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Abstract

Results are presented of an analytic relativistic calculation of a OBE nucleon-nucleon (NN)
interaction employing the Gross equation. The calculation consists of a non-relativistic reduction
that keeps the negative energy states. The result is compared to purely non-relativistic OBEP
results and the relativistic effects are separated out. One finds that the resulting relativistic
effects are expressable as a power series in 7y - 79 that agrees, qualitatively, with NN scattering.
Upon G-parity transforming this NN potential, one obtains, qualitatively, a short range NN
spectroscopy in which the S-states are the lowest states.



In the quest to understand short range nuclear forces, many nuclear theorists have embraced
QCD and have made progress toward extracting the roles that quarks play. This approach
is further fed by the observation that traditional non-relativistic meson exchange models have
difficulty providing any new information on these short range forces. In this paper, new results for
the short range interactions are presented that arise from a relativistic view of the N-N interaction
that contains negative energy states. Preliminary and partial results were presented earlier.()
This relativistic approach is not new; it was introduced by Gross in 1974.(2) In this present work,
that pioneering work is revisited and expanded upon in such a way as to provide further insight
into the nature of the short range forces harboured in the relativistic wave equation. It will be
shown that, for the One Boson Exchange Potential considered, the short range contribution can
be expressed as a power series in 7q - 79, the Nucleon-Nucleon isospin operator. This short range
contribution is interpreted as a relativistic effect and is a direct result of coupling to negative
energy states. It will further be shown that, as a consequence of this relativistic effect, the G-
parity transformation of the elastic NN potential(s) gives rise to a new level ordering prediction, at
short ranges, for the Antinucleon-Nucleon (N N} interaction. The final result of the analytic work
presented below is a qualitative description of the (NN and N N) interactions, as no numerical
values for the exchanged mesons’ masses or coupling constants are employed. A word of caution
is needed, however; the NN interaction as presented in this paper is not antisymmetrized. The
impact that this may have on the short range NN contributions presented here is uncertain;
however, it is assumed that antisymmetrization does not apply to NN.

The starting point is the Gross equation(z) for the NN system written as:
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T is the covariant two body vertex function that is state dependent, and C is the charge
conjugation matrix. To facilitate making a non-relativistic reduction in order to expose the
analytic structure of the interaction, it is useful to write
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where ¥ and ¥~ are the positive and negative energy momentum space wave functions
respectively, the following set of coupled equations can be extracted:

3

@By~ W) = ~ [ s (Ve ) + V0] (5
3

W) = = [ s (VB + Vi 47,0} ©)

The V*T,V*+~ V=71, and V™~ are related to the one particle on the mass shell interaction
kernels V,, s, by:
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Of course, the non-antisymmetrized V), s .+ represent meson exchanges and, as is customary, these
interactions will be approximated by single boson exchanges; namely, 7, o, p, and w. One notes
that there is no concern at present for the numerical values of the masses and coupling constants
of these bosons. Thus there is no concern that the interaction not reproduce the NN phases,
effective ranges, etc. One quite simply wants to compare qualitative features of the relativistic
interaction to that of the non-relativistic interaction. This is performed by, essentially, subtracting
the non-relativistic interaction from the relativistic interaction presented here. That is, the limit
as r — 0 is taken. What remains from this procedure is what one considers the relativistic effect
or simply, the interaction difference. To arrive at results that can be treated analytically, a non-



relativistic reduction is performed that keeps the negative energy states. Having stated this, one
continues with the calculation.

Employing expansion approximations such as (Zp +A§l(£"+M) ~ 4 and (£ +MA)}2E e+M)
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5 is reduced to
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for the sigma exchange only. Equation 11 is the result of keeping the lowest order of 2 or ]%
compared to the leading term. Equation 11 as well as the other boson exchange contributions
can now be Fourier Transformed to configuration space. (Similarly treated is equation 6.) The
motivation for going to configuration space is the ease in which non-relativistic and relativistic
contributions can be compared. Traditionally, non-relativistic potentials are always presented in
position space. Keeping in mind that we seek only qualitative comparisons, we then transform
our momentum space reduction into position space.

The resulting configuration space coupled equations are written:
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The results of Equaticn 12 and 13 are not new. Gross presented these equations(2) without the
quartic derivative operator.

The potentials V1, VT~ V~F and V™~ are:
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These relations are well known(2) and one can verify them. The next step is to uncouple Equations

12 and 13 to obtain a single Schroedinger like equation. One finds that

- (Vﬁz ; s) $Hr) = — (V= Va) v (r)

(20)



where .
- 4?\743 tVes : V-
oM (1 -~ W)

This is the non-relativistic reduction to be examined. In all of the work that follows, V™~ has
been neglected. Thus
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One can show, through the employment of spin and angular momentum “aerobics” that equation
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The V’s are the same as those described in reference 2 and are a convoluted arrangement of =, p,
o, and w potentials.

For the next phase of the calculation, one can proceed either from Equation 25 or from the
potential found in Equation 21. Proceeding from the former choice, one finds after performing
some algebra and keeping only the largest contributions as' r — 0:
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" where the a’s, b’s and ¢’s are positive definite and, to the leading term, are given by
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One notes that in this limit the pion contributions can be neglected compared to the other terms.
To obtain the NN potentials for small distances, one G-parity transforms the NN potentials of
Equation 26. This effectively changes the sign of the omega coupling constant and, thus, changes
the sign of the corresponding coefficients.

The final ingredients that we need before making concluding remarks are the spin matrix
elements; all but L e D can be found elsewhere(3) and the I o D matrix elements are found in
reference 2. For 33P, NN, one finds L = -2, 3‘12 = —4, 01009 =1, and 1y ey = 1. For
13p, NN, one finds that only 7 ® 75 changes; r;  79= -3. Both of these N N3P, states have
the same L o D. Making the substitutions into Equation 25 gives the qualitative results that the
13 p, potential lies higher than the 33P,; a result in agreement with the numerical work of other
researchers.(4). Furthermore, through similar arguments, one finds that the 1S, NN lies lower
than the 13P, NN; an unexpected result. Finally, it is clear that all isoscalar NN potentials are
more repulsive than their isovector counterparts. Hence, 115, >31 5,11 p, 31 p, 11 p, 531 p,
efc.

These qualitative results should be unaffected by a more complete interaction since it is well
known that the omega meson exchange dominates the short range interaction. The omega meson
exchange is included explicitly here. More complete interaction models should vary only in their
quantitative results such as the amount of energy level shift. It is not clear if the results presented
here will affect the pp Coulombic states widths. Although, theoretical approaches generally “cut-
off” the Pp interaction inside 1 fm, investigating how the relativistic effects affect Coulombic state
widths is worth pursuing.

In conclusion, to obtain analytic results, the Gross equation was examined in a non-relativistic
reduction of the NN interaction that keeps the negative energy states. The NN interaction was
chosen to be a one boson exchange consisting of «,0, p, and w. The reduction was then applied to
the real part of the NN interaction via G-parity. To get a qualitative feeling for what coupling to
the negative energy states provides, a short distance limit was taken. One might expect that the
difference between relativistic and non-relativistic theoretical descriptions would show up at short
distance. This work finds that indeed that is the case; for the 115, has a real NN potential that
is more attractive than that of the 13P,; a result rather different from reference 3. The fact that
this is the case at very short distance for this work or any other work may be worrysome since
annihilation was not taken into account. On the other hand, there is no conclusive evidence that
annihilation contributes any more than giving the states widths. Furthermore, this “relativistic
effect” may start to be evident at ranges as long as 0.4 fi in some channels. An effort is already
underway to include annihilation in order to calculate cross sections and other effects. One final
note is that the level orderings are directly related to the isospin coherences of Equations 26 and



from a purely non-relativistic viewpoint this can be thought of as a result, in part, of adding the
contribution of a Z graph.®

I wish to thank Franz Gross, Carl Dover, J.-M. Richard, and Rolf Winter for valuable
conversations and CEBAF for its continuing hospitality. This work is supported in part by
National Science Foundation grant RII-8704038 and NASA grant NAG-1-447,

References

(1) W.W. Buck, Proceedings of the Workshop on Relativistic Nuclear Many-Body Physics, 1988,
edited by B.C. Clark, R. Perry, and J. Vary, World Scientific Publishers.

{2) F. Gross, Phys. Rev. D 10, 223 (1974).

(3) W.W. Buck, C.B. Dover, J.M. Richard, Ann. Phys. 121, 47 (1979).

(4) E. Borie and F. Gross, Few Body Conference Proceedings {1980); J.A. Tjon, Phys. Rev. D18,
2565 (1978).

(5) G.E. Brown, private communication



