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Schematic model of nuclear spin excitations
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A simple model to estimate the strength of spin and nonspin collective states is presentcd.
The model was inspired by early schematic models based on energy-weighted sum rules and is
a useful tool for interpreting experimental data without the complexities of realistic microscapic
calculations. The strength of collective states is calculated by assuming that a single colleciive
state compietely exhausts the energy-weighted sum rule.



The study of the nuclear spin response has recently attracted a great deal of experimental
attention! 7. In particular, the results of recent proton scattering experiments have shown that
spin-flip states in **Ce are strongly excited at energies above 10 MeV and that excitations at higher
energy, near 35 MeV, are strongly enhanced in comparison with single particle model predictions.
The trend is systematic®, with a suppression of the spin strength at [ow excitation and an enhance-
ment at high energy also being observed in proton scattering experiments on '*C, *Ca and %0 Z»r.
Experiments on ‘°Ca using different proton beam energies have also established that this is truly
a nuclear structure effect and not a consequence of the reaction dynamics at a particular beam
energy®!!. To assist in the theoretical interpretation of these results, a simple schematic model,
valid in the low momentun transfer region, was proposed®. This model allowed an estimate of
the strength of both spin-flip and non-flip states by assuming that a single collective state com-
pletely exhausted the energy-weighted sum rule (EWSR). While the importance of more realistic
shell model® and microscopic random phase approximation (RPA)'%!! calculations should not be
understated, the schematic model has proven to be a useful tool*’ in the analysis of subsequent
experimental results. Since the initial introduction of the model focussed mainly on the relation-
ship with the existing data and omitted the general structure of the formalisin, it has not been
readily apparent how it should be extended to accommodate the new experimental data as they
have become available. The purpose of this Brief Report is, then, to provide a complete exposition
of the schematic model framework in a manner sufficiently general to allow the calculation of any
quantities that are {or are likely to hecome) relevant.

In both the schematic model and RPA calculations, the cross section has heen calculated with

the plane wave Born approximation. Within this approximation, the general form of the cross

section depends on the spin-independent strengths,
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and on the spin-dependent strengths,
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In these expressions, the states are lahelled by \, the multipolarity of the collective excitation,

and, in the case of the spin-dependent excitations, by .J and A1, the total and magnetic angular
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momentwn quantum numbers. All other quantum numbers necessary to specify the states uniquely
are denoted by ». The vector E is one of three basis vectors: one longitudinal vector in the
direction of the momentum transfer (Z) and two transverse vectors (X and ¥), one of which lies
in the scattering plane and one which is orthogonal to it. Although the recent proton scattering
experiments®~7 have been concerned with polarizations orthogonal to the scattering plane, there
can be spin-flip probabilities for any direction. The conventional notation is that ¢S¢¢ is the spin-
flip cross section for the direction ¢. The contributions to this cross section then arise from the M
terms associated with the two basis vectors orthogonal to E; conversely, the non-flip cross section.
arises from the M, terms associated with the basis vector E = Z and the nonspin cross section
from the Ady terms. This is obvious from the fact that the operatt:;r o : induces a rotation in spin
space through an angle = about the ¢ axis. In general, all of these strengths have both isovector
and isoscalar contributions and can depend on matrix elements with an isospin operator, r*; if
included, the strength corresponds to that of a resonance with an isospin change (AT = 1) while,
as written, Eqs. {1) and (2) would suggest that there is no isospin change (AT = 0). The isospin
operator has been suppressed because it has no influence on the schematic model calculation of the
spin strength. The full calculation of the cross sections requires some reaction scheme, such as the
Love-Franey t-matrix approach,'?!? to provide momentum-dependent coefficients for each of the
terms. It is in these coefficients that the explicit isospin dependence of the cross section is to he
found.

Beginning with the spin-independent terms, Ay, the classicai EWSR takes the form!*
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and the energy-weighted density sum rule!*~'7 is given by
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The ground state density, o®(r) appears in this expression and is neecded to calcuiate the radial
expectation values appearing in Eq. (3). A simple Woods-Saxon shape!® shape has been found

useful but there is nothing to prohibit a inore realistic cheice, The fundamental assumption of
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the schematic model, that a single collective state with energy wy completely ezhausts the EWSR,

drastically facilitates the calculation. The transition matrix element can be found immediately

from Eq. (3),
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and used to calculate the density matrix element from Eq. {4),
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Since the density operator is merely a sum of §-functions, p(r) = ¥, d(r — rr), the plane wave

expansion in spherical harmonics,
eI = 4x Y i ji(gr)Yim(Q)¥im (7), (7)
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can be readily used to determine the relevant matrix element,
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with j, a spherical Bessel function. After substituting the expression for the EWSR value, Eq. (3),

and simplifying, the total spin-independent strength is found to he
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Eq. {9) has been obtained after dividing by a factor of 4x that arises from an average over momen-

tum orientations, . The expression has been written with parentheses around the summation to
serve as a reminder that in the schematic model, the sum is over only the single degenerate state.
The resuit for the monopole state must be determined separately because the collective excitation

operator is r? and is not of the form assnmed in Eqs. {3) and (4). These two equations are modified

so that
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With exactly the same manipulations, assuming that a single collective state exhausts the total

sum rule value and averaging over momentum transfer orientations, the monopole strength is found

to be
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The calculation of the spin-dependent strengths proceeds in substantially the same way, except
that the density operator need be replaced by the spin density operator, z,(r) = 3, crfj'&(r - ry)
and the sum rules evaluated with operators for collective spin states. The relevant sum rules then

take the following explicit forms: the classical EWSR value of Eq. {3) has precisely the same value,
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subject to the assumption that the nucleus is filled to an LS closed shell so that the commutation
(0){o, 7,/]|0) = 0 can be used. The energy-weighted density sum rule of Eq. (4) must be modified
by including a sum over Clebsch-Gordon coefficients to handle correctly the contributions from

different magnetic substates,
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In the same way as for the spin-independent matrix elements, the assumption that only a single

collective state completely exhausts the EWSR allows an immediate evaluation of the transition

matrix element from Eq. (13),
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This result, in combination with the snergy-weighted rensity sum rule of Eq. {14}, permits an

evaluation of the density matrix element,
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Because the structure of the spin density operator is also simple, the plane wave expansion, Eq.

(7), can again be used to derive the relevant matrix element,
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Until now, the spherical tensor properties of the spin operator, o, have been exploited; it is more
useful, however, for the matrix elements to be expressed in the form suggested by Eq. (2), using

the Cartesian components of the vector spin operator. These components are

. .
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Taking the appropriate combinations of Eq. (17), and substituting the expression for 5, from Eq.

(13), the general result for the strength of the collective spin excitations is
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The factor F é” has been introduced as the fraction of the total strength for a state with multi-
polarity A and total angular momentum J. Although the total strength for a given mulitipolarity
is independent of the direction E, the fractional contribution depends on whether the transverse

(£ =X or E = ¥) or longitudinal (E = Z) matrix elements are of concern. The sum over magnetic

quantum numbers, 4 and M, is contained totally in the definition of the fractional contributions:
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It is easy to read off the total strength for multipolarity N from Eq. (19) since the fractional

coefficients are conveniently normalized: 3~ .7-'6:"Jr = L. The expressions in Eqs. (20)-(22) can he
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simplified and put into closed form by using the properties of the Clebsch-Gordon coefficients and

the spherical harmonics:
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There are evidently some interesting features: first, natural parity transitions are always purely

1 { A J=A-1

transverse; only the 0~ state is purely longitudinal while all other unnatural parity states are mixed
longitudinal/transverse transitions. Second, the strength of transverse transitions is always equally
divided between natural parity and unnatural parity states.

Again, because the spin monopole state is described with a different collective excitation op-
erator than the form assumed in Eqs. (13) and (14), it must be calculated independently. The
introduction of the spin operator into Eqs. (10) and (11) does not substantially alter their form,
providing that the nucleus satisfies LS closure properties. The right-hand-sides are both multiplied
by 6, where u and yu’ are tensor indices; in Eq. {10), the indices arise from each of the two
spin monopole excitation operators, r?c,, that appears, and in Eq. (11) one index arises from
the density operator, 5, and the other from the collective excitation operator. Consequently, the

expression for the strength is the same, in form, as for the nonspin monopole state, Eq. (12),
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Thus, it is evident that the fundamental assumption of this schematic model, that the total

]z. (25)

energy-weighted sum rule strength is exhausted by a resonance at a single energy, leads to analytic
expressions for the strength of all spin-independent and spin-dependent collective states. In prac-
tice, this assumption has proven to he reasonable when compared with the experimental data35?®
where distinct peaks are ohserved in the regions where giant resonances are expected; a general ten-
dency towards such features is also horne out hy fully microscopic RPA calculations!®~!!. Indeed,
it is well known'® that systematic trends, as a function of the nuclear mass, exist and describe the
location of giant resonances that exhaust substantially large fractions of the EWSR. The model is

-
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not well suited to a description of low-lying states and has only found use above about 10 MeV.
The reason for this is clear: low-lying discrete states are highly fragmented and exhaust only a
small fraction of the EWSR.

In any calculation of the cross section, the calculated strength must be combined with a method
of determining the energy distribution of the full state. Systematic trends have also been deduced
from experiment to describe the width of collective resonances but assume the distribution to be
symmetric about the peak energy!®. The schematic model presented here can use such trends but
more realistic calculations of an energy-dependent width!? that creates an asymmetric distribution
have been preferred. The results of calculations of this energy-dependent width, determined ex-
plicitly from the coupling of two-particle-two-hole states to one-particle-one-hole states, have been
used in both schematic model and RPA calculations®*~'!. The asymmetry has the effect of pushing
strength from lower to higher excitation energies when compared with symmetric distributions and
has been critical in explaining the observed enhancement of spin strength at large excitation. By in-
cluding a realistic description of the width, the model is quite successful at describing well-localized
strong collective states.

In summary, the schematic model has proven, since its introduction, to be a useful tool in
understanding the distribution of spin strength observed in recent proton scattering experiments.
While it cannot replace more realistic shell model and RPA calculations, the analytic forms that
result make it very attractive. The principal results of this report are contained in Eqs. (9), (12),
(19) and (23)—(25), which suminarize the analytic expressions needed to calculate the schematic
model strength for any collective state. This paper has provided the derivation of these expressions
in a form sufficiently general that it is possible to extract from the model any quantities that have
already found scme use or are likely, in the near future, to become relevant.
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