operator is hermitian, the term that need be con-
sidered is the discontinuity of the optical model Green function, deduced from the
second resolvent identity, Eq. (19),

AGopt = (1 + ViptGopt )M AGo(1 + Vot Gopt) + Gt AVt Giope.- (76)

It is the first term in this expression that contributes to the single nucleon knockout
channel. The second term, as well as other contributions to AT, involve the discon-
tinuity of the optical potential. This is just twice the imaginary part of the optical
potential and contains information about all channels other than the single nucleon
knockout channel. The discontinuity of the free propagator is simple,

1 1

Al = Eg—i—w—h—{—in_E;—}—w—h—in

= —2mi8(E; + w — h). (77)

The operator (1 + VopGope) is the Moller operator and distorts plane waves. In the
Fermi Gas Model, however, the states must be plane waves and only the wave number
can be shifted. Writing the Moller operator as

Gal E,--{—w—h

— 78
Go' = Voo Eitw—h— Vo (78)

1 + VoptGo'pt -

makes this more clear. In the Fermi Gas Model, the only contribution to the single
nucleon knockout channel thus comes from terms proportional to

t
E+w-— Ey

8(E; - F =0, 79

(Eitw k) Ei+w— FEx — Vope (79)

E;+w— Ey
Ei+w_Ek_Vopf

and so the tofal contribution to the response comes from other channels. This is a
reflection of the impossibility of ejecting a single nucleon from an infinite system with

an absorptive potential.
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FIG. 1. The longitudinal response function, Ry, for 40 g at momentum transfer values
g = 410 MeV, 450 MeV, 500 MeV and 550 MeV is displayed in units of MeV 1. The dotted
(veeerenns ) curves represent the free Fermi gas calculation results and the long dashed (— —
—) curves display the effects of the many-body correlations in the previous approximation of
Eq. (70), RE’). The short dashed (-~ - - - - ) curves show the effect of many-body correlations
when the Passatore (dispersion relation) potential*? is used and the solid (——) curves
correspond to the same calculations using the Schwandt potential?l. The experimental data
are taken from Ref.5 and have units MeV 1.

FIG. 2. A comparison of the role of different effects in the many-body calculation using
the Schwandt potential®! is shown for the typical case of “°Ca. The dotted CRERTTEPS }
curves correspond to the free Fermi Gas Model results; the short dashed (-~ - - - - ) curves
show the effect of final state interactions (I' = 0); the long dashed (— — —) curves show
many-body correlation effects in the previous approximation of Eq. (70), RE’), and the solid

(—————) curves show the results of the full calculation. The effects of the density-density
correlation term, T(T; are too small to be shown at this scale. The experimental data are

taken from Ref.’ and have units MeV 1.

FIG. 3. The saturation of the Coulomb sum rule (CSR) and the energy-weighted sum
rule are examined for the case of *°Ca. In part {a), the form factor has been divided out
and the integrated response function has been normalized by Z(= 20). In part (b), the
form factor has been retained for comparison with the experimental data. In the last part,
part (c), the energy-weighted sum rule (EWSR) has been tested by evaluating the integral
of the energy-weighted response without the form factor and normalized to the sum rule
value, g°/2m. The data are taken from Ref.%; in the case of parts (a) and (¢), the deForest
prescription has been used to remove form factor effects from the data.??
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