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ABSTRACT

It has recently been shown that hadrons containing a single heavy quark exhibit a
new flavor-spin symmetry of QCD, and that this symmetry leads to relations between
operator matrix elements involving such hadrons. On examining mechanisms which might
break the symmetry at large recoil, I conclude that these relations are probably valid over
the full kinematic ranges available in transitions involving 8 — ¢, b — 3, b — u, ¢ — s,
and ¢ — d currents.
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I. INTRODUCTION

The properties of hadrons containing a single heavy quark Q (mg >» Agcp) along
with light degrees of freedom are constrained by symmetries which are not manifest in
QCD V). The first of these is a flavor symmetry which arises from the fact that the long
wavelength properties of the light degrees of freedom in such a hadron become independent
of mg for mg > Agcp. Thus, for example, the light degrees of freedom of a B and D
meson can be related by an (approximate} b « ¢ SU(2) symmetry even though m, and
m, are very different (i.e., my — m. > Apcp). The second symmetry pointed out in
Refs. 1 is a related spacetime symmetry which arises in QCD because the spin of a heavy
quark decouples from the gluon field?). This makes Sg, the heavy quark spin operator,
the generator of another SU(2) group of symmetries of the light degrees of freedom of a
meson containing a single heavy quark. Thus, for example, the light degrees of freedom in
the B and B" mesons are in (approximately) the same state since the spin orientation of
the b-quark does not affect their dynamics. These symmetries are manifest in an effective
theory where the heavy quark acts, in its hadron’s rest frame, like a spatially static tripiet
source of colour field??). In the effective theory the heavy quark’s couplings to the gluon
degrees of freedom are independent of its mass and described by a Wilson line®’.

The consequences of these symmetries for the weak decays of B and D mesons were
worked out in Refs. 1, The existence of conservation laws associated with the symmetries
allows one to make absolutely normalized predictions for all b — ¢ weak transition form
factors between ground state pseudoscalar (P) and vector (V) mesons at “zero recoil”
{where, in the rest frame of the initial hadron, the final hadron is at rest). The symmetries
also give relations between all six of the P — P and P — V weak form factors. In
addition, the flavor symmetry relates, for example, B — X, and D — X, weak transition
form factors (X, and X, are particular light hadron final states related by isospin which
occur due to the b — uv and ¢ — d weak transitions). These latter relations may be crucial
in the reliable extraction of the Cabibbo-Kobayashi-Maskawat! matrix element V,; from
experimental cata.

In the first of Refs. 1 these symmetries were applied for static quarks where the
Q. — Q; symmetry simply substituted one static heavy quark for another®. The second
of Refs. 1 exploited a powerful extension of this method which makes use of the fact that
(in the effective theory) when Q; at velocity ¢ is replaced by Q; at ¥ ', the amplitude for
the light degrees of freedom to make any associated transition is independent of m; and m,
if they are sufficiently large: the light degrees of freedom interact only with the (moving)
color fields of }; and Q; which depend only on the Lorentz boosts required of the (mass-
independent) rest frame color fields. In the effective theory the mass of the heavy quark is
taken to infinity in such a way that pg/mq is held fixed, but the four-momentum of the
light degrees of freedom are neglected compared with mg. In this limit the interactions of
the gluons with the heavy quark don’t alter its straight worldline and are independent of
its mass and spin. The interactions of the heavy quark do depend on the heavy quark’s
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four-velocity v#. The resulting symmetries are as a result somewhat unusual in that they
relate states of equal velocity but different mass, and therefore different momentum.
For example, in matrix elements of

Vf,' = Qj‘ny;' (la)
Al = QvsQ (18)

(the weak Q; — Q; currents in the effective theory), changes in the heavy quark velocity
and spin occur only due to the actions of the currents. In a typical such transition,
H{t =0) — H;(v') (where H, is the hadron containing the single heavy quark Q,) the
form factors will therefore be determined by the product of the amplitude for the heavy
quarks to make the transition Q;(v = 0) — Q;(7 ') and for the light quarks to be “excited”
by the transition from the hadron H; at rest into the hadron H; moving with velocity ¢ '
To apply these symmetries we must know the relationship between the weak currents in
the complete theory

VY = Q;7.Q: (2a)

Al = @iy Qi (2b)
and those in Eqn. 1 of the effective theory. This relationship has the form (for J, = V, or
A,,andJ, =V, or A,) - ‘

JJ=CpI + ... (3)
where the ellipses denote other possible Lorentz structures which are suppressed by factors

of a,(mgq)/m as well as higher dimension operators whose physical effects are suppressed
by powers of Agcp/mg. In the leading logarithmic approximation®”’

Ci [a,m)] [a,(u) @
with 6
1=~ 3N, (5)

(where in the b — ¢ transition, for example, the number of flavors Ny = 4 for the region

between m;, and m.) and

8v'-vr(v-v) -1
33 - 2N

ap = (6)
in which
r(v'-v) = -———-———1—871 (v'-v+ (v'-v)z—l) (7)
(v v) —1
(where in  — ¢, Ny = 3 for the region below m.). Note that the factor C;; depends on
the dot product of the four-velocity v, of Q, with the four-velocity v}, of Q;. This velocity-
dependent contribution (which was missed in Refs. 1) was calculated in Ref. 7. Forv' = v
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(t.e., v' - v = 1) the currents are not renormalized in the eflective theory (r(1) = 1) and

their matrix elements are independent of the subtraction point u. This occurs because the
three quantities Q¢ = fd’:Q,Tf.'Q:‘ are generators of the SU(2) flavor symmetry in the
effective theory, and so the matrix elements of Q¢ are physical quantities.

The heavy quark symmetry also relates matrix elements of ; — ¢ and Q; — ¢
operators, where g is, for example, a light quark. In this case the weak currents in the
effective theory,

V., =3§7.Q; (8a)
A, =4771sQ: (8b)

are related to those of the complete theory by

Jo=C{u)J, + ... L ()
where as
Clp) = %] . (10)

(I there are flavour thresholds between m; and u, then C(u) must be modified to take
into account the fact that Ny is not constant.) The value of the resulting relations in
the model-independent determination of V,; was shown in the first of Refs. 1; details are
supplied in Ref. 8.

In addition to Ref. 7 there have been several other recent improvements on the work
of Refs. 1. In Ref. 9 a power counting argument was given to prove (in a particular
case) that, to all orders in perturbation theory, matrix elements in the complete theory
factorize into a coefficient function (i.e., C;;) times a matrix element in the eflective theory
where the heavy quark couples as a Wilson line. Also, in Ref. 10 (see also Ref. 7), it was
shown how the effective theory can be written as a Lorentz invariant field theory with a
superselection rule for the velocity of the heavy quark. Ref. 7 and independently Ref. 11
showed how to derive the results of Refs. 1 in a much simpler way.

It is clear from their derivations that the heavy quark symmetry relations are valid
in the region near zero recoil. However, violation of the heavy quark flavor and spin
symmetries arising from the fact that m; and m; are finite will, among other things, perturb
the light degrees of freedom away from their limiting state. Since an H; — H; transition
at high recoil becomes sensitive to small components in the hadronic wavefunction, it is to
be expected that the symmetry relations will eventually fail. Ref. 1 gave some qualitative
estimates of the range of validity of such relations, based on the momentum scales at which
the states of the light degrees of freecom in H; and H; would differ from their limiting
state. In this paper | examine this limitation on the range of validity of the heavy quark
symmetry relations more carefully.



II. Q;: — @, TRANSITIONS

The heavy quark symmetry relates the six form factors in P; — P; and P, — V)
weak vector and axial vector transitions to a single universal function £(¢) with £(0) = 1.
These form factors are in principle ali measurable in B — D and B — D* transitions, so
these predictions are of some interest. The predictions arise in part from relations between
P; — F;, P, — P;, and P; — P; which depend only on the Q; — Q; flavor symmetry and
partly from relations between P, — P; and P, — V; which depend on the heavy quark
spin symmetry of @;.

a. a heuristic argument

We begin our consideration of transitions induced by Q; — Q; operators with a simple
heuristic argument which contains some of the physics of the more elaborate discussions
which follow. ' ‘

In an H; — H, transition, one can by Lorentz invariance view any operator matrix
element in the frame H;(—tv7) — H,(+vT1). This frame would correspond to the Breit
frame in the case m; = m,. In the general case the usual hadronic momentum transfer
t = (pi — p,)* is given by (we approximate my, ~ m, my, =~ m;)

t=tm——4‘y§~v§~m,‘mj, (11}

where t, = (m; — m;)? is the maximum four-momentum transfer. However, if the light
degrees of freedom of these hadrons have an “effective mass” m, ~ Agcp, then this frame
is their Breit frame and they experience a momentum transfer

Q¢ = ~2myyrir (12)
with
~te = Q% = 4y2vim? . (126}
We note that .
m
P= —(tm — 1) (13)
mim;

is much smaller than t,, —t. In the rest frame of the heavy quark hadrons such a momentum
transfer corresponds to a momentum spread in the direction of v7 of Apr ~ ﬁ(tm —-1)
in either the initiel or final heavy hadron. One would as a result naively expect the heavy
quark relations to hold so long as

tm—f m_,-

’
4m,-mj my

beyond which point Apr ~ m;, the quark Q; is no longer approximately static in its rest
frame, and structure in H; on the scale m;-'1 will be revealed. We will see below that this
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requirement is too strict, but even it suggests that the heavy quark relations of Refs. 1
will be valid over the full B — D and B — D* Dalitz plots.

b. a valence parton model

With these arguments to guide us, we begin our examination of the H; — H, transi-
tion in a frame boosted to “infinite” velocity v along an axis z transverse to the velocities
For in the Breit-like frame introduced earlier where H;(~¥r) — H;(+7r). In such a
frame, the initial and final four-momenta are

P:‘ = (7mirs_mirt—;T!7miTv) (140')

P;‘ = (YMjp, +mjp VT, YM ;1 V) (145)

where v = (1 — v¥)~1 and my, = my(l — 5'7?)'13' is the “transverse mass” of H;. Since
in general m; # mj, in this frame the transition can involve an “infinite” momentum
change, but from the perspective of the heavy quark symmetries this is irrelevant: the large
momentum difference p, — p; is due to the mass difference between the heavy quarks Q,
and @Q;, while the light degrees of freedom whose symmetries interest us are experiencing
finite momentum transfers independent of the m,; that are proportional to ypvr. This
observation, incidentally, suggests that the scaled momentum fraction v = Tz will be a
more useful variable for this problem than the usual Bjorken scaling variable z.

In this section we consider a parton model in which H, is dominated by its valence
quark structure: Q; and a light antiquark (taken to be d for concreteness). Then

2m,my drd’pr

v, | Jmi-o

|H(Py)) = ¢!'(z, F)IQT((1 — )Py, —pri 8)d*(zPi, p1i 3)) (15)

where with

S [ dzdprlottie ) =1, (16)
[l

and quark states normalized to {¢*'(F',s')iq¢” (P, s)) = 6;,,,,6,,,%6%;3" — p), H; 1s conven-
tionally normalized to 2E&*(P ' — P). In Eqn. (15), s and § are spins, a is a color index
for N, colors, the ¢! are functions which couple the spins and momenta to the quantum
numbers of the hadron H, and z is the longitudinal momentum fraction along P;. In this
naive model, the state of the light degrees of freedom in H; can depend on @, only through
¢i: the constituent antiquark is assumed to be structureless.

In the framework of this model, which is very similar to models considered in Refs.

(12) in connection with the pion form factor, one can easily show that the universal function
£(t) of Rel. 1 is given by

£(01) = / dud?pr® (s Fr + u01)* Boo(u, Fr), (17)
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where @, is exactly the “heuristic” momentum transfer to the light degrees of freedom
defined in Eqn. (12) (which is related to ¢ by Eqn. (13)), and &, is a universal limiting
wavefunction defined by

®oo(u,pr) = lim &i(u,pr) (18a)
where . . -
7. =y = .__£ 24 __."'____ =
bilu,pr) = () e wPr) - (186)

The function $o expresses the fact that as m; — oo, the ¢; differ only by a kinematic
shift of the momentum fraction of the light degrees of freedom to smaller z and a trivial
normalization factor induced by Eqn. (16). {We have suppressed the spin indices of . in
(18) as well as in (17), where they are implicitly summed). It should be noted that similar
formulas can be derived in other frames, but that such formulas will typically involve
additional kinematic factors. Such alternative formulas are as a result especially sensitive
to (15) being a solution of the equations of motion of the theory (see Ref. 12}.

We now investigate the possible breakdown of the universality of £(Q3?) from viola-
tions of the heavy quark symmetry in terms of this simple model. There are two basic
ways in which the state of the light degrees of freedom represented by the d quark in
Eqn. (15) differs from the limiting case m; — oo: 1) the r.m.s. transverse momentum
in ¢; will depend on m,, approaching a constant value of order Agcp as m; — o0, and
2) interactions between the d and Q; with a range m ! will induce a high pr tail to &,
with a strength which vanishes as m; — oco. (By rotational invariance analogous changes
are to be expected in the z distribution: see below). The simplest example of the first
effect is the perturbation about m; — oo from the heavy quark kinetic energy; in a non-
relativistic bound state problem this effect can all be absorbed into the two body reduced
mass. The prototype of the second effect is the distortion of the state of the light degrees
of freedom produced by short-range color magnetic effects. The pre-eminent such effect
in low energy hadron phenomenology is the Fermi-Breit spin-spin interaction which arises
from color magnetic fields of range m[ ! about the position of the heavy quark Q;. At
higher energies this interaction becomes the transverse hard scattering process which is
eventually supposed to lead to an asymptotic power law behaviour of the form factors.’®

We now estimate the sizes of these two effects. We begin by_noting that if ti.),‘ behaves
like (a;pr)~" for large pr, where a; — a5 as m; — co, then %% = -'-f_-f—q is independent
of pr and of order 9—?—::—". This suggests that a parametric change of the r.m.s. pr with

m,; may not lead to a failure of the approximate equality of the é: at large pr. (We
will see below that a much less demanding condition is actually required to guarantee the
symmetry of form factors.) The existence of short-range interactions of scale m; can be
expected to produce a small long-range tail to ¢:

cD

66: ~ au(mepr) 222 s (pr /) (19)
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for pr > Aqcp, where x is a normalized pr wavefunction with y(p) — 0 for p>» 1. In
contrast to the “reduced mass effect”, this effect could, at sufficiently high pr, make ¢,

very different from &, : %i;t will be of order unity when dpr) 0 (a,A—‘?ﬂ) . We

#(0) m,
now examine the effects of these two kinds of distortions of ¢ as given in Eqn. (17) more
quantitatively by defining

£:(Q7) = '/‘dudZPTéj(“aiT + uQ¢) i(u, pr) (20)

where qE_,- and d->,- differ from $,, by the subasymptotic effects noted above. For orientation,
consider an example where the pr dependence is integrable:

- 1 2 2
8., Fr) = Uifu) Zms-ePH /2 “ (21)

i.e., where ¢, is the product of separately normalized functions of v and §r. Then

Q) = 552 [ duli;u)Uiuev 91453 (22)

where 8%, = (8% +3?). If the heavy quark mesons were non-relativistic objects, m, would
be my and the U’s would be sharply peaked around u = 1 giving

BiB; ms(t'm —t)
= O cap( - Tallm = 1)
8% 4B2mim,;

&7 (1) ) (23)

as in the first of Refs. 14. In real heavy quark mesons we expect the U’s to be functions
which have most of their strength in the neighborhood of v = 1, but which have a natural
width Au ~ 1 corresponding to the fact that light quarks have only one scale, Agcp,
determining their momentum distribution. For example, if

1
Ur = y/2aiu exp(w—z—aiuz), (24q)

BB, {“3:' N m(tm — t) }_1

2 2 T
ﬂij a;a; 4;@,-141‘-(:!,,m,mJ
2 _

where af; = La? + a?). This exarnple illustrates a feature which is quite general: for large
(tm—t), £;i(t) will be dominated by the endpoint region u =~ 0, and the sharp nonrelativistic
drop of the form factor with t,, — ¢ seen in Eqn. (23) will be softened. Eqns. (24) illustrate
the remark made earlier on the lack of impact of the parametric dependence of the r.m.s.
pr values (here characterized by the 3’s and a’s) on the symmetry of the form factors. It

then one has

£i(t) = (24b)
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shows that even a Gaussian pr dependence (which falls faster than our earlier polynomial
example and would eventually lead to §¢/P > 1 at high pT) leads to a soft dependence

of the form factors on the 3’s and a’s: in the example _EL ~ 0 % ) for all values of t. We
also note that Eqn. (24b) gives £;i(tmax) = 1+0( ) as demanded by the Ademollo-Gatto

theorem !3). Examination of models for ¢(u, p7) (mcludmg ones which don’t factorize and
ones with othcr functional forms for the pr and u dependence) leads one to the conclusion
that this qualitative behaviour is quite general.

Let us next consider the effect on £;i(t) of a high pr tail Like that of Eqn. (19). We
begin with an extension of the above example, adding a function corresponding to the
right hand side of Eqn. (19) to the pr wavefunction in (21). With

- _ H « A cD 1 il 2
Su(u,pr) = U ,/_B e—PT/287 __’;Q;__me ph/am} , (25a)

if U(u) = v2au ezp(—ja®u?) we obtain

1 a,Aocp8 1
£i(1) = = T O . 2 oo | (256)
1+ 4al33m,m, J 1+ a’msm

where one can ignore the effect of the tail of #., which will be smaller since m, > m,. It
is easy to see that in this model the leading term in {25a), which is of course the function
?

£(t) of Eqn. (17), is dominant for all ¢: for —t“%<—‘5‘ it is very dominant, while for larger

values of t,,, —t it is weakly dominant by a power of o,(Q?). This is the condition originally
quoted in Ref. 1.

In drawing this last conclusion we have ignored the low u analogue of the high pr tail
in the longitudinal wavefunction U/(u). This is consistent because the high pr tail does not

2
? corresponding to fﬁ-‘i‘;—‘% ~ O(Ei;). Of course by rotational

invariance one could in principle also discuss the above restrictions in terms of the normal
pr wavefunction being affected by the low u tail.

Within the context of such a model, this qualitative conclusion on the lack of impact
of the high pr tails is quite general. Eqn. (23) is dominated by small u for large Q3/3%,
£(t} in this region will depend only. on the small u behaviour of U, and if U(u) ~ u?/?,

£;i(t) ~ [‘B "‘:&](P“)n. On the other hand, for Q7/4m? small, the high pr tail of %,

m (t..,—t)

“need” u — 0 until Q2 ~ m

G.ch‘pﬁ(l - m:(tm—t)

—2 Y I (u?}), where (u?) is the mean square value

will give a contribution

of win U, i.e., a number of order unity. Thus the region in which £;; >~ £ is for p > 1 the

region
2 2/(p+1)
4mjm, a,(Q3)m; '
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The case p = 1 is special since in that case §;; ~ £ for all . However, that case is also
special because, as explained in Refs. (12), it is favored by measurements of the pion
structure function.

Following Ref. 12, one can also consider many variants on models for the wave-
functions (nonfactorizing wavefunctions, alternative functions of pr, including L, # 0
components, etc.) On doing so one will find no departures from the basic conclusion that,
at least in the simple valence parton model picture of this section, the form factors £;,(¢)
can be expected to respect the heavy quark symmetry so long as a restriction comparable
to Eqn. (26) is satisfied. This restriction is similar to the one obtained in Section IIA,
but we now see that the simple argument given there was somewhat misleading. The end-
point contributions to form factors always have pr ~ Agcp, so they never ruin the heavy
quark approximations: the real restriction on ¢, — t arises from demanding that the soft
contributions dominate over hard contributions controlled by the heavy quark scale.

The models we have just discussed for the high pr tail are based on Eqn. (19), which
was in turn suggested by general arguments on the decoupling of the heavy quark’s spin
from the light degrees of freedom 2'3). It is consistent with phenomenological models of
hadron structure in which deviations from the heavy quark symmetry would arise from
quark hyperfine interactions. However, we can also discuss such eflects in terms of the
asymptotic behaviour of the form factors predicted in perturbative QCD !*). Even if
one were to accept the argument that these asymptotic predictions are not applicable at
available momentum transfers !2), perturbative QCD at least offers an alternative to the
endpoint model for the physics controlling the large recoil behaviour of the form factors
of interest here. In this model, the large recoil which the current imparts in the Q; — @Q,
transition is transferred to the light “spectator” degrees of freedom by hard (transverse)
gluon exchange. Since each such exchange costs a power of a, and a power of Q72, the
asymptotic behaviour is controlled by the valence sector of Fock space. In our case it will
be given by the transition Q,d — @;d (where now d is not a mnemonic for light degrees
of freedom with d quantum numbers, but rather the d current quark). The contributions
6 f+ of these processes to the P; — P; form factors fi can be shown to have the form

2 ™m
§f+lpqep “'ﬂiﬂg#d@-f), (27)

J 1

m?

where 7+ are constants of order unity and ((Q?) ~ -Q—J,— for Q2 > mZ, in contrast to the
=y

predictions V)

_ ‘a.(m,-) - s=tw m
fo = £ =100 Q1) o (280)
fotfo= [3——(‘};‘:-%1 G ¢(@1), (288)

of heavy quark symmetry. In terms of our previous more general language, we can say
that the form factor £ in Eqn. (28a) receives a high pr correction of order 218 while the
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£ in Eqn. (28b) receives a correction of order 5‘"3"-(,'. This is consistent with the general
framework introduccd above to discuss such effects (compare to Eqn. (19)). Ii p =1 so
that £ ~ —i- as does (, then §;; >~ £ at all recoils. The more general conclusion analogous
to Eqn. (26) is that for p > 1, £;; ~ £ so long as

e )ﬁ_‘ (29)

4mgm_,' T Na,my

which is comparable to (26) and still leads comfortably to the conclusion that the heavy
quark symmetries will apply throughout the B — D and B — D* Dalitz plots even if

p#l

c. conclusions on Q; — @Q; transitions

The light degrees of freedom of a heavy quark hadron H; are much more complicated
than they are represented to be by the simple valence parton model we have just discussed.
Nevertheless, at low momentum transfers, where the state vector could be constructed
of the effective degrees of freedom of QCD cut off at some low scale g ~ 1 GeV, the
valence model has phenomenological justification from the quark model. With a different
interpretation, the model also has some justification at large Q? where we have actually
used it! The reason is that one expects these form factors to be dominated by the simplest,
i.e. valence, sectors of a Fock space expansion of the states involved since there is a large
penalty to be paid for each extra constituent which must be given a large momentum
transfer. In the case of endpoint dominance emphasized here, this penalty is that one
must find each of the “spectators” at small # so that essentially the full momentum transfer
can be delivered by the current.’?!*) In the study of exclusive processes in perturbative
QCD ¥, higher components of Fock space are suppressed by the quark counting rule
powers of Q-2 (and by powers of a,(Q?)). Thus, if we view the valence calculations
considered above as the leading term in an expansion of the high Q2 behaviour of the form
factors (and appropriately renormalize the probability of this component of Fock space)
they can be justified at high QZ.

I conclude that Eqn. (26) is a reasonable guide to the range of validity of the heavy
quark symmetry relations. Since for B — D and B — D" transitions the left hand side of
Egn. (26) is ~ %, it therefore seems likely that thé @Q; — @Q; relations deduced in Refs. 1
are valid over the full Dalitz plots for these decays.

III. Q; — ¢ TRANSITIONS

The heavy quark symmetry cannot give absolutely normalized predictions for exclu-
sive form factors like B — =, B — p, etc., induced by a heavy-to-light (Q: — q where
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g = u,d or s) operator, but it can relate them!’ to other heavy-to-light transitions {in this
caseto D — n, D — p, etc.}. Such relations are guaranteed to hold for ¢ near t.,, and their
validity in any region near ¢,, is sufficient, for example, to allow the model-independent de-
termination of V,;. However, it would be convenient in this regard if the relations were to
hold everywhere in the D — X, Dalitz plots, since this would provide a maximum overlap
with the B — X, processes: of the full range 0 < t < t,, = m%, the range mpmpSt<m}
(corresponding to roughly half the area of the B — 7 and B — p Dalitz plots) would then
be related to D — X, decays. In other cases it would be more than just a convenience if
the heavy quark relations were to hold over the full kinematic range. The rare B decay
B — K+ involves matrix elements that correspond to those in B — pei, at t = 0 in the
SU(3) flavor limit, and other decays like B — Ke*e™ and B -~ K*e*e™ involve matrix
elements that are directly related to those in operation in D — Keo, and D — K'ei.
decays®). '

Heavy-to-light transitions lack the basic simplicity of the heavy-to-heavy transitions
where the heavy quark defines the velocity of the hadron, thereby allowing us to work
in the Breit frame of the light degrees of freedom. This difficulty is especially apparent
in the case of the pion where it is clear that transition form factors like B — 7 will not
primarily be related to the pion’s velocity: this form factor should be a stable function
of momentum transfer as we take the chiral limit m,,mqy — 0, but the pion’s velocity
for a given momentum transfer is not. The dynamical origin of this difference between
Qi — @, and @, — g is clear: in the light hadrons, two “constituent quarks”, each with
intrinsic scale Agep, bind to each other with energies that have the same scale. One
cannot as a consequence identify the “constituent quark” in, e.g., the B with one in the =
or p (although I would speculate that in the latter case this identification might not be too
bad), and as & consequence one cannot identify a Breit frame for such transitions. Such a
frame can still be defined for elastic form factors like the pion electromagnetic form factor
F,(t). This allows in principle for the calculation of such form factors at all ¢ in terms of
the parton model framework of Section II as was done in Refs. 12. One can also define
such a frame at asymptotic momentum transfers where \/f,, — ¢ is much larger than the
mass of the initial and final particles. This latter possibility is of little use to us here, but
it is important for the asymptotic calculations of Refs. 13. An explanation of the role
of this frame can be found in Ref. 17, which derives the connection between Breit-frame
form factors and the Fourier transforms of “charge” distributions. Intuitively, the charge
distribution in the pion is stable as one approaches the chiral limit since it is associated with
the scale Agcp. Scattering in the Breit frame probes this charge distribution with a pure
space-like momentum transfer ¢* = (O,Q-') corresponding to the spatial resolution Q !,
When such a frame is not available and the momentum transfer has a time component,
this simple picture is lost.

This elementary discussion suggests that a qualitative picture of inelastic form factors
involving light hadrons can be obtained by treating each “constituent quark” of effective
mass m¢ as part of a hadron with effective mass 2m, (i.e., in analogy to heavy quark
hadrons), so that a Breit frame can be defined. The resulting form factors are then
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independent of the actual hadron mass but will depend on the crudely defined scale m,.
While this method can be expected to produce only qualitative results in those cases where
a Breit frame does not exist, this is sufficient for our present limited purposes where we
are not trying to calculate the heavy-to-light transition form factors, only to understand
the ranges over which they are independent of m;. Our assumption is that this range will
not depend very strongly on the nature of the light hadron.

Having adopted this framework, we can simply go back to our discussion of the
Qi — Q; transition, let m; = m,, and examine the dependence of form factors on m;. We
begin with the heuristic argument, which now indicates that

my

QEIQ—-q = _(tm - t)s (30)

m,

corrcsponding to a momentum spread in the rest frame of the initial heavy quark hadron
H, of Ap ~ —?n--— -Since for t ~ 0, Ap ~ m,, this naive argumcnt indicates a potential
failure of the heavy quark symmetries at the highest recoils, smce at such momenta Q,
will not be a static quark and structure in H, with the scale m ! will be revealed.

From our more detailed study of Q; — @, transitions we know that the actual
situation is more complex: this naive argument does not take into account the fact that
endpoint dominance always produces a limited Apso that the real restrictions on ¢, —¢ arise
from the competition between such soft processes and hard processes. For the P, — X,
transitions with X, = m,p,... we will encounter the form factor analogous to §;; in Eqn.
(20), namely

2
Ex.(QF) = [ du / préx, (it + u)di(u,5r) (31)
0

which by Eqn. (18a) becomes a function {x, (Q?) independent of i for large m; as required.
Note that since &x, is \/;jquq(%z,fr), the integral over u runs from 0 to 2 instead of 0

to 72 — oco. (The tail of ¢. at u > 2 corresponds to spectator d quarks with such a large
share of the momentum of p; that their momentum exceeds the total momentum of X q)-
At Q¢ = 0 we obtain

2
Exiltmes) = [ du [ Pprd, (u,pr)i(u, o) (32)

Note that if the “constituent quark” d in P; and X, could be identified, and if their
momentum distributions were identical, then one would have {x. i(tmex) = 1. Although
this identification cannot be made and a.lthough the momentum dxstnbutxom will differ by
not only binding effects but also “reduced mass” effects, Eqn. (32) suggests that Ex,i(tmax)
will not only be constant as m; — oo but also la.rge

Let us now turn to the question of the range in {,, — ¢ = -—LQ2 over which £x_;(t) in
Eqn. (31) remains independent of i. We proceed as before by conmdenng the case where
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the wavefunctions factorize with a Gaussian pr dependence as in Eqn. (21) to give

Btﬁxq z . —uip? 7
€x,:(Q7) = / duly, (u)Ui(u)e ™ @ /*Pxs (33)
ix, Jo

As before, in the nonrelativistic approximation the U’s peak at u = 1 and one would obtain
a rapidly falling (Gaussian) form factor, but as Q7 /487y becomes large, the integral will
be dominated by the u — 0 endpoint region. Thus, although the Ansatz (24a) is not
appropriate for Ux, for u > 1, if the U’s ~ ©?/? at small © we still have

4 ; {p+1)/2
e~ (222 »
¢

for large Q7. We recognize this as being analogous to the situation in Q; = Q; transitions:
since p is of order unity, a weak dependence of the parameters of the wavefunctions @, on m,
will not destroy the heavy quark symmetry at any Q7 since these parameters all approach
limiting values as m; — oo.

We next consider the effect of the high pr tail of ¢, induced by physics with the scale
m;. The discussion is similar to that in Q; — @; except that now it is the tail of Q; which
is relevant. This produces a contribution to §x,i which has strength “—'A—ﬁ—?—”—g at low Qf

and which decreases significantly only for Q2 > m?. Thus in the physica.ll region for the
decay, the form factor £x,; will be independent of ¢ provided

2+l
mg\ ? .03 m_i)
(52) > eten (2 (35)
or, L.e.,
RA=S ] A
tm —t [ \TH 1\ T
< (w7 () o

(I have replaced the 3’s and Agcp by m, for simplicity.) Since in the physical region the
left hand side of Eqn. {36) is less than one, this condition is easily met.

As with Q; — Q; decays, one can easily check that these qualitative conclusions
are not affected by our assumptions regarding the form of the wavefunctions. Endpoint
dominance of these form factors in the regions of interest also means that the pr being
probed is aiways of order Agcp so that the condition fug = ug on the heavy quark spinor
required to derive relations ®) between some relevant & — s operators and the vector and
axial current matrix elements in ¢ — s and b — u is satisfied. Thus we can also expect
H; — X, relations based on the heavy quark symmetry to be valid over the full available
kinematic range.
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One can also consider once again the contributions of perturbative QCD to the form
factors at large recoil. In Q — ¢ transitions, the analogue of Eqn. (27) is

§f+lpacn ~ Ban(QF)y/ —£C(@Q), (37)
in contrast to the predictions !’

fi = f- = Clmima)e-(Q1)y/ 7 (38a)

fo + f= = Clmy,m)ea (@D = (386)

where the C'(m;,m,) are known and where now £, are independent unknown functions.
We see that §(f. + f-) preserves the heavy quark symmetry relations. The perturbative
contribution to &(f+ — f_) is down by a factor E‘n‘ﬂ‘ with respect to the low recoil form
(38a), consistent once again with our general analysis. The perturbative tail from high
pr components induced in X, by hard gluon exchange affer the current acts is clearly
independent of @, for fixed v and 7’ and so will satisfy the heavy quark symmetry relations
(e.g., the contribution to fi + f_ above); the perturbative tail of P; induced by hard gluon
exchange before the current acts will, on the other hand, depend on @; and therefore violate
the symmetry, but it is suppressed by 247« relative to the nonperturbatively induced effects
at low Q%. In analogy to Q; — Q, decays, if p = 1 then €x,i is approximately independent
of 1 for all t; the more general condition is that for p > 1, £x,; = €x, so long as

(3_33)’_;_1 > a.(Qf)"z"f (39a)
or, t.e., a-
st

to be compared with (36). Once again, this condition is easily met in the physical region.

IV. OVERVIEW AND CONCLUSIONS

This paper has been devoted to the consideration of various models for the large
recoil behaviour of weak matrix elements in order to study the region of applicability of
form factor relations based on the heavy quark symmetry of Ref. 1. These investigations
indicate that the relations are suprisingly resilient: they should be maintained even at
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recoils comparable to the heavy quark mass scale. In the region of endpoint dominance
(which according to the picture of Ref. 12 should include the full kinematic regions of
interest here), it is more probable to find the “spectators” to the weak decays Q; — Q,
and @i — ¢ at low z in both the initial and final hadron with pr ~ Agcp than to find
them near their average z with a very high pr. As a result, the mean pr probed in the
hadronic wavefunctions in the endpoint dominance region is always small: the large recoil
is almost all provided by the pointlike operator. This means first of all that a parametric
dependence of the pr distribution on the heavy quark mass will not upset the heavy quark
symmetry relations. It also means that any effects of symmetry-breaking high pr tails
in the wavefunctions are postponed to higher recoils than one would naively expect. To
estimate the recoil at which this crossover occurs, | introduced a schematic model for a
symmetry-breaking high pr tail induced by short-range color-magnetic forces. Since such
effects are suppressed by a, and by powers of mﬂ;-, and since the endpoint mechanism
allows the low pr wavefunction to contribute to high recoil, such a high pr tail only breaks
the heavy quark symmetry at very large recoils. This general, but schematic, analysis
strongly suggests that such symmetry breaking is not important in the cases considered.
As a particular example of such a generic symmetry-breaking mechanism, I have also
considered the possibility that at the highest recoils the endpoint mechanism may be
overtaken by the asymptotic one !*’ in which it becomes favorable to create high pr directly
in the wavefunction at the expense of a hard gluon exchange. In this region, contributions
from high pr in the initial and final wavefunctions have the same {-dependence, but are
suppressed by 4™ and 9’-:':—‘-‘, respectively, for a Qi — Q; transition, and by 2™ and
a,, respectively, for a Q; — ¢ transition. In the Q; — Q; transitions, the symmetry is
broken, but only by terms of order °—‘ﬂ$’- with respect to the endpoint contributions. Such
terms are not expected to become dominant in the B — D and B — D" Dalitz plots of
immediate interest here. In the latter case contributions from the high pr tail of the light
hadron continue to respect the symmetry so that symmetry breaking terms are of order
E:f‘-, and it seems unlikely that such terms ever become important in the P, — X, Dalitz
plot '), T conclude that the heavy quark relations will be valid over the full kinematic
ranges available in the particular case of b — ¢ decays as well as in all @ — ¢ decays
including the b — 3, b — u, ¢ — s, and ¢ — d cases of immediate phenomenological
interest.
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