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ABSTRACT

o

A comprehensive relativistic treatment of polarization observables in deuteron photo- and
electro-disintegration is presented from a unified standpoint. A discussion of necessary and

sufficient measurements needed for a complete determination of all transition amplitudes is

given.



1. Introduction

With the construction of new electron accelerator facilities, new types of experiments which
can give more detailed knowledge of electronuclear processes will be feasible. In particular,
CW machines make it possible to do coincidence experiments and determine exclusive cross
sections. If in addition, the polarization of the beam, target, or outgoing ejectile is measured,
it may be possible to completely determine all of the helicity amplitudes which contribute to

the hadronic current, and in this way place strong constraints on any theoretical calculations.

This prospect has aroused new interest in the formalism and theory of coincidence mea-
surements where the polarization of one or several of the particles is measured.! In this paper
we derive the coincidence cross section for the d(e,e'p)n reaction in the general case when
the incomming electron, deuteron target, and one outgoing nucleon are all polarized. There
are 162 observables which describe all possible cases, and they are given as bilinear products
of the 18 independent amplitudes which completely describe deuteron electrodisintegration.
While some of these results have been given previously in non-relativistic cases,? this is the
first time, to our knowledge, that all of these observables have been described in a fully
relativistic, unified manner. The formulae, summarized in Tables 10-12, \;vill be useful in sub-
sequent calculations. The formulae for deuteron photodisintegration, ¥ + d — p + n, which
is described by only 12 independent amplitudes, are obtained as a natural byproduct of the

electrodisintegration results.

o

Section 2 contains the derivation of the polarization observables and coincidence cross sec-
tions. Electrodisinf:iagi'ation is treated in the one photon exchange approximation as a binary
collision of a virtual photon and the deuteron target. The density matrix of the virtual photon
is described in terms of the kinematical variables of the electron in the LAB system, while the
hadronic current can be described in the CM system of the outgoing nucleon pair, which is a

convenient frame in which to present the results for the final state, or to integrate over final



state momenta and convert exclusive cross sections into inclusive cross sections. The density
matrices of the deuteron target and the recoiling nucleons are obtained, and their properties
under rotations to different coordinate systems worked out. First, the structure of the results
when expressed in terms of helicity amplitudes is discussed, and then parity conservation is
used to simplify (diagonalize) the problem. It is found that the formulae are greatly simplified
when a new set of amplitudes are used. These amplitudes, denoted g;, are similar to transver-
sity amplitudes previously introduced into the study of pion photoproduction®* and discussed
by Moravesik and his collaborators.’ Finally, the modifications in the formulae required if it

is desired to express all variables in the LAB system are discussed.

The comparative simplicity of the final results makes it possible to discuss the design
of experimental programs of measurements which could, at least in principle, lead to 2
complete determination of the 18 independent complex amplitudes which describe deuteron
electrodisintegration.® This requires the measurement of at least 35 quantities (since one over-
all phase can never be determined). This is discussed in some detail in Section 3, where one
strategy for such a program is presented, and it is shown thaet at least one measurement of a
recoil neutron polarization is essential for a program of complete measurements. While such
a program may never be carried out, it is still of interest, for planning purposes, to see what
kinds of measurements are redundant, and which give truly independent information. These

insights can be obtaired from the results given in this paper.

This paper contains no dynamical calculations; these are presently underway and will be

published elsewhere.



2. Formalism

2.1 The cross section—electron variables

The Feynman amplitude for the electron scattering process in one photon exchange ap-
proximation, depicted in Fig. 1, is

Mg =e® a(k' ka J, —ﬁ'D“"J
pi=e 4(k')vu(k) P <p1p2|u|Pr >= q,J,. v (1)

where 7# and J¥ are the electron and hadron currents, respectively, ¢* = k¥ — k'# is the 4

momentum transferred by the electron, and the photon projection operator is

q“q”
Since the currents are conserved,
qui* =0=gq,J%, (3)

it is customary to drop the ¢f¢” term in D#¥. Alternatively, it is convenient to introduce the

expansion

D® = Y (-1, (4)
A'l

where the sum is over the photon helicities Ay = % or 0, and if the photon momentum is taken

to be in the +2 direction, then in the LAB system

ek = qniz(o,l,ii,o)

7

q v
Eg = ("'QE“’O’O, 6) (5)
where
ql‘ = (V,O,‘O, q,_) . (6)
and ¢2 = 12 — ¢ = ~Q? < 0. Note that the polarization vectors have the following properties
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Gy 5:1 =0

gueh e = (=1)6 a1 (7)

The expansion (4) is convenient because it separates the scattering amplitude, defined in Eq.

(1), into the sum of products of separately covariant currents

My = - D0 G () (0,) ®

In what follows, the electron current will be evaluated in the LAB system, and the hadron
current in the CM system of the outgoing pair of hedrons, with four-momentum p; and p;.
This is done in order to simplify the description of the hadronic final state; in particular, with
this choice it will be possible to integrate easily over the solid angle of the outgoing hadronic
pair and reduce the coincidence cross section to the inclusive cross section. To facilitate this,

the cross section is written

= T Wy
d'o '\z:‘:' Q4 S8EE'Mr (27)3 ( 1) "LA.,A., AN, (9)

where E and E' >> m are the energies of the incoming and outgoing electrons, Mr the mass

of the target, and the electron and hadron density matrices are

o

Lax = 5tr{(m + H(m + WG +1°0) (10)

d3p,d® M M.
Wi = Zf (P211r)spz ! 2(2‘.?)46‘(171 +p2—P—g)J- qJT cEy - (11)

apins

The electron density matrix includes the possibility that the incoming electron has spin polar-
ization s# satisfying s-k = 0, and the hadron density matrix implicitly includes spiﬁ projection

operators as needed to describe the polarization of the initial deuteron, or the polarization
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of the recoil neutron or proton, or any combination of these. The structure of W,,, will be
discussed extensively below — for now we note that it is Lorentz covariant, and hence can
be studied in the CM system of the outgoing np system, and that in this system the energy
momentum conserving é function fixes four of the six integration variables, leaving only the
direction of the relative momentum of the final pair p = %(pl — p2) unspecified. The remainder

of this part will be devoted to reducing the electron tensor.

Carrying out the trace in Eq. (10) gives

Ly = Z{k cex k- e +k- f:\ k- ey — (k - k')f:\ < Ex
+ 2theypap £ kK? }

== Li» + 2hL§AJ (12)

where A is the helicity of the incoming electron, equal to :I:-;—, and L is separated into electron
helicity independent and dependent terms, L° and L*, respectively. Both parts of L and W

(see the next section) are hermitian

LAA' = L:\!A

WAAI = WA.')« . (13)
The photon polarization vectors (5) satisfy the reflection property
&= (-)mer,, (14)

from which it follows that

L2y x = ()L

LY, = (—1)AA L, (15)



Hence there are only six independent density matrix elements, as given in Table 1. These can
be readily evaluated in the LAB frame using the explicit forms for the polarization vectors

given in Eq. (5). Factoring out a common factor
1o 2d
LA.\' =4FEF ¢cos 59 E,\Aa (16)

where # is the scattering angle of the electron is the LAB frame, we choose for these six matrix

elements
h h
£80’ £8+’ £-°1-+’ tf;-—! eo+’ £++

Explicit forms for these matrix elements are given in Table 2. Note that they are all real.
Using Eq. (9), the relations in Table 1, and the hermicity of Wy, gives an intermediate result

for the cross section

5 dE'dN' [, . .
0 = oMGir [zoo Woo + £, (Wit +W__)+£5_ 2ReW,_
— €3, 2Re(Woy —Wo_)+2h th, (Wi —-W_.)
—2h 8, 2Re(Wos + Wo..)] (17)
where
acosll \2
oM = (—’) : (18)

2Esin® 10
To reduce the cross section further, we study the hadronic density matrix Wyys in the next

section.

2.2 The cross section — hadron varlables

The hadronic density matrix was defined in Eq. (11). It is explicitly Lorentz covariant,
and can therefore be evaluated in any frame. The kinematics of the LAB frame for the entire

scattering process are shown in Figure 2. The struck hadron (which has four-momentum p;
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by convention), emerges at an angle #; with respect to the direction of the photon’s three
momentum, ¢, and lies in a plane tilted with respect to the electron scattering plane by an

angle ¢ as shown. If ¢ #0 or 7, the exclusive process is referred to as “out-of-plane™.

It is convenient to evaluate W), in the CM frame of the outgoing hadronic pair p; and ps,
and to work in a coordinate system where P lies in the z-z plane. The reason for choosing to
work in this coordinate system in that it corresponds to the conventional choice for descrip-
tions of two body scattering processes, and we may therefore carry over all of the standard
conventions. The new z-2z plane is referred to as the ejectile plane, and is tilted at the angle
¢ with respected to the electron plane as shown in Fig. 2. The axes of this new plane are
labeled (7, ¢/, 7). Because W) is covariant, it may be evaluated directly in this coordinate

system without the need for special transformations.

However, one delicacy must be handied carefully. The photon helicity vectors (5) were
prepared in the LAB electron scattering plane, and must be explicitly related to helicity
vectors appropriate to the CM ejectile scattering plane. The transformation which carries one
from the (z,y,z) system to the {7, ¢/, Z) system is a pure boost in the +2 axis, followed by
a rotation through angle +¢ about the £ axis. The boost is defined by the requirement that
the three momentum of the final state with four momentum P=p; + p; be brought to zero.

If W is the invariant mass of the final state, then in the LAB system
Py =(yW?+4},0,0,q,) (19)

and in the CM system, P5,, = (W,0). Hence the boost transformation is, in matrix form

A@E 0 O _“31..
Bem = 0 1o 0 (20)
4] 0 1 0



so that if ¢~,, = (0,0,0, go), then

W2+ 2 M
do= Y g - By = g, (21)

The transverse helicity amplitudes are unchanged by the boost, and ¢, has the same form as

in Eq. (5) with ¢, and v, replacing ¢, and v.

The rotation through ¢ about the z axis leaves the longitudinal polarization vector un-
changed, but changes the phase of the transverse components. The transformed polarization

vectors, €/, become
e, =eT? ¢, (22)
where ¢+ are the conventional vectors defined in Eq. (5). Hence, the overall effect of the

transformation from the LAB electron plane to the CM ejectile plane is to modify W), as

follows
Wiy =™ -2 wy,, (23)
Inverting this expression gives

Wiy = c+‘.¢(‘\—'\') Wi» (24)

This phase introduces a non-trivial ¢ dependence into the total cross section. Substituting

(24) into (17) permits us to extract this ¢ dependence, giving

dE'dQY
4n Mt
—r_

&0 = op (50 Woo + i Wiy + WL_) + £5_cos2g 2ReW,
sin2¢ 2ImW, _ — £ cosp 2Re(W,, — W, )
— 0, sing 2Im(W! +W! )+2n th (Wi, -W'_)

— 2h €8, cosp 2Re(W), + W!_) — 2h €% sing 2Im(W/), — W;_)] (25)



This form of the cross section displays the exact ¢ dependence, provided any polarization

vectors which enter Wj,, are defined with respect to the (' ¢/ Z) coordinate system.

The next step in obtaining the coincidence cross section is to carry out the integrals in

Eq. (11) in the CM frame. This gives

Wix = d p1 Ryx (26)
where if, k¥ = M; My /4n?W,

Raw=r? Y 07 stg=aY nJj (27)
& 4

where we use the notation Jy = J'-¢). It is quite common to use current conservation to
express the longitudinal hadronic current in terms of its J° component. This reduction is not
frame independent and will therefore not be used in this paper. If used, it should be carried

out in the frame in which J is to be evaluated (the CM frame). In this frame

Q:.Jm = voJ" — g J% =0 (28)
Hence

Jo=£'°"J,',=-q£3J"’—Y-‘-’—J'3 =

Q Q
— Q 1o __ K __Q___ o __ _]_'_ to
e - (M:r q.-.)J B (n) J (29)

L3

where Eq. (21) was used in the final step. If o appears as a superscript, it will refer to
the time componenf of the current, and not the longitudinal helicity, and an extra factor
of % = (%q—q‘:) must accompany each such superscript. Density matrices with these extra
factors, pax, were defined in Table 2. Because this convention has become quite familiar, we

will present results in terms of these density matrices, and correct for the factors 'l'- by adding

factors of n to the corresponding structure functions (see Table 3).
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Combining Eqs. (25), (26), and (27) and using Table 2, gives us our general form for the

coincidence cross section:

d’o _ oM {( w
d(VdE'd(Yy 4nMp \\Mry

+ vpp [coqu& R,(I!} + sin2¢ Rg;.)]

2
) vy Ry + vr Ry

+ (Mﬁr)m (cosp RY) + sing R{D] +2h v Ry, |
+ 2h (%)vh‘ [cosqb Rg-). + sing Rg},]} (30)

The relationships between the R’s introduced in this expression and the covariant R’s of Eq.

(27) are given in Table 3.

Our results agree with those previously obtained by Walecka and Zucker’. However,
previous derivations of this cross section given by Arenhovel® have omitted the factors of
W /Mt associated with the transformation {29). (Note that these factors do not occur if the
hadronic current is evaluated in the LAB frame - see Section 2.8 below.) Since these derivations
treated the hadronic currents non-relativistically, and these factors are of relativistic origin,
it could be argued that they may be neglected. We believe that even if the currents are
calculated non relativistically, such kinematic factors should be regarded as part of the cross
section and should not be neglected. For light targets, such as the deuteron, they are not

small. For example, for Q?=1{GeV/c)? at the quasi-elastic peak, where z = Q?/2Mv =1,

w Qr My - Q?
2= (BEl) =~ ~ 1.16 31
Mr -\t (3= —2) YoMz (1)

which gives an enhancement of approximately 16%. It is very important to treat such factors

systematically and consistently.

2.3 The cross section for polarized hadrons - general formulae

The sums over hadron spin states which appear in the spectral functions defined in Table 3

must still be specified more completely. If the hadrons are completely unpolarized, the generic
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term Eq. (27) is

]
K
Ruw=r? Y JJ) = =Y <uhlbe>< VRAT VP VRN (32)
AdALAa

where we have averaged over the polarization states of the deuteron and summed over the

polarization states of the two outgoing nucleons. In matrix form, < A\1Az|Js|Ag > is a 4x3

matrix, and (32) can be written simply as
2
X A A
Ry = Str{Jud]) (33)

In general, the target or either of the two hadrons may be polarized, and the polarization can
be described using a density matrix pp or py. The generalized expression which allows for

this possibility is
Ry = ‘Mzt"{mvjamz'fu.T } (34)

where the density matrices for nucleons and deuterons are normalized to tr(p)=1. The re-
maining task is to describe these density matrices, and to simplify the expressions.

Deuteron Polarization

The polarization state of the deuteron is described by a spin 1 density matrix. As a con-
sequence of its hermiticity and the normalization condition (trace=1), this matrix is specified
by 8 real parameters. In the Cartesian representation these are the 3 components of the
polarization vector P; and 5 components of tht:. (symmetric) polarization tensor Fi;. In the
spherical basis they are 3 rank-1 and 5 rank-2 tensors: Tips and Top- We follow the nota-
tion of Ohlsen®. These quantities are defined via the (ensemble) average values of the spin 1

| operators §;, and §,; where
3
S,',' = E(S.'S,' + S,‘S.‘) — 25.',' _ (35)
In the spherical basis, spanned by (£, €, £—) where €5 = ;71.2-(1,:!::',0) and ¢, = (0,0,1),

; 12



these spin 1 operators assume the following familiar form

01 0 0 -1 O 1 0 O
1 : ‘
S5=—1{1 0 1 Sy=—1]1 0 -1 Se=|0 0 0 36
x ﬁ v ﬁ £ ( )
01 0 0 1 0 0 0 -1
The spin 1 density matrix pp can be written in the form:
1 3. - 2 1 1
p_D = "3_ 1 ‘+' ES . P + "’3‘ ZS;:P., + ESz'P‘g + E(Szz - Svy)(Pzz - Pyv) (37)

i<y

The density matrix pp can also be expanded in terms of spherical irreducible tensor operators

of rank 0, 1 and 2:
2 J

PD = % Y Y Tiumm (38)

J=0M=-J

where:

T}M = (- I)MTJ-M

Tip = (-1)MTy M (39)

and the relations between the r’s and §'s (or T’s and P’s) are given in Table 4. Using these

definitions, and Eq. (35) and (36), we can write the density matrix as

1+ i+ Bt —Ufa+ B VET

1 - - . . -
PD =3 "\/%(Tn +Tu)  1-v2Tw —\/§(Tﬁ - T3) (40)
V3T, '-\/g(f'n —Ty) 1- \/gf'm + \—};f‘zo

where use was made of the symmetry relations (39) for Tyas. This matrix is with respect
to the standard £, &, £— basis, which is appropriate for deuteron polarizations defined with
respect to the (z',3'2') coordinate system shown in Fig.2 (where the 2’ axis is in the direction

of the three momentum carried by the photon, {').
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In what follows, we will use the helicity formalism for the hadronic particles. Following
the standard conventions,!® the deuteron will be taken to be particle number 2 in the initial

state, and its helicity vectors are therefore obtained from the standard £,’s according to
b = (~1)1 MG, = AL, (41)

The transformation natrix A in the spherical basis is

= Al = 4 (42)

o

00
A=1]10 1
10

which gives the relation
€. = E_x, (43)

In this new, helicity basis, the density matrix pp becomes:

1- \/gf‘xo + 7151-"20 -\/%_(Tu - Tn) 3Ty

- \@(f‘ﬁ - T;) 1- V2T —\/g(fu +Tn) (44)
\/gf‘;z —ﬁ(f’l‘l + f;l) 1 + ﬁf‘lo + 71;1‘;20

This matrix gives the deuteron polarization observables defined wnth réspect to the primed

D =

G|

coordinate system in terms of deuteron helicity states E A, 80d is the one appropriate to our

calculation. Note that the relations (39) insure that this matrix is hermitian.

Nucleon polarization

-

The density matrices for the outgoing nucleons, normalized so trp=1, are easily constructed

from the familiar spin 1 projection operators.

1

pp=§(1+0"P)“—"§( * ll) (45)

We will choose the proton to be particle 1, and the neutron particle 2 (in the sense of Jacob

and Wick), and will define the polarizations with respect to the (z",y", 2"} system shown in
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Figure 2. Later on, we will use the standard notation s,n, and £ to denote proton polarizations
in the z”,v", and 2" directions, respectively. The proton is traveling in the +2" direction, and
the neutron, in the CM of the outgoing pair, in the —2" direction. In this case the matrix
in Eq. (45) is already in the correct form to use with both the proton and neutron helicity
amplitudes, provided we remember that P,=1 for the proton corresponds to polarization in the
+2" direction, while P;=1 for the neutron corresponds to polarization tn the -2 direction. We
will adopt this convention here. If it is desired to express the neutron polarization directly in

terms of the (z",y", 2") coordinate system, the connection is

. 1 2. —ix"

Fan = (—1)37 2™y, = 00 Xan = Xoa (46)
and the formulae we obtain can be converted to this convention by changing P; — - P, and
Py, — — P, while leaving P; unchanged.

If the proton and neutron helicities states are represented by a four component vector V;

with components

Vi=|++>, Va=|4+->, V3=|_+>, Vi=|——> (47)

where the first entry is the helicity of the proton, the nucleon density matrix becomes

(L+ P,)(1+ P]) (t+ B)(P.-iP)) , (P.—3P)(1+ F}} (Pe —iP,)(P; —sPy)
1| 1+ R)P+iR) (1+PR)1-F) (Pe —sB)(P, +iF) (P:-iR)(1-F)
4| (P.+iP)1+P) (P.+iP)P.-$P) (1-P)(1+P.) (1- P.)(P.—iP))
{P. +iP)(F.+iP) (P.+iR)1-P) (1-PR)(F+iF)} (1-AR)1-F)

PN = (48)

where P and P’ are the polarizations of the outgoing proton and neutron, respectively, de-
fined with respect to the (2", ', 2') coordinate system for the proton, and the (2", —/', -2')
coordinate system for the neutron. This is the density matrix we will use. Note that it is

hermitian.
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We now turn to the specification of the matrix elements of the current.

2.4 Polarization observables in helicity basis
For electrodisintegration, there are 36 helicity amplitudes, but parity conservation can be
used to express 18 of them in terms of the other 18 through the relation
< =Apy—Anldoa,| = Ap >= ny(—1)} 3= mA0) < AALTy [AD > (49)
where, for deuteron electrodisintegration

ng = n(=1)""e " = (50)
g

‘where 5 is the product of the intrinsic parities of the four particles, and s; are the spins.
(Note that Ref. (6) contains, an error'}; it is assumed there that n, = ~1 instead of +1.)
The relation (49) follows from the transformation ¥ = e~y B, which has the same effect
as inversion in the z-z plane. The 18 independent helicity amplitudes are labeled using the

convention introduced by Renard et al®

Fiz =<kl T 41> Fi4 =<+l +1[J €0 >

Fse =< it 3T 64| —1> Frg =<+l FiJ 1>

Fo10 =<2} FiJ 0> Fujgz =<z}FiJ-e|-1>

Fizgis =< 1 LJ-e|£1> Fiq =< } iV -el0> {51)
Fig,18 =<-1 |7 &|£1> F1 =< -} $IJ-6[0>

In matrix form this gives:

R F 3 F4 Fgs F -F R

- Fr F R - F —~F F - — I F - F

J, = y P ‘11 G = 18 17 16 jo= 12 10 8 (52)
Fy Fo Fi Fe F7 Fis -y F -F
F, F Fs -Fs P4 —-Fs FE -F3 B

Note that the Y parity constraints (49) take on a simple form in this matrix space. Specifically,

Voda V3= fh(—l)l_"f-a (53)
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where n.,= -1 is the intrinsic parity of the photon, and the intrinsic parities and phases of the

nucleons are incorporated into ﬁ and of the deuteron into f’g

0 0
0 0 1
~ 01 ~
Yy = npnn 1 o i Ys=np|0 -1 0O (54)
1 0 o0
-1 0 0 O

where np = 5, = np =1, and }7‘-2=1.

It will be convenient to introduce density matrices which are even or odd under Y parity.

If a = £1, the combinations

N = % (PN + af’qufQ)
55 = 5 (5p + alsin¥) (55)

transform like

ﬁf{r = anﬁerﬁ

5% = a¥3paYs (56)

It is straightforward to show, neglecting all terms which depend on the products of .F:I:’J'r

(because the case of both nucleons polarized in the final state will not be considered in this

paper), that
1 —iP, —iP 0
.. 1P 1 0 —iP,
PN = re B st
1P, O 1 —iF
0 P, 1P, 1

P+ P! P] P, 0
ﬁ":l P; Pg""‘P" 0 P’; (57)
N"4] p 0 -P+P P!
0 P, R —P, — P}

17



and

1+ -};f‘zo \/g(RCf'zl — ¢ImTyy) V3ReTs
bt = % \@(Ref‘,, + iImTy;) 1— 2Ty _\/g(m,l +iImTyy)
J3ReTs, /2 (Refy — iImiy) 1+ 3T
1 —‘m/g'i‘w _ —\/3(Refyy - iTmTy) i\/§:Imf‘gg -
Fp=73 ~\/3(ReFu +iTmTn) 0 ~\/3(Refs +iImTn) | (58)
—iv3ImTy ~/3(Refy ~ itmiT) V3T

The new density matrices 5% and 5%, simplify the analysis. To see how this works, introduce

new R matrices constructed from these density matrices
R = an®tr {3 T3/} (59)

These now have simple symmetry properties, which follow from the ¥ parity transformations

(53) and (56),

R = ap(-1)* R, (60)
and the original Ry, defined in Eq. (34) are linear combinations of the sz
Rey = (RET+R;™) + (RY + R, (61)

v

It is now easy to see that the observables given in Table 3 fall into two classes, depending
on how ﬁjf, are paired with ﬁli,. Amplitudes in Class I are those observables which occur as

the following linear combinations
Rayp+ (~1)**R_,_, =2(R}* + R;"). (62a)

These are Ry, Rr, Rg%.,Rg) , and Rgi!‘" (This is the origin of the superscript I.) Those in

18
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class II are the following
Ro — (—1)***R_y_y = 2 (R} + R3Y) (628)

and are R7: and the three interference terms with the superscript (II). The amplitudes which
are members of each class are listed in Table 5, and the non zero observables are identified
in Table 6. If an observable is in Class I, then all entries labeled II in Table 6 are zero for
that observable. In particular, since the cross section for unpolarized hadrons arises from a
%, 7} pairing, only amplitudes in Class I can contribute, and the familiar result that the

cross section depends on only 5 structure functions is obtained.

Before we present explicit formulae for the observables, it is convenient to make further
simpliciations by introducing hybrid amplitudes.

2.5 Polarization cbeervables in a hybrid basis

The density matrices given in Eq. (57) and (58) are even or odd under the Y parity
transformation, but still have the complexity (number of non zero elements) of the original
density matrices. The reason for this is that these matrices are expressed in terms of the
helicity basis, where the axis of quantization is along z, the direction of motion. However,
since only the y component of spin does not change sign under the Y transformation (none of
the components of spin change under parity, but the rotation by x around the y axis changes
z -+ —zand z — —z) it is more natural {o chose the y axis attached to the particle as
the basis for quantization. Amplitudes quantized with respect to the y axis are referred to
as transversity amplitudes. The amplitudes introduced here quantize all the hadrons with
respect to the y axis, but do not treat the photon in this fashion. For this reason, they will be
called hybrid amplitudes. They are linear combinations of helicity amplitudes which greatly

simplify the final results.!

The density matrices (57}, expressed in this hybrid basis, have the components P, and P!

occupying the locations of Py and Py, while Py and P, are mapped into —F, and — P! along
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the diagonal. Formally, this is accomplished by a rotation by —x/2 about the z axis, which
carries P, — P, and Py — —P,, leaving P; unchanged.!? The new density matrices, which

will be distinguished from (57) and (58} by discarding the tilde, are

1+ P+ P,
] P! —iP! P, — 1P, 0
1| e +ip 0 0 P, - iP,
P R | (63
4| P +iP, 0 0 P;—iP,
0 P.+iP, Pl 4+iP! 0
and
. 1+ Vl;Tm + \/%Tm 0 V3T3,
pB = 5 0 1- \/§T20 0
V3T 0 1+ %Tzo - \/ngo
0 (T4 + T71) 0
- -1 /3 . *
Pp = —5-\/; (T + T1) 0 (T}, — Th) (64)
0 (T — Tn) 0

where the Tjps are obtained from f"_y M by the substitution 2 — y and y — —2z (see Table 7).

The transformations which achieve these simplifications are

1+io; t— 0,
RY(—n/2) = % ...................
f— 0 1410,
1 1v2 -1
R3(=n/2) = % Vi 0 iv3 (65)
-1 2 1

The hybrid amplitudes are related to the helicity amplitudes by
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g8 93 912

Ri(-n/2) Jy B/t = |7 O B L=y, (66)
g2 @go ge
g7 G4 ¢gn

and
0 g5 O
- g 0

BA-n/2) J, B(-n/2)t = [ 92 0 0T, (67)
giau 0 918
0 gis O

The specific linear combinations which define the g’s are given in the Appendix.

The Y parity transformations take on a very simple form in this hybrid basis. They

become
1
Yi = RY(-n/2)VuR}(-/2)! = - 1
1
-1
Ys= BY(~-n/2)BaRY(-n/2)T = | 1 (68)
-1

The simplicity of the J, component of the current, Eq.(67) above, follows directly from the
parity transformation, and the J_ current is obtained from Eq.(53), which also takes on a
simple form:

—gs g3 —q12
g1 —g10 gs
Y4J+Y3 =—J_= (69)
g2 —99 g6

g7 g4 —Gn
This relation suggests separation of the Ji currents into pieces even or odd under the Y
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transformation

0 g3 0
1 0
s=turoay=|® g5
2 g2 0 ge
0 ga 0
gs 0 g2
1 gio O
Jo=(JT+J7)= (70)
2 0 g9 O
g7 0 gu

The structure functicns of Table 3, when expressed in terms of these amplitudes, take on a

beautifully simple and symmetric form, given in Table 8.

Examination of Table 8 shows that the 9 structure functions divide into 3 groups of 2, each
of which give the real and imaginary parts of sums over products of two different currents,
and 3 functions related to squares of each of the currents. Table 9 shows the patterns in a

symbolic way.

It is also possible to reduce all the sums to only one generic sum, which we take to be
EI JoJs. The specific results for the two observables which depend on this sum are presented
in Table 10 as real and imaginary parts of sums over the bilinear products g;g;;12 where ¢
runs from 1 to 6. The results for the moduli |J,|> and [J,|* can be obtained from this sum
by substituting for g’gi+12 the combinations |g;|* and |gi+12!%, as shown in Table 11. The

observables involving |Js|? can be obtained by observing that the 4 x 4 matrix, which can be

o

(01 -
(7 3): ™

maps J, into a symmetric form with ¢; — gi16

written in 2 x 2 block form

0 g O
7 O
SJ, = g 11 _ (72)
gs 0 g2
0 gio O



However, S changes the sign of Py, and P, in the proton density matrices as follows

1+ P, 0 0 Py + 4P
SphS = v ; SpnS = ot (73)
0 ]-"_PyI P;_'P‘ 0

Hence Y_ |J,|? can be obtained from Y |J,|? by substituting |g;,¢|? for |g;|* and changing the
sign of P, and P,. This substitution and extra phase (¢) is indicated in Table 11. Finally, the
four sums of type II involving a product of a symmetric and an antisymmetric current can be
handled by using (72) and noting that a single S operating on the proton polarization density

matrix converts the forms of pjf, into each other:

P.+iP, 0 0 1+P
Soo = ; S+= 74

Hence the sums of type II have the same general structure as those of type I but with
(1,Py, Pg,sPs)— (P;,—iP;,1,—P,;). These observables are given in Table 12. The struc-
ture of the results are different because of the transformations (74), but can be expressed in
terms of the same sets of amplitudes (the a — f defined in Table 10) with the substitutions

indicated.

Finally, the neutron observables can be obtained from the proton observables by noting

that the matrix B

1000
0 010

B= (75)
0100
0001

transforms neutron density matrices into proton-like density matrices

1-o,P, 1—P;
B( l—aP’)B=( 1+ P
£y v

<P + 0y P! 0 o P —-iPt\
B Oy ,+0'y z B = . z try (76)
0 o Pl +o,Pl ] P! + 4P} 0
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while its only effect on the symmetric current is to interchange g; — g3 and g5 < ge:

0 g3 O 0 g3 O
a1 0 g gz 0 gs
B = (77)
g2 0 gs a 0 g
0 g4 0 0 g4 0

and on the antisymmetric current it interchanges gg «— g10:

gg 0 g2 g8 0 g2
0 g0 O 0 g O
B = (78)
0 g O 0 gio O
gr 0 gn g7 0 gn

Hence, all neutron observables have a structure identical to the corresponding proton observ-
able except that for J, we must interchange g; + g2 and g5 «— g¢, for J, we interchange

go < g0, and for J, we interchange g13 ~* g14 and g17 < g1s.

The calculation of the 18 observables which go with each of the 9 structure functions
can now be done by hand. The resuits have been presented in Tables 10-12. (These results
were also confirmed using SMP.) The patterns outlined above can be readily seen in the final
results. These tables, together with Eq.(30) for the cross section, are the principal results of

this paper.

It may sometimes be necessary to identify a particular observable in the tables. The
structure functions will be labeled and identified by the following expansion, given for the

pair Rg} and Rg.}) as an example:

Ry} =Y T.PRur(P;T))

t,5¢el
R =5 T.PRer(P;,T) - (79)
s, Jell
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where

3 1 3 3 3 3
I; = {U, \/;Tw, UETN’ V3ReTy2,V3ImTy,, \/;RCTII: \/;Ian, J;RCTZI: \/;ImTzn }

Pj = {U,Pa,P., P} (80)

and the non zero terms in each sum for hybrid amplitudes are given in Tables 10-12. In
identifying specific terms, we will suppress the U labels, and adopt other simplifying notation

as illustrated below

Rpr(U,U) = Ry

Rrr(Pn,U) = Rrr(n)

1
Rir(U,—=ImTy2) = Rrr(ImT:
7 7 22) = Rpr(ImTy;)
1
RLT(Pn, —ImTzz) = RLT(n,ImTzz) (81)

V2

Note that, because classes I and II are disjoint, the subscripts on Rg._}.n) have been suppressed
in the expansions (79); the arguments of Rpr(P;,T;) uniquely identify to which expansion
it belongs. This notation forces a pairing of Rg-}. and R}Jm, but as shown in Tables 8, 9,
10-12, the natural pairing is between jo). and RE}.., for example. For the special case of the
amplitudes Rp + Rq(g we will sometimes use the notation .I?Ti for the expansion coefficients in

Eq. (79).

2.6 Photodisintegration cross section

The differential cross section for photodisintegration can be obtained quickly from our
previous work. The most general polarization state of a real photon can be written as a linear

combination of its two helicity states.
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e = ael + bet (82)

where |a!? + |b|? = 1. Then the differential cross section in the CM system is

62

L 4p,W

PixWax (83)

where the hadron density was defined in Eq. (11), v, is the CM energy of the photon (note

that v, = g,) and the photon density matrix is

v la]* ab* g
Pav = | 4o b2 (84)

Using the hermiticity of Wy, and reducing in the CM as done in Eq. (26) gives immediately:
do 5
& ( P ) [Rr + (laf? = |b[") Ry + 2Re(ab") REY

d_nl- - 8r,W
+ 2Im(ab*) RAD) (85)

where the R’s are the same structure functions discussed in the previous sections, except that

they are evaluated at the real photon point ¢ = 0.

2.7 Inclusive cross sections

Inclusive electrodisintegration cross sections can be readily obtained by integrating over
the solid angle dﬂ;’, and summing over all polarizations of the outgoing nucleons. We will

present formulae with and without deuteron polarization.

Special care must be taken with the deuteron polarization. Recall that the results given
in Tables 10-12 were for deuteron polarizations defined in the e¢jectile plane, rotated through

the angle ¢ with respect to the electron scattering plane. When integrating over ¢ to obtain
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inclusive cross sections, care must be teken to express the deuteron polarizations with respect
to the electron scattering plane, which is fixed. To avoid any confusion, the polarizations
defined with respect to the electron scattering plane will be denoted by Tg’) to distinguish

them from T;,, the polarizations defined in the ejectile plane.

To express the polarizations T.-(;.’] in the ejectile plane, we must rotate the coordinate axes
through angle ¢ about the Z axis, which is equivalent to an active rotation of the polarization
quanties T‘-S?) through angle — ¢. This is the same transformation we carried out on the virtual
photon polerization vector in Sec. 2.2. However, we have chosen to define the deuteron T},
with respect to the y axis, and this makes the transformation laws more complex than that

obtained in Eq.(22) for the photon. The correct transformation laws are
_ o)
ReTy) = cosc;SRch(;’) — sing (%)

()
\E/‘_g = s:'n.¢ReTl(f) + cos¢ (TIT;)
ImT“ = ImTl(:)

ReTyy + —Tso = ReT(S) + JB-T}g)

V6 V8
ReTys — \/%Tzo = €052¢ (RCTz(;) - \/gTég)) — sin2¢ (ZRCT"'(;))
2ReTy; = sin2é (Rerz(;’ _ \/gr,(g’) + cos2¢ (zReT,?;”)

ImTy; = cos¢pImT. — singImTLY

ImTy = ainqumT,(; )+ cos¢ImT.‘S;’) (86) -

These give the deuteron polarization parameters in the ejectile plane (those used in Tables 10-
12) in terms of polarization parameters in the electron scattering plane. These transformations
must be used when calculating inclusive cross sections, where the deuteron target ﬁolarization

is fized as we integrate over ¢. For exclusive measurements the deuteron polarization could
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be oriented with respect to the ejectile plane, in which case the results in Tables 10-12 could
be used directly. However, if a number of ¢ angles are measured simultaneously with a fixed
deuteron polarization, as would be the case with the STAR spectrometer proposed for use at
CEBAF by the Illinois group!3, it would also be necessary to use the transformations (86) in

order to predict the correct ¢ dependence of the cross sections.

Using the transformations (86) it is straightforward to carry out the ¢ integrations an-
alytically. The integrations over #; cannot be carried out unless the structure functions are

known; we will denote these integrations by

Ba(Ts) =} f sinfyd8y Ra(T5) (87)

Using this notation, the most general inclusive cross section can be obtained from Eq. (30).
It becomes
do__ W\ o [+ PO (P
W—UM FT vr (WL + Py Wi (Pss)
+ vz [Wr + PEWr(P.,)| + orr (P — P Wrr

W o o
+ (M_T) vrL [P,‘ ‘Wir(P,) + P,E)WLT(PM)]

o W
+ 2h vy Py )WT: + 2h (M_T) vrL [Pz(o)WLT' (Pe) + PJ:)WLT' (Pys)] } (88)

where the deuteron polarizations T}‘Bf have been expressed in cartesian form to facilitate

interpretation of the results, and the inclusive structure functions W are given in terms of the

R’s of Eq. (87) by
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Wy = ARy
Wr = ARy
L(Par) = = 2| Re(To0) + 3R (ReTso)]
Wr(Pys) = —%[Rr(Tzo) + 3Rr(ReTy;))
Wrp = .;i[fzn (ReTy2) — Rer(Too) + VZRrr (ReTn))

3 - 1 .
Wir(Py) = T[RLT(Tm) - —2RLT(R8T11)]

7
Wir(Pz,) = —%IRLT(I‘mTzz) + -\%_Z—RLT(Ian)]
Wra = %Rr(fﬂlf‘n)
Wir(P;) = —_%{[RLT' (Tro) + —%RLT'(RCTM)]
WLTr(Py,) = —%[RLT:(ImTzz) - %RLT' (Ian)] (89)

where A = p; /Mr. It has been known for some time!* that time reversal invariance implies
that Wpr(P,) = 0. (It also gives other constraints on various amplitudes which have not been

studied in this paper.)

If the deuteron target is unpolarized, the cross section reduces to the familiar form

d3o

Tya = oM W2t 2W) tan®0/2) (90)
where
W) = 'I—WT
2 2 14 2 |
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2.8 The cross sections and observables in LAB frame

In the previous sections, results for the hadronic currents were presented in the CM frame
because of the convenience in obtaining inclusive cross sections. However, all observables are
measured in the LAB frame, so that it is necessary to completely clarify the relationship

between these two frames.

A review of the derivations given in the previous sections shows the following differences
between the results presented so far (in which the electron variables are in the LAB frame and

the hadr-on variables are in the CM frame) and those in which all variables are in the LAB
frame:

(f) There is no boost operator Eq. (20). The primary effect of this is to remove the W /My

factors from the J° components of the current, defined in Eq. (29).

(¢t} The integration in Eq. (11) must be carried out in the LAB frame. This introduces the

recoil factor discussed below.
(#¢7) The polarization quantities must be transformed to the LAB frame.

The effect of items (i) and (ii) is to introduce a recoil factor and a modified form for the

cross section. The integration over the hadronic variables gives, in place of Eq. (26),

WixlLa =d0L pL 1 Ryx (92)

o

where

w 1
% ),

These changes give the following result for the cross section, Eq. (30), in the LAB

(93)

r—=
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d°o _ oMp,
dVdE'dQ;  4nxMrp

+ vpr [cos 2¢FJ(I¥) + 8in 2¢R¥¥]

+vrr [cos qu + sin qu( I)] + 2hv Ry

r{vLRL + vr Ry

+ 2hvyp [cos q&RLT, + sin ¢Rg.},] } (94)

where the structure functions R are to be evaluated in the lab frame with n = ¢, /Q. Alter-
natively, if we work only with the covariant form of the longitudinal current, J - ¢, the cross

section can be written in the following alternative form

de  om QF
dVAE'dT  4nMr b {RL +er Ry
- —[cos 2623 + sin 26 27|

+ srr|cos ¢R + sin ¢R£ )] + 2h sTRT,

+ 2h &pr|cos ¢RLT' -+ 8in qbﬁgj)«,] (95)

where the R’s in Eq. {05) are now covariant, and are obtained from the covariant Ry of Eq.

(27) by setting n = 1 in the second column of Table 3, and the s; are

_1 2
T—2+E

ST = ——\/——(1 + ¢2)3

s&-:f(l—*—f’)’
1

8ir = ~ 7 (96)

where £ = (¢, /Q) tan }0. The quantity dT is
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dL|cm = p1 diy

d|pap=pL d0L (97)

Hence the advantage of Eq. (95) is that it uses covariant structure functions R, and combines
the CM and LAB results into one formula - the only difference being the choice of dZ given
in Eq. (97).

Finally, we address the question of how the hadronic spin variables are affected by the
choice of frame for the hadronic current, item (iii) above. First, note that the boost (20) will
not affect the deuteron helicity, since it is co-linear with the deuteron momentum. However,
since the momenta of the final state nucleons are in general not co-linear with the boost, the
boost will introduce a precession (a Wigner rotation) of the nucleon spins through an angle
8, about the axis § x p, which is perpendicular to the plane defined by the direction of the
boost (§) and the 3-momentum of the particle (). This plane is just the ejectile plane defined
in Fig. 2, and hence the boost will rotate the nucleon spins in this plane and therefore mix
the ¢ and s components of nucleon polarization. The amplitudes in the 3rd and 4th columns
of Table 10-12 will mix. The sizes of these terms will be frame dependent, but the structure
of the results given in Table 10-12 will also hold for observables in the LAB system. Hence
the general conclusions of this paper (including the discussion of section 3) do not depend on

which frame is used for the hadronic variables; only dynamical calculations of these quantities

depend on the frame.. The details of the Wigner rotation will be presented elsewhere.

We now turn to & discussion of possible programs of complete measurements.
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3. Complete Separations

3.1 Introduction

Complete determination of photo-nuclear processes has been attempted in several different
ways. We have adopted the method of Barker et.al? (for criticism of other approaches see
this reference). We looked for a set of new amplitudes which made the separation obvious.
The hybrid amplitudes presented in the previous section accomplished this, just as in pion
photo-production. As we saw in Tables 10-12, the structure functions became particularly
simple when expressed in terms of the g;. They become real and imaginary parts of bilinear
combinations of gls. This form makes it comparatively easy to study what measurements are
necessary in order to completely and uniquely determine all the complex amplitudes, as will
be shown below.

Consider a simple example of the electro-disintegration of a spinless nucleus into two
spinless fragments ( *He(e,e’ n°)*He for example). There are only two independent helicity
amplitudes, J, = |J,|e"*e and J+ = |J4|e**+, and only 5 non-vanishing structure functions

(only 4 of which are different):

Ry = r;zlv'.:2|.1'¢,[2

Ry = 26%|J4|?
Rg}. = 2k*Re(J4J2) = —Rr
Rg% = dnk’Re(JoJ})

RE}, = 4nnzIm(JoJ_;) {100)

but there are only three independent observables: |Jo|,|J+|,#o+ = (0o — é+). The overall

(absolute) phase is not an observable.

If we measure Ry, Ry, and one of the Ry7, we still cannot determine ¢o+ unambiguously.

For example, a measurement of Ry will determine cos¢o4, which gives ¢y4 in the first or
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fourth quadrant if it is positive, and in the second or third quadrant if it is negative. A similar
ambiguity results if only Rr7v, which determines sing,, is measured. To completely remove
the ambiguity both of the “paired” amplitudes (Rrr and Rpr+) must be measured. But this
measurement will also give the product |Jo||J+|, requiring the measurement of only one other
modulus to completely and unambiguously determine the three independent observables. This
last measurement can be either Ry or Rr{= —Rrr). The program requiring the fewest numnber
of measurements is therefore one in which “paired” amplitudes, together with a few “moduli”

are measured.

Unfortunately, measurements of “paired amplitudes” will generally be more difficult, as
they usually involve polarization observables. The best experimental program may well be to
measure “moduli” if they are easy, and “paired” amplitudes as needed to eliminate ambiguities.

3.2 Overview of separation strategies

We begin the discussion of separation strategies by seeing what can be learned from the
“paired” observables (jo).,Rg}.), (R_(LIP.,REII}), and (Ry, (1}]) detailed in Tables 10 and 12.
If a!l the observables in Table 10 were measured, the complex amplitudes a;, b;, ¢, d;, ¢;, and
f; would all be determined uniquely, and hence the products of the g's which they contain.
There are 18 different products of g's which are so determined, and these fall into two separate
classes, as shown in Table 13(a). No product of an amplitude from class A times an amplitude
from class B is present (and of course there are no products of the first six amplitudes with each
other, nor the last 6 with each other). Hence, there are terms like gjg13 and g3 16, but no term
like gjg14. From gjg13 and g}gie, one can determine |gi[g13], lg1llg16]; #1 — d13, and &1 — 16,
from which the rela*.ive size of |g13] and |g16| can be deduced, and ¢13 — ¢15. In 2 similar
manner the phase difference between all amplitudes in each class can be determined, but the
overall phase difference between the two classeseremains undetermined. Also, two moduli
cannot be determined, which could be taken to be |g1| and |gz| (if these are assumed, all other

moduli are fixed). Hence, of the 23 possible observables associated with the amplitudes which

34



contribute to Table 10, only 20 can be determined by the 36 possible measurements. Three

cannot be determined.

The same analysis works for the other paired amplitudes (Rg’})., Rg})) and (RTJ, (];))
of Table 12. The classes of amplitudes are displayed in Table 13(b) and (c). Note that the
combination of all of these measurements still leaves the same three observables undetermined.
The two classes of amplitudes are enlarged, but there is no mixing which would determine the

missing moduli or phase. The expanded classes are

A :{91 g4 95 g7 G10 G11 913 16 917}

B :{g2 g3 g6 g8 9o 012 G14 915 G158} {101)

Furthermore, the additional measurements are less efficient in adding new information. If
all of the products of amplitudes from a given “paired” set were known, for example, the
measurements of the next “paired” set would add only 12 new observables, and measurements
of the last pair would add no new information. This shows that care must be taken to plan

experimental programs optimally.

The missing moduli, one from class A and one from ¢lass B, can be determined by two
measurements from Table 11. A convenient choice would be two of the unpolarized observables
Ry and Rfr"' However, no measurement involving any combination of polarized electron beam,
polarized deuteron target, or polarized recoil proton can determine the last phase. For this,
at least one measurement of neutron recoil pol;a.rization is needed. Recall that the neutron
observables are identical to the proton observables except for the interchange of g1 « g2,
gs + g6, gs < §10, 913 +* G14, and @17 — g18. This mixes up the classes in Eq. (101), making
it possible to determine the last relative phase. However, only measurements which depend on
this phase can be used for this purpose. It turns out that only the observables which depend
on P! and P/ (e; and f; in Table 10, a;,b;,¢; and d; in Table 12, and a; and §; in Table 11)

are satisfactory - the others are not sensitive to this interchange.
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Qur discussion has shown that at least one neutron recoil polarization measurement is
essential to a complete determination of the 18 deuteron electrodisintegration hybrid ampli-
tudes, and that this must involve measuring P/ or P,. H this measurement is to be made with
an unpolarized deuteron target, then the quantities must be chosen from Ryr(s'), Rrr (!'),
Rr(s'), Rp(l"), Rrr(s'), Rpr(l'), Rrr(s'), or Rrr(l'), where the prime on the s or ! argument

signifies a neutron polarization measurement.

We have focused on proton polarization measurements in this section, assuming that such
measurements would be easier to carry out experimentally. One can readily see, however, that
there is a correspondence between proton and neutron polarization measurements, and the

best strategy could well be to use 2 number of both.

At this point a number of questions arise concerning the “best” methods for separating
the 18 amplitudes. We believe that we have provided sufficient detail for the reader to work

out his own preferred strategy, and will not persue discussion of the subject here.

4. Conclusions

This paper analyzes the differential cross section for the process d{e,e'p)n in which the
scattered electron and the recoil proton are measured in coincidence. The cross section can be
expressed in terms of nine (unknown) hadronic structure functions defined in Table 3. If the
hadronic structure functions are expressed in tefms of variables defined in the center of mass
(CM) of the outgoing hadrons, the relevant formula is Eq. (30). If LAB variables are used,
the expression given in Eq. (94) is appropriate. Equation (95) gives a formula convenient in

either frame.

36



Each of the nine structure functions can depend on the polarization of the deuteron target,
and/or the polarization of the recoil proton. If all possible combinations of polarization are
considered, each of the nine structure functions depend on 18 independent observables, for a
total of 9x18=162 observables. The dependence of these observables on the 18 independent
complex helicity amplitudes which completely describe deuteron electrodisintegration is given
in Tables 10-12. The 18 hybrid amplitudes g; are linear combinations of the 18 helicity

amplitudes, given explicitly in the Appendix, or in general terms in Eq. (66) and (67).

Even though there are 162 observables in Tables 10-12, it is shown in Section 3 that these
are not sufficient to determine all of the 35 real functions implied by the existance of the 18
complex helicity amplitudes. One phase, relating the two classes of amplitudes given in Eq,

(101), can only be obtained by measuring the polarization of the outgoing neutron.

Dynamical calculations of these observables are planned for future work.
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Appendix

The connection, Eq. (66) and (67), between the hybrid amplitudes g; used in this paper, and

the helicity amplitudes F; defined in Eq. (51) can be summarized by the matrix relations

gi = A, Fy (A.1)

where, for transverse amplitudes (1,7 = 1-12)

( i : VZ V2 - —1 1 -1 —£/2 V2 -1 1)
i 3 v2 V2 = - -1 1 V2 —-iv2 1 -1
—ivZ W2 0 0 —iv2 V2 V2 V2 0 0 V2 V2
ivZ —ivZ 0 0 V2 —iv2 V2 V2 0 0 V22
- -1 V2 2 i $ -1 1 —i/2 V2 1 -1
- =i 2 V2 ' % 1 -1 /2 -iv2 -1 1
Aj=3l -1 1 WE -VE 1 -1 i VE VB -
1 -1 —-iV2 W2 -1 1 £ i N R ]
VI VI 0 0 VI VZ iVZ —ivZ 0 0 2 -ivZ
VZ V2 ) 0 VZ V2 -2 V2 0 0 —iV2 V2
1 -1 /2 -ivZ -1 1 - —i V2 V2 : i
~1 1 —iv2 iv2 1 -1 - V2 V2 $ {
\ )
(4.2)
while, for longitudinal amplitudes (ij=15-18)
( t \/5 —1 -1 12 1 \
i V2 - 1 -2 -1
1 —ivV2Z 0 —iVZ V2 0 V2 (4.3)
4=zl iz 0 i V2 o0 V2 '
- V2 i 1 V2 -1
\ —i VvZ o8 -1 —iv/2 1 J
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Figure Captions

Fig. 1 The Feynman diagram describing deuteron electrodisintegration in the one photon

exchange approximation.

Fig. 2 Diagram of the electrodisintegration process showing the electron scattering plane, the

ejectile plane, and the two coordinate systems in the ejectile phane: (z',y’,2') and

(I", yH, Z").

Table Captions

Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

Relations between the photon density matrix elements. Note that there are only six

independent elements.

Explicit forms for the six independent £,y introduced in section 2.1, are given in

the right hand column. They are also related to the v; 's introduced by Donnelly

(Ref. 1).

The R's used in Eq. (30) (left hand column) are equal to expressions involving Ry
(defined in Eq. (27)) given in the center column, or the sums over current operators
given in the right hand column. In the right hand column, J+ = J'-ex but J® = J*
as defined in Eq. (29). Note that, because of the metric tensor, J+ = :l:vl_:’(.jfz +iJy),
which is opposite in sign from that used in Refs. 3 and 7. Our overall results agree

with these references.

o

Definitions of the operators s in terms of the spin one operators §; and 5;; given
in Eqs. (35) and (36). Precisely the same equations relate the Ty of Eq. (40) to

the P; and P,'J‘.
The two classes of observables which occur in electrodisintegration. This separation

is a consequence of Y parity conservation.
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Table 6.

Table 7.

Table 8.

Table 9.

Table 10.

Table 11.

The non zero observables in each class. If the entry I occurs, this observable is zero

for observables of class I, and conversely.

The deuteron tensor polarization densities in the hybrid basis. The subscripts z, y,

z refer to the (z/,y,2') coordinate system shown in Fig. 2.

The nine structure functions which enter the cross section given in terms of the

longitudinal, the symmetric (J,), and the antisymetric (J;) current operators defined

‘in Eq. (70). These results can be obtained by inspection from the second column of

Table 3 and from Table 5.

Symbolic representation of the content of the nine observables given in Table 8. The
i'th diagonal element of the array is proportional to the square of the modulus of
the ¢ th current component |J;|?, and the (i,5) elements are proportional to the
products J; J’JT. If the element is to the upper right of the diagonal it is proportional

to Re(J,-J} ); elements to the lower left of the diagonal are proportional to I m(J;J JT ).

The observables which depend on the sum } ;JoJ,. The quantity A(P;,T;} is given
in the table; only proton polarizations are considered here, and 2=ty =n,
" = s. To construct the observable it is necessary to multiply the result by the
factor showr at the top of each block; for example, Rrr(Pa, T20) = -;—nRe(aa—b3). In
order to determine any given product, for example gy¢13, it is necessary to measure
the set of all quantities which contain this product, the 3 s for example. The
quantities break naturally into different disjoint sets which are labeled with the
same lower case roman letter, 6, b, ¢, d, ¢, f. The reader can easily find the patterns

after a short study.

The observables which depend on E|J,|2,E|J,|?, and I|J4|2. Sets of quantities
which depend on moduli lg,-l2 are denoted by capitalized roman letters. Otherwise,

the notation is as in Table 10. Note the phase € = —1 for the X|J,|* observables.
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Table 12.

Table 13.

The observables of type II. The notation is the same as in Table 10, with the sub-

stitution rules given in the table,

Products g'g, which can be determined from measurements of the six observables
detailed in Tables 10 and 12. In each case, a complete set of measurements deter-
mines only the 9 pairs of products involving the upper three g*’s with the lower 3

g’s in class A, and a similar @ pairs of products in class B.
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Unpolarized electrons

Incoming electron with helicity A

£ £, =0
G ==Lt = =2, =13, th, =i =2, =1,
05, = e, =—th
6=, &_=e =0

Table 1

W
Po+ = (ﬂ—,%) £y = M VTL

pr+ =l =vr

P+~ =48 _=vrT

i

[ S | 1
L = Viq%taniﬂ

_(w e\ —_W
bor = (B 2) & = —Fvhs

i
¢, = tan}t (& +tan?}0)’

Y S
pry =iy =vp

Table 2
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Ry, ﬂzRoo x? Z |J"|2
R RevtBee RS (I +D-P)
Rgi)‘ 2ReR, - 2x*Re E(J.,Ji)
R —2ImR, - —2x%Im E(J+JE)
BY). 2nRe(Ror - Ro-) 262Rey (3] -J1)
R 2pIm(Ros + Ro-) 262Im Y Jo(u] 4 0T)
Br Ras—Re (-1
R 2nRe(Rot+ Rou)  262Re Y Jo(] + 77)
Rgz)*w 2nIm{Roy — R,-} 25211712 Jo(JI - JI)
Table 3
rank O Too = 1
rank 1 nz1 = FYL(S; £ 15,)
10 = \/35:

T2k2 = 2%/5(5,, — Sy +2i8zy)
rank 2 7y = F 2(Szs £ i5y)

T20 = Vliszs

Table 4
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Class I Class I
Phih or Gnbp |PhBp or bbb
Ry,
Rr Ry
1 I
) R
I n
=) 3
1 11
REY. R
Table 5
u flo f'zg Im fu Re :Fn Im le Re le Im fgz Re fzz
U 1 11 1 1 II II 1 i I
P, II 1 11 II I 1 II I II
P, I 11 I 1 II II I nn I
P; II I 11 II 1 1 I I 11
Table 6
Tl]. =“§(P=_3P3)

Ty = ;’J\/—E(Pzz - P.u - 2£Pzz)
Iy = —7!§(sz — 1Pyy)

T = '71§va

Table 7
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R, = 7]2 ZI |Jn:a|2

Rr =25 {02+ 17} | B = anRe Ty 2001

Rp=4ReY g 7] | R = anim g 2,0]

where Y j J',.J: = 4x2tr {p}’\}JapBJJ + pRJchJJ}
Sn J,,JJ = 4x%r {p}JapBJ; + pRTJ,,pBJJ

Table 8
Jo Js Ja
Jo | R R} R{D,

5, |RY. RrRr-RY  Rp

J |RR R Rr+Rp

Table 9

47




RY): Rur(PpT) =

%’7 A(PJ"T:')

f14)
g14)
g14)
914}

U P, P, By
U Re(ay + b)) | Re(as — by) ay 92914 T githe + g5ous
V3T | Refas+bs)| Re(ea—bs) a2 = e — g0
F5Tzo Re(as + b3) | Relas ~ bs) o3 93014 ~ 29316 + ge1n
VEReT;s | Reles+di)| Re(er —dy)
V3ImTes | ~Imez + d2)|—~Im(e2 — d2)
3ReTn —Reles + i) | —Imles - N1) by gio1s + 93015 + gi o
3 ImTy, Im(ea + f2) | —Relez — fa) bz #io1s — g7
SReTy - —Re(es + 1s) | —Imles ~ fs) bs g1o1s — 293916 + e 17
%Ian Im(es + f4) | —Re(ea — f4)
€1 92018 + g 14
2 93918 — g8 914
RU). . Ryr(P;,T) = 4n A(P;,T))
U Im(ay +b,) | Im{a —b;) d, ginr + gios
\/%Tm Im(aa +b3) | Im(az — b2) dz #1917 — gihs
7‘5’130 Im(ay + bs) | Im{as — bs)
V3ReTya Im(e; +4d1)} | Im(er —d1) € (91 + 95) 916 + g3{q1s +
V3ImTss {  Re(ca +d2) | Re{ea —da) € (91— 95) ;e + 93 (918
$ReTny —Im(es+ fi)| Reler — N) e3 (91 — 95)° 916 — 93 (918
2 ImTy, —Re(es + fz)| —Imlea — f2) 4 {91 + 96)° 916 — 93 {ms
3ReT —Im{es — fs)| Re(es— f3)
$ImTz, —Re(eq + fo)|* ~Imled — f4) fi (92 + 98) 015 + g2 (ma7
fa (92 — g¢)° ;18 + 92 (927
Is (92 — 9e)° 015 — g3 (a7
Ta (92 + 96)* ;15 — gi{o17
Table 10
48

9:3)
913)
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Rr - RUL: Ry(P,T:)=$A(PT) e=1

U P, P, P
U A+ B ((Al '—Bl)
J%-T;m Az + By C(A: - .Bg)
VliTzo As + Bs ((A; - B;)
V3ReT2; Relc + d) €Re(e — d)
V3ImTys | ~Im(c+d)| —elm(c — d}
3 ReTy, —Re(ay + f1) | ~eIm(ar + A1)
%ImT;; Im(a1 - ﬁ;) —'ERC(QI - ﬁl)
3 ReTu —Re(az + f2) | ~eIm(asz + B2)
%ImTzl Im(a; - ﬁz) -cRe(ag - ﬂ;)
1. Rr+B{}: RE(P,T)=$4A(P;,T)
with all g; — giye, €= —1
2. Ry: RL(P,',T.') = ﬂzA(P,-,T.')
with all g; — giyan,e=1
Table 11
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A = @l + (9.0 + g6
Az = |gf? - |get?
As = |gal® — 2|9u]? + |96
By = |oal*+ |gs]®+]gsf?
B; = ;f? - |gs]?
By = |g1l* - 2]gs|* + |gs)?
¢ = 2939

d = 29195

ay = 29794+ 29396

az = 29794 — 2959e

Br = 29392+ 29504

Ba = 29392 — 2984




R . Ryp(P;,T) = anA(P;,T))
Ry : RT:(PJ',T,') = 4A(PJ',T,')
U Pn P] Pl
U Re(al + b;) Im(a1 - bl)

\/;_ Tio Re(ez+b3) |  Imlaz — b2)
VI;TSO Rc[a; + b;) Im{as - b;)
\/chTzz Rc(cl + dl) Im(q - d;)
V3ImTss —Im(ez + d3) Re(cz — d3) For Rr:and R‘T‘P
V3ReTu | ~Re(es + 11) |- Reler— 1) uoe the a's — f's of
VimTy | Imles+ f2)| Imlea— 1) Table 10 with
\/gﬁeTn ~Re(es + fa) | ~Reles — f3) Fi+1z — &
\/glng; Im(e, + fu) Im(eq — fu) 9 —9s

R : Rir(P;,T:) = 4nA(P;,T))

R : Rrr(P;,T) = —4A(P;,T))

U Im(ay +by) | —Re(ar —b1) | | For R{Pand RY
\/%Tm Im(az +b3) | —Re(az — ba) use thea's — flaof
7‘§T2° Im(d; + b;) —Re(a; - bs) Table 10 with
V3ReTas Im(c; + d1) | —Re(es —di} gi+12 unchanged
V3ImTss Re(cs +4d3) | Im(ez —da) 9 ™ 9ite

—:—R:T“ —Im(e; + f1) —Im(es — N} .

%Ian —R¢(¢2 + fz) -RC(Cz - f?)

$ReTyy | —Im(es + Is) | —Imles — f3)

%ImTzl “Rt(t; -+ f‘) —Rc(c; - f‘)

Table 12
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1 1 n n
(R}, REY. (Rro, RYY ({2, ”P)
Class A Class B Class A Class B Claas A Clase B
o : 93 g5 : g g7 : ot
9 : g3 910 7o 910 [
' : g 9 : 932 5 : 932
fns 5 714 [} 5 73 s : 214
51 : 7 [0 E gs e E f1s
7 : g8 95 : gs o1t : 18
(a) (b) (c)

Table 13
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