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Abstract

We analyze the magnetic field of a finite length, large bore super-
conducting quadrupole magnet for use in a large aperture, high mo-
mentum magnetic spectrometer. In particular, we study the 12-pole
and 20-pole components which would contribute to geometric abera-
tions. The magnet is 130 ¢m long, has a pole radius of 43 ¢m, and the
field is largely iron dominated. We analyze the magnet with a nominal
field gradient of 276 gauss/em. The field and/or the scalar potential is
calculated with the program ToscA and decomposed consistent with
magnetostatic theory. We establish that the small multipole compo-
nents are determined reliably and consistently. We find that although
the absolute magnitude of the higher order muitipoles can become
quite large near the ends of the magnet, they reverse sign in this re-
gion and their contributions to the field integral are quite small. At
the pole radius the integral contributions of the 12-pole (n = 6) and
20-pole {(n = 10) are = 1.2 X 10~2 and = 2.4 x 10~3 respectively, rela-
tive to the quadrupole (n = 2). We estimate the errors in these values
due to uncertainties in the numerical calculations to be ~ +5% and
= +£20% respectively.



1 Introduction

Superconducting magnet technology has made it possible to achieve large
fields and field gradients over substantial volumes. Focussing magnetic spec-
trometers which accept large phase space regions are being designed using
this technology. The large acceptance is achieved using quadrupole magnets
which ideally focus parallel monochromatic rays to the same point. In such
an ideal quadrupole, the transverse magnetic field intensity is proportional
to the distance r from the axis of the magnet {1]. Higher order muitipoles
spoil this radial field dependence and lead to geometric aberations in the
final instrument. In general, then, one wants to minimize the contributions

of these higher order multipoles to the field.

We have studied the design of one such quadrupole magnet in detail. The
design [2] is based on a conformal mapping of a window frame dipole magnet
to a quadrupole geometry. A cross section of the magnet is shown in Fig. 1.
A strict conformal mapping implies hyperbolic pole tips and coil windings,
as well as a hyperbolic current density. Although it is straightforward to
construct hyperbolic pole tip shapes, it is difficult in practice to achieve
a hyperbolic current distribution. To simplify the comstruction, the coils
ax;e wound into flat sheets (carrying constant current density) and tilted at
an angle of 5° with respect to the centerline to approximate the effect of
hyperbolic shape and current density. The pole tip radius is 43 em and the
maximum useful radius is 38 cm. The iron is 130 om long and has no shaping

at the ends.

Such a magnet offers many attractive advantages over other large bore,
high gradient designs such as the “cos 26" (3} and “Panofsky” (4] options.
These include good gradient uniformity over a large fraction of the useful
bore, and relative ease of construction and low cost. However, the compro-
mise coil design and the finite length (including the coil return at the ends)

may introduce significant higher order multipoles to the field, even with ideal



placement of all components. Until now, this magnet had only been studied
using two dimensional magnetostatics codes such as POISSON. In this paper,
we describe the results of a three dimensional analysis using the code TOSCA.
Included are a number of checks that the results are consistent over a range of
assumptions, and that the numerical solutions are consistent with Laplace’s

equation, even for the small multipole components.

The remainder of this paper presents the results of our study. First,
we outline the formalism of the solution to Laplace's equation in cylindrical
coordinates with particular emphasis on higher order multipoles. Second,
we show details of the three dimensional magnetic field calculation using the
programs TOSCA and VF/OPERA. Finally we show the resulis for the various
multipole components, and tabulate their integrals over z. The instrument
for which this magnet was designed (the CEBAF High Momentum Spectrom-
eter) requires an n = 6 multipole contribution of less than 3% extrapolated
to the pole tip [5]. We conclude that this condition can certainly be met
using magnets of this type.

2 Formalism

The magnetic field B in free space may be described in terms of a scalar
potential @ as B = V&, where we neglect an irrelevant overall sign. The

scalar potential ® solves Laplace’s equation, namely

S A Wi N
V=) tree T =0 1

We use cylindrical coordinates since they are most suitable for quadrupole
magnet geometries. There are an infinite number of solutions which, apart
from an arbitrary angular phase and assuming that z = 0 is the center of the

magnet, may be written as [6]

" )(p 4, z) = Normalization - cos nd e=*= J (kr) (k #0)



where

Jnlz) = (%)"z‘o m!I‘(Srr:-li-):+ 1) (%)m

is a Bessel function of order n. (If k = 0, then there is no dependence
on z and @ is simply proportional to cosné - r".} The values of n and %
are in principle arbitrary, although n must be an integer if the potential is
to be single valued. In a problem with eight-fold symmetry (like the one we
consider here) the radial component of the field, B.(r, #, z) = 0®/0r, reverses
sign from # = 0 to § = x/2 and we must have n = 2,6,10,... only. For a
finite length magnet any &k # 0 solution is in principle allowed. Note that

the solution must also be symmetric between z and —z.

The correct linear combination of the above solutions is determined by
applying boundary conditions. These boundary conditions depend on the
placement of iron and currents, as well as the behavior as z -+ oo. The

general solution then has the following form [7}:
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and the radial field is

B.(r,8,z) = %::; = i cosnb B, .(r, z)
-] r ne-l 99 r Zm
- 3 (cosne (;) > [b,,._,.(z) (;) ]) (3)
whe
re ) i .
bn(£) = b 2) 5 (@

and the scale radius ro (generally chosen to be the pole radius) ensures that
the by . all have the units of magnetic field. The dependence on r is dictated
by the behavior of the Bessel function Ja(kr).

dlez

The b are constructed from the expansion of the e=** which meets

the boundary conditions. Constraints on them are derived from symmetry
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and by insisting that & solve Laplace’s equation. We substitute Eqn. 2 and
Eqn. 4 into Eqn. 1 and use the orthogonality of the cos né to treat the terms
in n separately. We arrive at the following recursion relation for the by {z):

2m +n 3 @bm_1n
dm(m+n)2m+n—-2) ° dz?

bmn(z) = form>1 (5)

Also, since the z—component of the field, B,(r,#,z), must vanish at z = 0

and as z — oo, we can show that

dbn
dz

=0atz=0and z - oo (6)

The behavior of a spectrometer is determined mainly by the integrals of
the field components over z. That is,

[ = B, n(r,2)dz = (1)"_1 3 (l)zm / % bon(2)dz

To m=0 0

However, using Eqn. 5 and Eqn. 6 it is easy to show that only the m = 0

term contributes. Hence,

/:o B, .(r,z)dz = (E;)n-l [aabo,,.(z)dz (7

That is, in determining the integral of the multipole, only the leading term
in the radial expansion is important. Equation 7 also shows that the integral

must be proportional to 1.

In practice, one uses a three dimensional numerical integration program
to calculate the scalar potential and/or the magnetic fields. ( For this work,
we use the program TOSCA [8].) The individual multipole components (spec-
ified by the value of n) are extracted using a straightforward Fourier analysis,
for fixed radii » and axial positions z. These data are then fit as a function of
r for the different values of z to determine the coefficients by () OF by n(2).

These in turn determine the magnetic field.

Note that determining b, . may be difficult for large n since they mul-

tiply large powers of r and are determuned primarly by the behavior close



to the pole tip. Numerical programs which calculate the magnetic field by
some finite difference method solution of Eqn. 1 cannot be expected to give
highly reliable results near the interface of a vacuum and a highly nonlinear
material such as the iron pole tip. However, since the field integrals depend
only on the coefficients bg, it 1s possible to determine these at lower radii

(where they dominate over the other bnm ) and extrapolate to r = ro.

3 TOSCA calculation

The program TOSCA computes (among other things) three dimensional mag-
netic fields in the presence of arbitrary current distributions including the
presence of nonlinear materials [8]. In regions of space where the current
density is zero, the magnetic field may be defined in terms of a scalar poten-
tial which solves Laplace’s equation. In régions where currents are present,
the program calculates the magnetic field directly using the Biot-Savart law.
We note that TOSCA has been used to analyze quadrupole magnets and the

results have been compared to measurement {9].

As we shall see, the net contribution from higher order multipoles after
integrating along z results from the cancellation of relatively large terms of
opposite sign. Also, these higher order multipoles may be smalil fractions of
the dominant quadrupole., Consequently, we want to be able to check the
calculation using as many variants as possible. We take care to configure the
problem so that the interior of the magnet is recognized to be # current-free
region everywhere. This allows us to compare the results from the scalar
potential and from the magnetic field directly. Indeed, whea configured so
that part of the field was calculated directly and the rest using the “reduced”
scalar potential, we have seen that the individual multipoles do not tend to

zero at large z rendering the integrals meaningless.

The mesh used in the 78 plane of the magnet is shown in Fig. 2. Eightfold

symmetry is assumed. Boundary conditions are & = comstant along the



horizontal and vertical edges, and Bposma = 0 along the symmetry edge
running through the ceater of the pole face. This mesh is replicated in z
with the granularity shown in Table 1. This results in a total of 31,000 mesh
points. The magnet iron ends abruptly at z = 65 cm with no shaping or
chamfer. The coils are wound in a Bedstead-type geometry shown in Fig. 3.
The problem takes roughly 5 Ars of CPU time on a VAX-8700 yndergoing

15 iterations.

The boundary conditions as z — co must also be specified. We specify
these boundary conditions as either & = constant or as 3%/0z = 0. Note
that “co” is simply the longitudinal extent of the .problem (which is kept to
a minimum to avoid excess computer time). For this analysis the z — oo

boundary condition is defined at z = 170 cm.

4 Multipole analysis

The post-process program VF/OPERA [8] Fourier analyzes B.(4) or $(4).
We calculate both B, and @ using each of the two boundary conditions at
z — oo (i.e. ® = constant and 3%/8z = 0) giving us a total of four data
sets. Bach data set consists of the extracted multipole, either ®,(r,z) of
B, .(r, z), tabulated at various values of z and ». Values of z run between 0
and 170 cm (with points closest together in the region near the end of the
magnet iron). Values of r are in 4 ¢m steps between 2 and 34 cm, in 2 cm
steps up to 40 cm, and an additional point at 41 cm. (Recall that the pole
radius is 43 cm.) A typical VF/OPERA run takes ~ 3 Ar of CPU time on a
VAX-8700.

The radial dependence of each multipole component is fit to the form
described in Eqn. 2 or Eqn. 3 to determine the parameters b, or b,
Each data point is weighted equally. Four terms corresponding to m =
0, 1, 2, and 3 are included. When fitting $,(r), we use Eqn. 4 to determine

coefficients for 5, ,(r). This should in principle be more precise than fitting
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B, 4(r) directly since we do not rely on the result of a numerical deriva-
tive. That is, we take an analytic derivative of ®,(r) having determined the

coefficients.

Figure 4 shows fits to B, .(r,z) at z = 0 (with & = constant boundary
conditions) for n =2, 6, and 10. Other multipole components (for n < 14)
are consistent with zero, as they must be from symmetry considerations.
Figure 5 shows the same information at z = 70 cm. In all cases, the TOsCA
calculations are well-described by Eqn.l 3. In thecases for z = T0 em it is
also clear that the lowest order radial dependence (i.e. m = 0 only) is not

sufficient to describe the data.

Let us now consider the behavior of the different n components of
the radial field as a function of the longitudinal position z. We start by
considering the (dominant) n = 2 component. Figure 6 shows the coef-
ficients bg 2, b12, bs2 and b3, as a function of z, obtained by fitting the
data as described above. The radial field component at the pole tip, i.e.
B.s{r = rq = 43 cm, z) determined by the fitted coefficients, is also shown.
As suggested in Figs. 4 and 5, the fit is dominated by the lowest order (i.e.
m = 0) coefficient in the interior of the magnet, but near the end of the
magnet iron and beyond there is a large contribution from higher orders.
Equation 7 says that the area under the by 3(z) curve is the same as that

under the B, 3(rg, z) curve, while the other b, 2(z) integrate to zero.

Equation 5 may be directly tested at this point. Figure 7 compares
by 2(z) and (r/6)d?bg2/dz® which should be the same according to Eqn 5.
The agreement is very good, demonstrating a level of internal consistency in

our procedure so far.

Next we discuss the n = 2 field components B, ,(r, z) as determined
from our fits. These are plotted as a function of z for r = ry =
43 cm, 38 cm, and 30 cm in Fig. 8. We also plot the integrals of these

functions, integrated up to the plotted value of z, to show their development



and convergence. There is a rather long tail to large z, but the contribution’

to the integral past z = 120 cm is rather small.

Finally, we show in figures 9 and 10 the field components for n = 6 and
n = 10 respectively, plotted in the same way as the n = 2 results in Fig. 8.
Note that these components change sign in the region near the end of the
magnet iron, and there is a significant cancellation in the final field integral.
We note that these functions are qualitatively very similar to those obtained

in magnetic field measurements of actual quadrupole magnets [10].

Table 2 summarizes the results of the integrated multipoles for our four
data sets (i.e. using Eqn. 2 or Eqn. 3 with either of the two types of boundary
conditions). Our goal here is to identify reasonable and consistent values for
the multipole field integrals in the face of the limitations of the numerical
calculations and of the large cancellations near the end of the magnet iron.
Listed are the multipole components integrated from 0 < z < 170 em. For
n = 2 we list the field integral in T +m, and for » = 6 and n = 10 we list the
ratio (%) to the corresponding n = 2 integral. For each multipole and data
type, we tabulate the integral of bo . and of the radial field at radii r = 43 em
(the pole tip radius), r = 38 cm (the maximum useful radius of the magnet),
and » = 30 cm. For each data set the radial fits are performed twice; once

using all data and once restricting the data to r < 38 em.

Notice first that all results are rather insensitive to the choice of bound-
ary condition (i.e. ® = constant or 3%/0z = 0) used to solve the problem.
This is an important comsistency check. As the differences are relatively
small, we will not try to argue which should be more appropriate. Note also
that the results for n = 2 always satisfy Eqn. 7.

We have suggested that fitting ®.(r) and using Eqn. 4 to determine
the b, », rather than fitting B, .(r) directly, should be more precise. That is
supported by Table 2. In particular, for n = 6 the integral of o4 is somewhat

more consistent with the integral of B, ¢(r = ro = 43 cm) when fitting ®q4(r).



More pointedly, for n = 10 the integral of B, ;o(r = 7o = 43 cm) is consistent
with Eqn. 7 and the integrals of B, o(r) at » = 38 em and at r = 30 cm
only for the data sets that fit ®;9(r). Indeed, even the sign is incorrect when
fitting B.10(r). (Note that the ratio of the integral for multipole n to that
for n = 2 goes like (r/ro)"*~? according to Eqn. 7.)

We also suggest above that the results of TOSCA calculations may be
suspect for radii very close to the pole tip, i.e. r ~ rp = 43 cm. This
is unfortunate since we want to determine the fieid integrals at r = r,.
However, if we can reliably determine the field integrals at smaller radit,
we can use Eqn. 7 to extrapolate to the pole radius. Table 2 shows the field
integrals obtained by fitting all radial data, and also by only fitting data with
r < 38 cm. For both » = 6 and n = 10, consider the four field, integrals at
r = 30 em obtained by fitting ®,(r) for each of the two boundary conditions,
and for fitting all data or just r < 38 em. The results for n = 6 (-0.26%
to -0.28%) and for n = 10 (0.013% to 0.015%) are quite consistent. This is
also true for the n = 6 at » = 38 cm and, to a lesser extent, the n = 10 at

r =38 cm.

Now we use the fits to ®,(r) to determine the integrated multipoles at
r = ro. We use both the results at » = 30 cm and r = 38 cm (a total of eight
evaluated field integrals for each multipole), in conjunction with Eqn. 7, to
determine the field integrais at r = ro = 43 cm for n = 6 and n = 10. We
average over the eight results. Including the integrated quadrupole (n = 2)

component, we summarize our results as follows:

]_ ) "]
> /_ "~ B.o(43 em, 2)dz = [) B.a43 cm,z)dz = 0.94T.m

/- Br,ﬁ(43 cm, :)d.’: = ('—1-2 X 10_2) b 094 T «m
Q

f Biio(43 em,z)dz = (24x10°%)x0.94 T -m
1]

The eight extrapolated values for n = 6 range from 1.1 x 107% to 1.2 x 1072
so we estimate the precision of the final answer to be roughly +5%. The

eight values for n = 10 range from 1.8 x 1072 to 2.8 x 107% so we estimate
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the precision in this case to be roughly +20%.

We note that these should meet the design specifications [5] of < 3x 1072
for n = 6 (assuming it is known) and < 3 x 107? for unknown multipoles
in general. Furthermore, there has been no attempt to optimize the design
by either shaping the ends of the iron or by adding small “correction coils”
within the cryostat. Given the understanding of TOSCA demonstrated here,
such modifications to the design should be relatively straightforward.
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Table 1: Longitudinal Granularity used in TOSCA Calculation

Number of
z (em) Divisions | Type

0<z< 35 4 | Quadratic
35 <z< 50 3 | Quadratic
50 < z< 65 15 | Quadratic
65<z< 70 5 | Quadratic
<z 8 3 | Quadratic
85 <z <170 9 | Linear

Table 2: Multipole Components Integrated From z = 0 to “c0”

B.C.: ® = constant B.C.: 0®/0z=10

Fit B, .(r) Fit ®,(r) Fit B, .(r) Fit ®,(r)
Integrated All Only All Ouly All Only All Only
Quantity Data | <38 | Data |r <38 | Data [ r <38 )| Data | r < 38
n =32
(T -m)
bo,2 0.935 | 0.935 [0.935 | 0.935 | 0.940 | 0.940 | 0.940 ! 0.940
B, 2(43 cm) 0.939 0.937 0.943 0.941
B, (38 ecm) 0.828 | 0.828 | 0.828 | 0.828 || ©.832 { 0.832 | 0.832; 0.832
B, 1(30 cm) 0.653 | 0.653 | 0.653 | 0.653 || 0.656 ; 0.656 | 0.656 | 0.656
n==5
(% of n = 2)
bog -1.84 | -0.89 |-1.12 | -1.20 || -L.77 | -0.74 | -1.03 | -L.11
B, ¢(43 ecm) -1.30 -1.24 -1.19 -1.15
B, (38 ecm) -0.79 | -0.78 | -0.73 | -0.73 -0.72 | -0.72 | -0.67 | -0.67
B. (30 cm) 028 | -0.29 | -0.28 ) -0.28 || -0.25 | -0.26 | -0.26 | -0.26
n =10
(% of n = 2)
bo,10 809 {-11.34 | 0.84 1.50 8.24 | -10.15 | 0.75 1.44
B, 10{43 cm} | -0.130 0.238 -0.156 0.222
B.10(38 em) | 0.149 { 0.146 | 0.105 | 0.075 0.134 | 0.130 {0.096 | 0.066
B, 10(30 cm) | 0.018 | 0.025 | 0.015 | 0.014 0.017 | 0.023 | 0.014 | 0.013
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Figure Captions

1. Cross sectional view through the center of the magnet. The pole tip
radius (i.e. the minimum distance from the centerline to a pole piece)
is 43 cm. The inner cryostat wall limits the warm (i.e. useful) radius
to 38 em. The iron is 130 ¢m long and ends abruptly with no shaping.

2. Details of the mesh used in the pla.nc; for the TOSCA calculation.

3. Setup of the iron and superconducting coils used in the TOSCA calcu-

lation.

4. Radial fit to the data for the radial field components B, ,(r,z = 0)
determined with ¢ = constant boundary conditions. We show n =

2, 6, and 10.
5. Same as Fig. 4 except for z = 70 em

6. Detailed look at the determination of the quadrupole (n = 2) compo-
nent of the radial field as a function of z. The thick solid line is the
field component at r = rq = 43 em, i.e. B, (7o, z), determined from
the fitted coefficients.. Also plotted are the fitted coefficients b, 3(2)
for m =0, 1, 2, and 3. Note that the integrals of B, »(r, z) and by 2(2)
are equal, while the integrals of the other b, 2(z) are zero.

7. Comparison of the coefficient b, 3(z) determined directly from radial fits
to B, {7, z) to the quantity (r3/6)d?by 2/dz® where bo 2(z) is determined
from the same radial fits. These should be the same according to Eqn. 5

8. Multipole components of the radial field as a function of z for n =
2. This particular analysis was done by fitting the potential &,(r)
(determined with “® = constant” boundary conditions) to Eqn. 2 and
determining B, ; using Eqn. 3 and Eqn. 4. These curves correspond to
the three different radii, with the larger fields near the center at the

larger radius. Top: Multipole component B.;(r, =} for r =30, 38, and
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10.

43 cm. Bottom: Integrated multipole component [ B; »(r, z)dz for the

same three radii.
Same as Fig. 8 but for n = 6.

Same as Fig. 8 but for » = 10.
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n=10 Radial Fields

Br.lo(r’z) (kG)

IIIIIIIITII'IIT

r=ry,=43 cm
r=38 cm
r=30 cm

I

¥

Ili[lTT?l

]

B, 10(r,z) dz (kG cm)
N

Z
0

1
N

Olilllll'lll

z (cm)

Figure 10




