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ABSTRACT

The longitudinal and transverse response functions for the inclusive
quaslelastic (e,e’) reaction are analyzed in detail. A microscopic
theoretical framework for the many-body reaction provides a clear conceptual
(nonrelativistic) basis for treating final state interactions and goes far
beyond simple plane wave or Hermitean potential models. The many-body physics
of inelastic final state channels as described by optical and multiple
scattering theories is properly included by incorporating a full complex
optical potential. Explicit nonrelativistic and relativistic momentum-space
calculations quantitatively demonstrate the importance of such a treatment of
final state interactions for both the transverse and longitudinal response.
Nonrelativistic calculations are performed using final state interactions
based on phenomenclogy, local density models and microscopic multiple
scattering theory. Relativistic calculations span a similar range of models
and employ Dirac bound state wave functions. The theoretical extension to
relativistic dynamics is of course not clear, but is done in obvious parallel
to elastic proton scattering. Extensive calculations are performed for Py
at momentum transfers of 410, 550 and 700 Mev/c. A number of interesting
physical effects are observed, including significant relativistic suppressions
(especially for RL), large off-shell and virtual pair effects, enhancement of
the talls of the response by the final state interactions, and large
qualitative and even shape distinctions between the predictions of the various
models of the final state interactions. None of the models is found to be
able to simultaneously predict the data for both response functions. This
strongly suggests that additional physical mechanisms are of qualitative

importance in inclusive quasielastic electron scattering.



more sophisticated models yield disparate transverse predictions for a
reasonable range of input assumptions. The trend of these models is away from
the observed transverse response, hut towar& the observed lengitudinal
response. Horeover, there exlists no parameter-free prediction of the complete
transverse response, particularly in the region between the quasielastic and
delta-resonance peaks. Until a unified and consistent description is
produced, skepticism concernlng simple calculations of the transverse
quasielastic response must be maintained.

The observed longitudinal response is shifted to lower energy transfers
at momentum transfers below approximately 400 MeV/c, relative to the value
expected for quasielastic scattering, while the transverse appears near the
expected quasielastic value. This feature is suggestive of contributions from
long range correlations excited by longitudinal virtual photons. A number of
calculations of the longitudinal response have been carriéd out in thé context
of the random phase approximation (RPA) and these have been successful in
providing a qualitative description of the longitudinal response at low
momentum transfers.6 These calculations also predict some additional shifts
and screening effects in both response functions at momentum transfers above
those where the need for such long range correlations is obvious in the data.
With the exception of those calculations which use the second RPA (SRPA).7
these calculations still conform to the simplified concept of quasielastic
scattering in which a single nucleon is ejected from the nucleus.

Finally, at the largest momentum transfers for which separated response
functions are available, the longitudinal response for medium-sized nuclei is
significantly smaller in both cverall size and in integrated area than is
predicted by simple models of quasielastic (e,e') and is in apparent viclation
of the Coulomb sum rule.® This has led to a considerable amount of
speculatlion as to the physlcal source of this suppression. In addition to the
possible need for a better description of the many-body dynamics of this
process, 1t has been suggested that the suppression may be due to modificaticon
of the nucleen size in the nuclear medium,9 quark clustering effects'® or the
‘result of relativistic r:[y'nau:nit.:s.u“:ls Clearly, before appealing to these more
exotic suggesitions, It ls necessary to reconsider the basic assumptions of
simple models of quasielastic scattering and to seriously address the
many-body nature of the reaction. The major theoretical challenge is to
explain the origin of the relative suppression of the longitudinal response

while retaining the agreement with the observed transverse response displayed



by simple models.

The basiic assumption that the quasielastic (e,e’) reaction can be treated
solely as the result of the ejection of a single nucleon from the nucleus is
highly questionable. Given the size of the energy transfers to the nucleus by
the scattering electron which are typical for quasielastic scattering at
momentum transfers of several hundred MeV/c, it is clear that many final state
channels involving the ejection of multiple nucleons or clusters of nucleons
are open. Indeed, in any treatment of the exclusive process (e,e’N), which is
supposed to dominate the inclusive cross section, 1t is necessary to allow for
a substantial loss of fluﬁ to more complicated final states. This is done,
for example, by using a nonhermitean optical potential in a distorted wave
impulse approximation (DWIA) analysis of this process. Clearly, once this
loss of flux is taken into account, simple integration of the exclusive
process over missing energy and momentum will sericusly underestimate the size
of the inclusive response. The inclusive response must lnclude contributions
from all open final-state channels.

Several approaches to the final state interactions have been proposed
which revolve around a simplified treatment of the final state. The nalve
argument 1s that the final state interaction can have no net effect on the
total flux to all channels (the Coulomb sum rule) so that the details of the
final state interaction can have no appreclable effect on the inclusive
quasielastic response. Thls philosophy has resulted in calculations where the
final state interaction has simply been igﬁored by using the plane wave
impulse approximation (PWIA) or where the final state interaction has been
Included by means of a hermitean potential which may or may not be energy
independent.’® For simplicity, we will refer to them as shell model
calculations. Unfortunately, these approaches do not adequately deal with the
fact that, although the final state interaction must conserve the total flux,
it will redistribute strength as a function of energy and momentum transfer
due to differences in the coupling to the available phase space. From a
theoretical standpoint these shell model appreaches are also unsatisfactory
because the hermitean potential, whether it be an energy-independent
mean—field potential or the hermitean part of a phenomenological optical
potentlal, is not representative of a many-body treatment of the problem which
properly includes the more complicated final state channels. It is then
difficult to determine the actual physical content of the calculations and to

extend them to a more realistic treatment of quasielastic scattering.



A physically acceptable starting point is to employ a fully realistic
complex optical potential such as those which arise from phenomenological
analysis of elastic proton scattering or from associated theoretical analyses
based on g-matrix or multiple scattering theories. The Green's function
approach of Ref. 17 offers a satisfactory way to do this. 1In this approach,
the relationshlp between forward virtual Compton scattering and inclusive
electron scattering is used to construct a one-body approximation to
quasielastic electron scattering. Although in Ref. 17 this approximation is
motivated by arguments based in multiple scattering theory, the Green's
function approach can be derived using standard projection techniques, as is
done below. Consequently, the physical content of this approach can be
clearly identified. It is essentially a doorway model where a single nucleon
initlally absorbs the virtual photon, but can couple to more complicated final
channels by means of a final state interaction. The reactive content of the
nonhermitean part of the optical potential is used toc describe the many-body
nature of the final state interaction. Being well defined, this model is also
extensible, allowing for the calculation of additional many-body corrections
which are necessary to remove some of the dynamical inconsistencies inherent
in optical model treatments of such processes. By making connection to the
optical model, it is possible to constrain the final state interaction by
means of elastic nucleon-nucleus scattering, and to take advantage of the
considerable body of work on the derivation and properties of microscopic

18-31 1t should also be mentioned that a similar

optical potentials.
philosophy is the motivation for the extension of the standard RPA to the SRPA
which includes multiple-nucleon knockout by calculating all particle lines in
the continuum using an optical potential.7 Indeed, at large momentum
transfers where the effect of long range correlations is negligible the SRPA
and the optical model Green’s function approach should converge provided that
the dynamical input 1s comparable.

The objective of this paper is to provide a comprehensive study of the
role of final state interactions in inclusive quasielastic electron
scattering. This study is done in the context of an optical model Green's
function approach. A detailed derivation of this approach is presented in
Section 11 in order to clearly identify its physical content and to clarify
its limitations. The extension of this derivation to allow for complete
antisymmetrization of the theory is presented in the appendix. The
incorporatlion of relativistic dynamics ls also described in Section II and is
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done in obvious parallel to elastic proton scattering.2 The computational

structure of the relativistic dynamieal calculation is sketched in Section
III. Numerical results are presented in Section IV for both nonrelativistic
and relativistic dynamics. A variety of nonrelativistic optical potentials
are used, including theoretical impulse approximation {IA) potentials.22

18,21

semi-theoretical local density approximation (LDA) potentials and purely

phencmenologlical potentials.20
Relativistic optical potentials employed span a similar range of
models. 32732 Representative results from an extensive set of calculations
are presented. Using these potentials, a number of theoretical experiments
are also performed to isolate the importance of various physical processes.
Among the results presented are characterizations of the importance of
relativistic dynamics, specific virtual pair contributions, off-shell final
state processes, and energy-dependent and nonhermitean effects. Section V

contains a summary of the results and inferences which may be drawn from our

studies.

II. Formalism

In the one photon exchange approximation the (e,e’) quasielastic

differential cross section in the lab frame can be expressed in the terms of

the longitudinal and transverse response functions as:33
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where the eleciron mass is neglected in the extreme relativistic limit assumed
here. The Mott differential cross section is that obtained from the
scattering of electrons from a point charge. The initial and final
four-momenta of the incident electron are k and k', respectively. The initial
bound state and final asymptotic four-momenta of the ejected nucleon will be
denoted by p and p’, respectively. The four-momentum transfer carried by the
virtual photon is denoted by q, where g=k-k'. The space-time coordinates,
metric and Dirac algebra follow the netation of Bjorken and Drell.*

The longlitudinal and transverse response functions are expressed in terms
of the nuclear tensor, which involves the matrix elements of the virtual

photon’'s Interaction with the nuclear electromagnetic current:



RL(a.w) = w°°(3,u), and

(2)
cha.u) = w3 w + W2E W),
where,
WG, =¥ i <1] ¥ @) | £><£]3%M@) | 4> S(E-E +0) . (3)
1
T

The initial target state 1s described by i and f is a particular many-body
final nuclear state. Jp(q) 1s the nuclear eleciromagnetic current operator,

J"*(q) is the appropriate (Schrédinger or Dirac) adjoint and <f| is the

corresponding adjoint of [f>. Here Z represents an average over ilnitial
states. For the quasielastic of interest in this paper it is convenient to
suppress the contribution of the discrete states of the set |[f> of (3) and to
focus on the scattering states, |f> = |s>. The nuclear response tensor wHH
can then be written in terms of the forward virtual Compton amplitude T“p,

i.e., the elastic scattering of virtual photons from bound nucleons,
w““=--1£1mr"”. (4)

where the virtual Compton amplitude is:

™ =T <i|3*(@) cwee) Pl (s)
- ’ 1

and G is the full many-body propagator of the complicated A-body nuclear
system (where 'A' is the atomlc number of the target nucleus). Treating the
many-body scattering states explicitly, and separately from the bound states,
in this manner leads to a continuum doorway approach to the scattering state
contributlon. Of course at lower energles the discrete state contribution to
wH" must be included by hand. To obtalin the response functions an

approximation method is introduced to treat the virtual Compton amplitude.

II.A Reduction Formalism

The nuclear response tensor as expressed in (3) or in (4) and (5) is an
exceedingly complicated object which defies current computational methods. It
is therefore necessary to reduce the complexity of the problem to a tractable

computational form. The three basic ingredients which appear in (3), the



initial state, the final states, and the current operator which connects them,
are intimately related in any theory. A given Hamiltonian specifies both the
initial target wave function |i> and the wave functions l¢r> of all of the
final nuclear states, as well as which of the latter contribute to (2) for
given w. The current operator is itself a complicated many-body operator
whose exact nature depends upon the degrees of freedom described by the wave
functions |i> and |f>, Generally, the more the number of degrees of freedom
suppressed in the wave functions, the more complicated the operator 3”. This
is true vwhether the suppressed degrees of freedom are of the fundamental
meson-theoretic type or are due sclely to reductions of the (A-body) nuclear
many-body problem and its many degrees of freedom.

The most difficult conceptual problem in dealing with (3) is determining
a realistic procedure for handling the continuum of scattering final states
with their complex many-nucleon knockout character. Simplifications of 3” and
|i> introduced to facilitate analysis of the final state continuum in this
subsection will be addressed in their own right in Section II.B. Suppose the
current operator jv is so simple that it directly couples the initial target
state |i> only to those scattering states which 'correspond te one-nucleon
knockout, that Is only to the space spanned by a plane-wave nucleon and an
(A-1)-body residual nuclear eigenstate. Denoting these channels by %, the
associated eigenstates of the {(A-1)~body Hamiltonian Ha. by l¢a.>' defining
projectors anto the subspaces in the standard way ' '

Pa. = I¢a.><¢a.l ' (62)
i i i

and defining the projector onto the full one-nucleon knockout space

m= [ P, , | (6b)

where the sum in (6b) is taken in the sense of a union. Equation (5) becomes

Woe-lnm bl Manen M@ s . 7)
i
The speclal case where li>» is just a single Slater determinant is useful to
keep in mind as a simple, concrete example. In that case the a; Just refer to
the set of (A-1)-body resldual nuclear states (l¢a_>) that can be formed from
the target by removing one nucleon. Except for th; azimuthal degeneracies,



these are just the few occuplied subshells in number. Noting that a ground
state component of T is immaterial in (7) since Im G contains no such
component, and ignoring any nonorthogonality overcompleteness correctiens, the

cperators T in (7) may be replaced by the literal sum in (6b). A further

approximation,

nGrIzZP G P , (8)
L e,

is introduced so that (7) becomes

We-2m VT <l P, E;Pa‘ P 1> . (9)
1% i i

Equation (8) is discussed in more detail in the next subsection. In writing
{(7-9) the Pauli requirement that only properly antisymmetrized states_
contribute to the spectral form of 6 (See Appendix A) has not been made
explicit. The reason for this is that in proceeding further it is desirable
to work overtly with a distinguishable ejectile so as not to needlessly
obscure essential points. Although there are some interesting theoretical
points associated with the fully antisymmetrized treatment, which is presented
in Appendix A, all of our main results, namely (16)-(19), remain unchanged.

It is now noted that

- -
P GP =G (10)
[+ 8 x. opt
i i
%

where Gopt is the ai-channel one-body cptical model Greens function as it is

x

19,28-30 i

usually defined,
Immediately from the combination of the resolvent ldentity

with optical potential Vmpt . This result follows

G=G +G V'G ' (11)
@, «
i i
{right and left projected by Pa ) and the definition of the optical potential
. o,
Ua in terms of the aj-channel elastic T-matrix T *:
i
@, “, @, «,
T =U + U P G T . (12)
@, &,

where

10
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T =V GG . (13)
«
i
e, «;
v =P u-p . (14)
opt ai dl
and Ga = (E - Ha + i0) 'is the ai-channel free propagater (for the

i i
noninteracting nucleon/resldual-nuclear system). As a final approximation we

take

%y
v:i xy (15)

ept opt

where Vopt is a specific one-body optical potential, for example, the one
assoclated with the initial target nuclews. Equation (9) now takes the form

It

vy 1 C “rt v . .
LI xm{););qu (q) Pai Gyt Pai J(q) |1>} \ {16a)

n

1 © TS ; v .
-~ In { Z: Z.QU (q)‘l¢aj> G, . <¢a1_| I (q) ti> } . (16b)

Finally, in momentum-space it is convenient to employ a nonspectral form for

the optical model Greens function Gopt and rewrite (16b) in the form

n

1 N S - .
WY e - = In { Z: ; <i13" (q) I¢¢i>[go v, T, go]<¢al_l Q) 1> } (16c)
i

where g, is the free one-body Greens function and Topt is the optical meodel
T-matrix. Exactly the same equations, (16}, are obtained from the fully
antisymmetrized development [See Appendix A]. Equation (16c) is of the form
actually employed In our numerical work as 1is discussed in Section III. With
the addition of not-too-complicated models for Jv(q).and for the ground and
excited wave functions [i> andl¢a.>, (16) is pragmatically calculable,
requiring as further iaput only t;g-off-shell T-matrix T;pt. Better yet, (16)
reduce the sum over the complicated many-body scattering final states to a
form which exhihits great conceptual clarity. Using (10) and (15) and the

spectral decomposition of the full Greens function, (16) can be rewritten as

W T T <1 ) Py, [)s: 9> 8(wE <E)) <p_| ] P, V(@) 1> (17a)

1 ai i
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manifesting the treatment of the scattering states [¢s>. Let !ws> denote a

final state of arbitrary complexity, say for example it is a state which

asymptotically corresponds to five-nucleon knockout. 1In the vicinity of the

residual nucleus, I$S> consists of a superposition of many configurations of

all asymptotic characters, including a T-space component, T <¢u.{ws>l¢a_>‘
o, i i

It is this latter part of I&g) which in (17) couples directiy to the ground

state through the current operator. More generally,

WY o ; ;iqu"*(q)wa;[g <¢aiws>6(m+E.i-Es)<¢u.jws> ]<¢aiu"(q)11> (17b)
Thus, the set of A-body states which comprise the Pa_serve as a continuum
doorway to channels of arbitrary complexity. Such c;annels are then
incorporated, albeit approximately, in the formalism of (16).35 Equation
(16c), which was first exploited in Ref. 17, forms the basis for the analysis
In this paper. It goes far beyond simple plane-wave or real potential models
in providing a clear conceptual treatment of complex many-body reaction
channels. It will become clear that it also provides for a straightforward
set of immedliate correction terms.

To see exactly how (16) extends the analysis of inclusive quasielastic
(e,e') beyond simple integrations over the one-nucleon knockout space, it is
noted that the unitarity relation satisfied by a generic one-body Greens
function, g, with (possibly) nonhermitean optical potential Vopt is
(aA = A - AT

+ + '
Ag = (1 + V;Ptg) Ag (1+ Voptg) + g avoptg , {18a)

. t t
= -2ri(1 + Voptg) G(Eim ho) {1+ Voptgl + g Avoptg , {18b)

where ho iIs the free one-body Hamiltonlan and where in writing (18b) the
parametric energy, z, of (18a) is taken to be z = Ei + w. The operator

{1 + gV;Pt) 15 Just the familiar Mdller operator which, when operating on a
plane-wvave state of the same energy, produces the corresponding (outgoing
scattered wave) distorted wave. Thus, with Ix?> denoting a distorted wave of

asymptotlc momentum ¥ and incoming scattered wave boundary conditions,36

12



. T
Ag = —Zuc‘[ a3k Ixz> 6(E1+w~Ek) <x?l + g Av;ptg . (18¢)

Comparing (18) with (16) for inclusive quasielastic scattering, a plane-wave
integration within the one-body knockout space corresponds to keeping just the
Ago part of the first term of (18), while using only the real part of Voﬁt in
such a calculatlon corresponds to dropping the last term of (18) entirely and
using only Re [V;pt] in the first term of (18). The combination of (16) and
(18) thus makes evident the additional physics contained in (16) as opposed to
calculations which consider only the one-body knockout space of {e,e’'N).
Similarly, (18) makes clear the crucial correction contained in (16),
specifically the second term of (18), which goes far beyond a simple
integration over the one-body knockout space in the context of a nonhermitean

optical model.
o a

. . o,
Finally, because (13) for T ' is Hermitean analytic (T 1(zT) =T 1(211‘,

where z is the (complex) parametric energy] and because the structure of (12)
.4

passes this property on to U %, V;pt(z) Is Hermitean analytic. Thus the
one-body optical potential Vopt satisfies the once-subtracted dispersion

relation (E real)
£ Im Vopt(E’)
Re V (E) =Re V_(0) +=P | r22°d&r (19)

where it has been assumed that V;pt(z) falls off fast enough as |z] % = and
that there are no singularities of Vopt(z) other than the cut along the
positive real axis. The signlificance of (19) in regard to practical

calculations and the Coulomb sum rule is discussed in the next subsection.

II.B Approximations, Limitations, and Corrections

Although the approach of Ref. 17 provides an advantageous basis on which
to construct a detalled treatment of the inclusive quasielastic (e,e’)
reaction, several demanding assumptlons have already been made in obtalining
(16}). These assumptions need to be more clearly stated in the form of
approximatlions and, In addition, several more approximations are required to
reduce the problem to the practlcal calculation described in detail in Section

ITII. Here, the approximation scheme, the limitations of the approach, and the

13



leading corrections to it are clarified.

It is convenlent to discuss each approximation in turn, so the sequence of
approximations is listed: lll.The current operator only couples the target
ground state to those scattering states which lie in the one-body knockout
space, [2] Partial decoupling of the one-body knockout channels (Equation
(8)), [3] A common optical potential for all «; (Equation (15)), (4] Practical
approximations for the formally exact operator Vopt. [5] Full
antisymmetrization and analytic properties versus practlical approximations to
‘;pt' [6] Practical approximations to the true many-body bound states |i> and
I¢a.>' Conslider each of these six items in turn:

1[1] This assumption is the key ingredient of the whole approach. Starting
from an elementary current operator in a theory without (acknowledged)
suppressed degrees of freedom, one begins with a simple form consisting of a
contributing current from each elementary electromagneﬁically coupled
particle. Upon suppressing some of these degrees of freedom, i.e., the
explicit appearance of certain final states in the wave functions, a more
complicated effective current operator results. In general, this effective
current operator will have two- and many-body components. The standard
example of this is, of course, the suppression of mesonic and virtual pair
degrees of freedom and the resultant effective meson exchange current
operators. Similarly, the suppression of purely many-fermion (A-body) degrees
of freedom in truncated bound state, one-body optical model, RPA, or
coupled—-channel theories also implies more complicated effective current
operators. The degrees of freedom suppressed in the wave functions are
embedded in the effective current operator.

In this paper, all results are calculated on the basis of the usual form
of the Dirac free-nucleon current operator. Thus, the free nonrelativistic
current and some pair current effects are included. The use of such a free
current operator is justified on the basis of simpllcity and as a starting
point only. It breaks gauge inveriance, the current is not conserved, and it
is not physically comsistent with the wave functions employed. Estimates
indicate that ambiguities introduced from thls source are at least
nonnegligible.aT A firmer basls 1is needed and corrections must be carefully
consldered.

There already exists a large literature concerning meson exchange current
corrections Lo approaches such as that employed here.*® For longltudinal

response functlions these are usually small, due to Slegert’s theorem. >° For
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the transverse currents these corrections also tend to be small in the region
where the one-body current maintains appreciable strength, but can be
appreciable in a relative sense once the one-body contribution has fallen off,
for example at large q.33 At any rate, the technology for treating such
corrections 1s well developed and can be easily included in the present
context. This should prove physically interesting in appropriate regions of
four~momentum transfer such as in the dip region between the transverse
response and the delta rescnance peak. Effective current operator components
which result from truncations of many-body scattering and bound state wave
functions are not so well documented. Two-body currents resulting from
truncated nuclear bound state wave functions are readily accessible, while the
analysis of currents implied by optical model truncations of the continuum
scattering states is not so readily conceived.

Within this background, assumption [1] can be characterized as follows.
For the one-body part of the current operator it is a very reasonable
approximation. For two-body and higher-order currents this approximation is
not likely to be so reliable, since the current operator can then couple
directly to N-nucleon knockout, where N = 2, even in the case of a single
Slater determinant for the target ground state. Thus, the one-body free
current operator and cne-body correction terms to it should reasonably be
expected to be well-treated within the context of (16), at least so long as

the I¢a > are well described as a superposition of one-hole states built upon

i
the target ground state (so that the one-hole strength remains concentrated in

M}. Two- and many-body meson exchange corrections to the current operator may
not be so well represented by (16), but these are small to begin with, so
defects are expected to be a correction to a small correction, unless of
course one ls focusing on the small corrections. Bound state many-body
corrections to the effective current operator can be investigated more
directly by simply employing more sophisticated bound state wave functions.
This should not be affected by assumption [1] except to the extent that the
assumed concentratlon of the one-hole strength in I is further compromised.
Finally, two- and many-body current operator corrections from the optical
model truncaticn are the most problematic elements. To the extent that they
turn cut to be small, they may be subsumed into the characterization of the
exchange currents. However, because of their intrinsic many-body character,
they may be more difficult to handle. This issue needs further attention.

[2] Equation (8) is not required to arrive at a doorway model of the

15



general type of (16), but is only needed to reduce the problem from coupled
channel to one-body optical model form. Equétion {8) effectively requires

only that there be no Interference among different doorway channels. This

will be a good approximation so long as no "important” final state |s> has

appreciable components of more than one doorway state.

Consider first the case of the one-body part of the current operator.
From assumption [1], it {s assumed that photo-ejection starts the system in a
particular state In the doorway space. If this state asymptotically ends up
in a one body knockout final state, it is very likely that this will be the
same particular doorway state, unless there are strongly coupled collective

states. Because the states l¢ai> are eigenstates of the Hamiltonian Haj, they
both are corthogonal and specify the final asymptotic configuration of the
system when it ends up in the NI-space. Thus, under the stated condition, it
is unlikely that such a final state will have an appreciable doorway component
other than that which it ends up in. Corrections to this approximation are of
order (1/A) and are of the type typically neglected in first order in optical
model theories.Z:3%3! Note that this approximation does NOT entail a
simplified nuclear structure description, but only requires that multiple
elastic scattering by the ejectile dominate net inelastic transitions within
the {-space. '

For more complicated final states, however, this approximation is not
likely to do as well. Consider, for example, two-body knockout processes in
our single Slater determinant example. In this case the final state |s> may
be reached by photo-ejection to form a particular ai-channel hole-state,
followed by nucleon knockout by the photo-ejectile. Obviously, the resultant
two-hole state can be reached in two ways, starting with two different @,
channels. It is then evlident that interference effects among the «, channels
will generally be Important, since |s> will now have appreciable components of

more than one of the I¢a > doorway states. [t ls of course not surprising
i
that one-body optical model analyses should display some defects in their

ability to describe two-body and higher knockout. Thus, for treating
contributions from higher-order knockout, a coupled channel optical model
treatment may provide for a more reliable analysis. For the effective
two-body current the foregoing discussion remains relevant, except that
physically one now has the potentlal for direct photo-ejection of two

nucleons. This adds another interfering mechanism which can feed two-nucleon
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knockout and would seem to make ai-channel Interference effects even more
cogent for analyzing two-body knockout events. This is somewhat academic,
however, unless one relaxes the assumption [1] and extends the analysis beyond
(7).

It is clear that at least in some cases, at lower energies or momentum
transfers and more generally for exploratory purposes, it will be desirable to
avoid (8) and instead employ an overall optical model analysis in conjunction
with an explicit coupled-channel description of the T-space. Of course, a
simple Hermitean coupled—-channel approach within the T-space is not physically
sufficient in and of itself. Nonhermitean optical potentials are still
required to treat the important coupling to suppressed channels. It is then
clear that such an extension must contain all of the physical effects of (16),
and more. Thus, the importance of a realistic treatment of final state
dynamics which follows from our numerical results can only be further’
enhanced.

[3] The use of a common optical potential for all of the a; channels is
perhaps the best justified of the major approximaticns. In the absence of
strongly coupled collective states, and as long as 1l concentrates the one-hecle

strength, the various I¢a > and |i> differ from each other by effects of order
i
(1/A). 1In the example of a single Slater determinant, the residual nuclear

wave functions I¢a > differ from the initial target wave functions |i> by the

i
absence of a single filled nucleon state and from each other by the

single-particle state occupied by one nucleon. Many effects of order (1/4)
are characteristically neglected in optical model and distorted wave analyses,
both formally and practically. Correctlons to such approximations typlcally
show little effect on computed results, except In cases where the first order
optical potential Is speclally limited ln effect.

[4] The formally exact operator V;pt is a very compllicated operator with

a complex analytlc structure reflecting the numercus many-body
[+ 4

energy-dependent channel effects subsumed within U ' In addition, all of the

complexity assoclated with the many-body bound states l¢a >, through which the
i
Pa are defined, are present as well. Dealing directly with the full operator
I
V;pt is essenltially as complicated as solving the original many-body problem
itself. Thus it is hardly surprising that this operator must be drastically

approximated In computatlional applications. Consequently, much of the formal
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content of V;pt employed in the developments of Subsection II.A is either lost
or only crudely represented. In fact, except In certain circumstances, to say
that this operatoer 1s approximated is really overly optimistic since the
actual approximations involved are not known. A more realistic view is that
the operator is simply truncated in a more or less phenomenological manner.

At low energies where individual many-body channels rapidly open as the
energy increases and thresholds are reached, the formal optical potential
varies rapidly with energy and has a complicated structure.*? 1In this regime
no completely satisfactery formal development exists and it is probable that
current methods, including phenomenology, fail to do justice to the problem.
However, as the energy increases to the intermediate energy regime theoretical
treatments become more realistic, especially multiple scattering methods, and
approximations are under better control. This is typified by the great
similarity between phenomenological and theoretical optical potentials and
their predicted on-shell scattering amplitudes. Thus it is in this regime
that the treatment of final state interactions is likely to be most adequate.

In this paper, nonrelativistic optical potentials from phenomenology,20

182 and microscopic multiple scattering theory22

local density approximation,
are employecl. Relativistic optical potentials are generalizations which are
constructed more or less in parallel to the corresponding nonrelativistic
approach..z3 At low nucleon energies (=100 MeV), and as a realistically
energy-dependent operator, it is probable that only purely phenomenclogical
optical potentlials are at all reascnable. At Intermediate energies (= 100
MeV) phenomenological optical potentials of course still most accurately
describe the on-shell nucleon-nucleus T-matrix but the multiple scattering
thecry is best understood conceptually and as a source of off-shell behavior.
Here, the convergence of theory and phenomenology indicates that it is not
unreasonable to hope that the various optical models are representative of the
nature of the true Vopt and that thelr differences reasonably gauge our
uncertainty In this regard.

[S] As noted in assumption {4] much of the analytic structure of V;pl is
lost when drastic approximations necessitated by current methods are made. It
1s thus necessary to consider whether there are specific constraints which can
and need to be imposed on approximate theoretical or phenomenological optlical
potentlals which are to be employed in inclusive quasielastic electron
scattering. The fragile nature of unitarity and dispersion relations,

especlally In the fully antisymmetrized formalism, 15 dlscussed in Appendix A.
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Of course, detailed unitarity and dispersion properties of Vopt are always
violated In approximation schemes. Our concern here is that global unitary
and dispersion prope;ties of V;pt may be unnecessarily viclated as well and
that this may unduly prejudice (e,e’) quasielastic predictions. For example,
in Ref. 17 lt was observed that, in a particular model, theoretically
predicted quasielastic strength systematically overshot experimental data.
This problem was found to be correlated with apparent Coulomb sum rule
violations by the calculation of the order of 5-10%. It was then observed
that both problems were apparently rectified by imposing the dispersion
relation {1%). Reference 17 then remarks that "It ls interesting to note that
quasielastic electron scattering is apparently sensitive to the analytic
structure of the optical potential”.

However, it is not entirely clear exactly what the essential physics
assoclated with the imposition of relation (19) actually is. Obviously (19)
can be used to prevent accidental and unphysical singularities from appearing
in the analytic structure of approximate V;pt off the positive real energy
axis. Equally as obvious, (19) is too strong. It does not follow from (12)
and (14). For example, {19) assumes that there are no discrete pole
singularities in V;pt along the positive real axis and thus forbids assoclated
resonance structure in the physical scattering amplitude.24 In reality this
may be physically important at low energies and it is certainly relevant te
Coulomb sum rule saturation. Moreover, it is not clear from what significant
underlying physical source the excluded singularity structure is derived.
Thus,.especially in the case of theoretically derived optical potentials, use
of (19) remains problematical. It is not clear, for example, that (19) should
be used in energy-dependent analyses for joining theoretical models of Vopt te
phenomenology In regions where the former breaks down, or whether improved
energy-dependent phenomenclogy 1s to be preferred. No clear constraint of the
type of relation (19) is yet apparent.

One constraint which is apparent, in regard to the intermediate state
spectral sum in va, is the one-body completeness relation and its essential
role in preservirg the nonrelativistic Coulomb sum rule. Obviously,
nonrelativistic analyses which are greatly at variance with the sum rule can
not be seriously compared to experiment. One of the advantages of the optical
theory Greens functlon approach In (16) is its automatic incorporation of the
completeness relation in the appropriate limit, as expressed in (17). In

fact, for nonhermitean optical potentials, this is the essential function of
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the last term of (18). 1In the actual numerical analysis of (16) a nonspectral
form of the optical model Greens functions is employed, wherein (l16c) is
treated by integrating over the scattering amplitude T;pt {See section I[II].
To the extent that the approximate optical potentials employed are reasonable
representatives of the true optical potential, (16) guarantees consistency
with the completeness relation. Of course, discrete state contributions at
lower energies must be added separately. For example, the calculation does
not preperly lncorporate any bound states in the cont inuum®® vhich may be

. present. Such normalizable states can arise, in the presence of nonhermitean
potentials, as complex eigenvalues. These states are (bi-) orthogonal to the
scattering eigenfunctions, which have real eigenvalues. Thus the continuum
bound states are not of the character of resonances, and do not lie in the
space spanned by the scattering eigenfunctions. In the event that such states
exist for a given optical potential they must be included in the.compieteness
relation In order to span the space. On the other hand, such solutions are

unphysical in the present case because the optical potential is supposed to

reproduce

T =P T P s (20)
o
where T ! is the true many body scattering amplitude, which encompasses no
such continuum bound states. Thus, for the present case, realistic optical
potentials can reasonably be supposed to have no such states and optical
potentials which do produce continuum bound states may best be regarded as

being unsuitable.

[6] The true many-body bound states |i> and |¢a > must be approximated in
i

practical calculations. Much of the complexity assoclated with treating these
bound states has been lumped in with the preceding discussion of .
approximations to V;pt. What remains in (16b) and (16c) is the appearance of
these states In the current matrix elements on elther side of G;pt. As
discussed in assumption {1] truncations of these bound state wave functions
result In many-body correcticns to the effective current operator sandwiched
between them. These higher-order current effects can be investigated by
either constructing the correction currents perturbatively or, perhaps more
easlly, by employing progressively more sophisticated structure models.
Unfortunately, no internally consistent approximation scheme for treating the

combination of the current operator and the bound states which appear in (16c)
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is yet available. This merits further study.

Perhaps the most important role of the nuclear structure is in determining
the validity of the key assumption of our whole treatment, namely, [1]. Only
if the one-hole strength is concentrated in the NM-space is this assumption
Justified. Mereover, the degrée to which this assumption is broken in more
sophisticated nuclear structure models can determine an overall multiplicative
factor in the calculated current matrix elements of the one-body current, as
well as the nature of correction terms which must be considered in this
regard.

Although the various approximations above are obviously both extensive and
demanding, it is also clear that (16) forms a very firm basis for a realistic
theoretical development. It is conceptually clear in formal content and
approximations, while going well beyond previous approaches. The main
sequence of approximaticns seems very well justified in a “first-order" sense.
Many corrections and their characters are well-circumscribed. Areas where

further work is needed are clearly indicated.

I1IC. Relativistic Extension

The preceding subsections contain a full formal development for inclusive
quasielastic electron scattering within the context of the nonrelativistic
Schrédinger equation. There is no corresponding development for the
relativistic dynamical extension. Although relativistic field theory provides
a complete formal development in principle, it has not yet yielded a sound
development at the level of practical feasibility. This is mainly because of
the complexity of the diagrammatics and the assoclated renormalization
program, which so far has made impossible the clear determination of leading
relativistic corrections, even for.few fermion systems. Unamkigvous
extraction of such corrections from a field theoretic description of an
interacting many-body system is beyond the realm of current methods.

Given thls clircumstance, one must be satisfied with gauging the
implicatlons of "leading” relativistic effects of a more or less intuitive
nature, without the benefit of a completely consistent means for doing so. In
thls paper we focus on possible physical effects which may result from a Dirac
dynamical description of the bound and ejected nucleons. Basically, this
entalls a single particle description of the (bound, ejected) nucleon in which

the one-body Dirac equation in the presence of a (Hermitean, complex)
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potential is obeyed. The Dirac bound state wave functions employed are those
of Ref. 32, while the optical model description of the relativistic final
state interactions of the ejectile is taken from Ref. 23, 27 and 32, as
described in more detail in Section III. The final ingredient needed to
specify the relativistic extension of (16¢) employed in this paper is a
relativistic current operator. The usual form of the free Dirac
electromagnetic current operator is used without any momrelativistic
reductlions.

This relativistic extension of the formalism of the preceding subsections
has at leas! two main advantages. First, the extension is done in obvious
parallel to Dirac dynamical treatments of elastic proton scattering, the
physical process which has so far been the primary domain for such
relativistic extensions. Second, the momentum-space approach employed in
conjunction with the relativistic extension enables one to, among other
things, adopt a closely parallel nonrelativistic limit. One does this> by
simply ilmposing on the relativistic wave functions the requirement that the
lower-comporients of the Dirac spinors be fixed at the appropriate free-
particle value for each value of the momentum. This effectively reduces the
problem from four- to two-component spinors, i.e., from Dirac-to-Pauli spin
space. One can thus break the relativistic momentum-space wave function into
two parts, a "nonrelativistic Pauli wave function" multiplied by the matrix
which converts the Pauli spinor into the corresponding free Dirac splnor [See,
e.g., Ref. 37 for more detail]. This is in the same spirit as nonrelativistic
operators are often defined from matrix elements of their relativistic
counterparts, namely, by lumping these Pauli-to-Dirac conversion matrlces
together with the relativistic operator to put the matrix element into a
nonrelativistic form. For example, in the present case the Paulli-to-Dirac
conversion matrices and the Dirac current operator can be combined, thus
formally rewriting the relativistic current matrix element in terms of
nonrelativistic (Paull) wave functions and an associated nonrelativistic
current operator. This is 1n effect what the definition of our
nonrelativistic limit does. It is also noted that the reduction from four tao
two component spinors described above corresponds to eliminating any
negative—-energy fl.e., antiparticle and pair] degrees of freedom in the wave
function; that is, this reduction confines the wave functions to the

posltive-energy particle sector of the Dirac Hilbert space.
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IT1I. Calculations

In this Section the methods used in the practical implementatlion of the
reduced formalism, as developed in the preceding section, are presented in
detail. Actual numerical results are discussed in the following section.
Because the nonrelativistic case is a straightforward simplification of the
relativistic one, the computational structure used for the relativistic
calculations is the one explicitly treated.

To calculate the nuclear response, the forward virtual Compton amplitude

1s expressed using (5) and (16b) as

T"”i[ <i!J”f|¢al> G, (wE ) <¢°‘:|JVII> : (21)
Ia

In the numerical evaluation of (21) the usual form of the free Dirac current
operator is employed and a variety of optical potentials are investigated as
sources for aopt(w+E!). Since the focus is on dynamics in this paper, a
simple Slater determinant of one-body nuclear states is employed to represent
the target ground state wave function |i>. Corrections due to more
sophisticated nuclear structure models are not expected to be crucial in the
momentum transfer region of interest in this study. Similarly, the one-body

knockout states l¢¢ > are taken to differ from [i> only in the absence of the

1
ejected nucleon so that differences between the target and residual nuclear

Hamiltonians are neglected. With these approximations, the one-body nature of
J* is sufficient to reduce (21) to a one-body matrix element, provided one
also ignores nonorthogonality terms which arise from the nonzero overlap of

distorted waves and single-particle bound state wave functions. Thus, (21)

becomes

A o w
T L <1(I)l J(ll Gopt.(w+El) J(l)
i

where the sum is over the nuclear single-particle states ii(”> which are

| 1 : (22)

>
(1)

occupied in the target, the subscript (17 is used to emphasize the one-body
nature of the quantities which appear in (22), the Dirac adjoint state has
been made explicit, and the i denotes the Dirac adjoint for the remainder of

this section.
This expression for the forward virtual Compton amplitude is given in
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momentum space by

3 3> 3-)
wv_ord>f @33 o “ut > 2 2 W P |
T -ZJ' 2 i(”|?><?IJ(“Ip)(plGopt(c,ﬁEl)lp ><p lJml? ><? |1(“>

{(2n) ) (23}
where the matrix elements are
<?]J”* ]3> = Ju(—q) (2n)? 5(3)(?—3+3)
B3V 18> = M) (20 8 (@ B ed) (24)

>4 e Y 3 = 2,
<p|G°Pt(w+El)Hp >=(22)" G ( ;E)

In (24) the bar indicates a Dirac conjugate, zfl?) = <?I.i>*a'o and Gopt(p.p’;E}
is the full one-body optical model Green's function. The forward virtual
Compton amplitude is thus

v d33 a’pr — & 3 i v S, 2
= ):J'——-i’— <i|p-q> J7(~q) G_ (p,p';E) J'(q) <p'-q|i> . (25)
3 opt
The optical medel propagator 1s then written as:

oy (3,3 2, . ,
Gopt(p.p ;E)= G,(p) 87 (p-p’) + G, (p) Topt(p.p E) G (p") , (26)

where G (p) is the free Dirac propagator and T (p p';E) is the fully
off—shell Dirac optical model nucleon-nucleus T-matrix Combining (25) and

(26), yields

™ = XJ'

1

<i13-3> #H(-a) 6_(p) V(q) <B-3li >
(2n)

dsgdaé e . , v 3, 9.
I cpep <ilp*q> J7(—q) Go(p) Topt(P-P ;E) Go(p ) J7(q) <p'-qli> . (27)

The first term gives rise to the plane wave approximatlion, where the ejected
nucleon is described by a free Dirac wave function and is not distorted by any
nuclear potential. The second term is the modification caused by the final
state Interactions of the ejected nucleon with the residual nucleus.

To evaluate (27) Go(p) Is expanded into positive- and negative-energy

sclutlons IB.a.t> of the free Dirac equation for momentum 3
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1
7-p-mu+ie

Go(p)
(28)

+
E-E +ie E+E +ie
p P

[i I-p)s¢1+><3lar+l z IB,Q,‘)(B,Q,-[ ]

where E; = v Bz+m:, m. 1s the nucleon mass, (+,-) denotes a (positive,
negative) energy solution, and a labels the Paull spin state. Upon inserting
{28) into (27) and making use of the following notational assignments:

B tl T (p.0"E) 17,60 = T o(p.p'),
(29)

+ o+ ,
x, T (p,p’") Xg:

<B,a.tl J“(q) <B—3]i> Jzi(q,g,i) . {30)

where X, is a Pauli spinor, the second term of the forward virtual Compton

amplitude of (27) becomes:

ar -[[“ 22D (@B T ) i @B
(2m)? E-E +ie E-E , +ig
p P
(13 > * 1 += , 1 v -,
+J3 (q,p*¥) —— T (p,p’) —m J_.(q,.p".-)
i E-E +ic % E+E  -ic Pl
P P (31)
* 1 -+ 1 v >
+ J“.(q.p.-) -~ T (p.p') J..(q,p",+)
ol E+E -ic %8 E-E,+ie P
> * 1 R . 1 v 3,
+ ai(qspi-) TaB(P-P ) — JBJ- (q.P l—) .
E+E ~ig E+EP_-£e

The evaluation of (29) - (31) now proceeds as follows. In order to calculate
RL and Rr in a relativistic framework, the nuclear electromagnetic current

operator 1s taken to be the free Dirac single-nucleon current operator

F (q ) v .
Hq . (32)

J"(q) = Fl(qz)yp + 1
2m

with form factors taken from ref. 41 and modifled as in ref. 42. The Dirac

mementum-space bound state wave functions <B—3]i> of ref. 32 are then used to
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compute (30). No nonrelativistic p/h expansion of the current operator is
employed.

As 1s apparent from (29) and (31}, T-matrix elements are needed at momenta
"p" and "p'" which are off-shell. In fact, it turns out that off-shell
structure plays a significant role in determining the quasielastic response
functions. The off-shell nucleon-nucleus T-matrix elements needed in (29)
are calculated through the use of a relativistic Lippmann-Schwinger- 1like
integral equation as detailed in ref. 22 and 23. The code "WIZARD", modified
to accept an assortment of relativistic and nonrelativistic optical potentials
and to generate fully off-shell T-matrices, provides the needed T-matrix

22,22

elements in partial wave form. The partial wave T-matrices are combined

with partial wave expansions of the Jgi {See, e.q. Ref. 37] to facilitate
calculation of (31). A number of tests were performed to verify the numerical
consistency and accuracy of the calculations, including comparisons with
preV1ou512J3 results for real Hartree FSI.

As 1s apparent in (31), quasielastic contributions arise not only from
positive-energy, but also from explicit negative-energy t-matrix couplings.
In fact, there are two distinct sources of such negative-energy contributions
present in (31). Figure 1 shows a diagram of the FSI contribution to the
forward virtual Compton amplitude corresponding to (31}, An explicit source
of negative-energy contributlons is manifest in the second, third and fourth
terms in (31). These terms involve T+_, T and T  and correspond to the
physical situation where at least one virtual photon in Fig. 1 directly
couples to a negative-energy nuclecn channel at its vertex. The second source
of negative-energy contributions arises implicitly through the T-matrix
element T~ in the first term in (31). After the nucleon has been ejected
from the nucleus, final state interactions represented by "T" in Figure 1
couple the nucleon to negative-energy channels in intermediate states. In
other words, the integral equation which determines ™ contalns couplings to
negative-energy intermediale states through the Dirac optical potential. The
practical significance of these two types of negative-energy contributions for

the quaslielastic response functions is detalled in the next Section.

1V. Results

Representative results of extensive calculations of the longitudinal and

transverse response functions for the inclusive quasielastic (e,e’') reaction,
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within the context of (16c), are presented in Figures 2-16. In this paper we
are basically interested in physically observable effects (and their
character) which may arise from final state interactions (FSI). To study such
FSI effects in detall, nonrelativistic and relativistic dynamic calc:lations
have been performed within the context of a number of models and with the
capability of isolating several distinct physical processes. Results are
shown for slices through the g-w plane, as a function of w for three fixed g
values: g = 410 MeV/c, g = 550 MeV/c, and @ = 700 MeV/c. Since the point of
cur study 1s to explore the physical lmplications of a variety of theoretical
and phenomenclogical treatments of the FSI, no adjustable parameters are used,
either 1in the microscopiec theoretical or in the phenomenological medels. Even
for the lowest momentum transfer, q = 410 Mev/c, the quasielastic peak occcurs
at w > 100 MeV, so that microscopic multiple scattering theory should be
reasonably applicable, especially at and above the peak. Of course, as w
decreases beslow 80-100 MeV, the microscopic theory becomes increasingly
untenable and phenomenclogy must be relied upon. Thus the quasielastic
calculations associated with microscopic multiple scattering optical
potentials should not be taken teoo seriously for small w.

For each relativistic and nonrelativistic calculation, the corresponding
"on-shell"” and plane wave limits are isolated for comparisen. The plane wave
limit is the result of (i6c) when there are no FSI, that is when Topt = Q0.

The calculalkion which is referred toc as "on-shell" incorperates into (l6c)
only the on-shell part of Topt [See Section IIII.37 The momentum-space matrix
elements of T; involve initial and final momenta, 3- and B, corresponding to
energies generally different from the parametric energy E of I;pt(E). which
speclifies the energy of the asymptotic ejected nucleon. Off-shell kinematics

is the general circumstance, since only when all three of these energies

coincide is T (E) on-shell, (i e., E = /32+m: = g.zﬁn;‘;

distinction between on-shell FSI effects and those which appear exclusively

}. The

off-shell is important because the former are observable in elastic proten
scattering and are thus much more securely known. The off-shell behavior of
Topt Is typically extrapolated using some theoretical ansatz, such as meson
theory. In the present case of quasfelastic electron scattering effects which
derlive from the on-shell part of Topt are on a very solid footing. The purely
on-shell calculation ls also of interest because the varlious models which we
investigate do not precisely agree in their on-shell predictions for Topt, a
defect which should in principle be remedied by minor parametric adjustments
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within the models. Comparison of the quasielastic predictions of the various
models in conjunction with a comparison.of their corresponding on-shell limits
then enables one to gauge the degree to which differing quasielastic
predictions made by the models reflect their intrinsic dynamical differences
rather than Just thelr differing precisions in describing the known on-shell
amplitude.

In the nonrelativistic case the quasielastic predictions of
phenomenology, impulse approximation and LDA treatments of the FSI are
compared. These are then contrasted with corresponding predictions made on
the basis of several relativistlic models. The relativistic models of the FSI
employed include a microscopic impulse approximation optical potentlial, a
global energy-dependent phenomenological parameterization and a (Hermitean)
Hartree potential.

In the relativistic dynamical calculations two sources of negative-energy
contributions or virtual pair effects are isolated. The explicit source
involves direct vertex couplings by T;pt to negative-energy states,
represented by the last three terms in (31). Turning off these explicit pair
effects ylelds a calculation referred to as NEP (no explicit pair effects).
Even if only positive-energy matrix elements of Topt are used, virtual pair
effects still derive from the integral equation23 used to obtain Topt from
Vopt. If, in addition to neglecting the explicit negative-energy
contributions, pair effects are turned-off in the integral equation, a
calculation referred to as NP (no palir effects) is obtained. This is a purely
positive-energy limit, in the sense that all Dirac sea effects are removed.
The capabillty to perform these distinct calculations allows us to lselate and
uncover the exact source of specific pair effects seen in the quasielastic
predictlions. The NP limit must be used with some care since turning off pair
effects in the integral equation for Topt will produce a different on-shell
scattering amplitude. Nevertheless, to the extent that the on-shell an are
not markedly different, the NP limit defines a useful corresponding
nonrelativistic limit.

Before discussing Individual figures there are several general results
which can be inferred globally from the figures. First, in each figure the
relativistic plane-wave calculation is shown as a reference curve. The
corresponding nonrelativistic calculation is not shown in any of the figures,
since the two plane-wave calculations are virtually identical. The input to

these calculations differs only in the presence or absence of negative-energy

28



components in the bound states. As discussed in Section II.C, there is no
ambiguity fntroduced by differing current operators, thus virtual pairs
{negative-energy components) in the bound state wave functions are completely
negligible as far as quasielastic (e,e') 1s concerned, at least in areas of
the q-w plane where the longitudinal and transverse response functions are
appreciable.

Second, FSI are never neglectable. In no case is the plane-wave
approximation adequate. Similarly, off-shell FSI effects are found always to
be qualitatively important. FSI always suppress the peak heights of both
response functlons considerably and the size of this effect is dynamically
dependent as is the relative effect on the transverse and longitudinal
response functions. Because of the unitary nature of (16) and {(18) and in
accord with the nonrelativistic Coulomb sum rule, the strength subtracted from
the peaks by the FSI is largely dispersed to the high energy tails of the
distribution, broadening it considerably. Thus, the effect of the FSI is
mainly to redistribute the quasielastic strength in the g-w plane, changing
the overall shape of the distribution. The character of the various dynamical
calculations with regard to the Coulomb sum rule is discussed in detail
elsewhere.‘“ here it is simply noted that our various results typically
saturate the sum rule to within about 10%. Our immediate conclusions are
thus: (1) Proper inclusion of FSI ls crucial for meaningful comparison of
theoretical results with experimental data, (2) The direct physical approach
of (16) provides an advantageous framework for analyzing FSI effects in
inclusive quasielastic (e,e’), and, in addition, (3) Off-shell FSI effects are
invarlably lmportant, can never be neglected or approximated away, and show
conslderable sensitivity to the theoretical model employed.

Finally, the various models differ greatly in the degree of their
agreement with the experimental data for the transverse and longitudinal
response furctions, although several characteristic trends can be discerned,
as ls discussed later. Nevertheless, the general result is that in no case is
simultaneous agreement between theory and experiment for both response
functions found. The implications of this failure, and the way it occurs in
the various modeis, is discussed in detall later.

Figures 2a and 2b compare several nonrelativistic calculations at a
momentum transfer of 410 MeV/c for RL and RT , respectively. The short-dashed
curves correspond to an optimally factorized {mpulse approximation (IA)

optical potential22 using Franey-Love N-N amplitudes“ and the dot-dashed
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lines to an IA optical potential using Franey-Love amplitudes in the local
t(q) plq) approximation.’® The solid curves correspond to a local density
approximation (LDA) optical potential constructed using Bonn N-N amplitudes.21
The predictions of a nonrelativistic, phenomenological, energy-dependent,
Woods-Saxon potential fitted™ to proton scattering data is alsoc displayed in
Fig. 2 as the long-dashed curve. In Figs. 2a and 2b there 1s a dramatic
difference between the plane-wave calculation and the others. The FSI greatly
reduce the quasielastic peak heights, broaden the distributions, shift the
position of the peaks, and enhance the high- and low-energy tails of both
response functions.

The twe nonrelativistic 1A calculations make very similar quasielastic
predictions. Apparently, differing IA prescriptions result in little
quasielastic (e,e') ambiguity once the input two-body amplitudes are
specified. The predictions of the phenomenological optical potential are
quite different, being much less suppressed relative to the plane wave limit
at the quasielastic peak. This dichotomy is easily understood on the baslis of
results from elastic proton scattering, where the absorptive potentials
predicted by the IA tend to be considerably stronger than those obtained from
phenomenology.25 The elastic proton data of course favors the
phenomenological potential, however elastic predictions are somewhat
insensitive to such differences due to the fact that black-disc scattering
dominates and further increases in the "blackness” in the nuclear interior are
relatively unimportant. Evidently the quasielastic (e,e') reaction ls more
sensitive to the character of the absorptive potential. Stronger absorption
further depletes the quasielastic strength relative to the plane wave
prediction at the quasielastic peak. In view of the unitary nature of (16}
the strength drained from the plane wave response by the absorptive potential
1s then shifted in the q-w plane to broaden the distributions and enhance
thelir tails. LDA optical potentials typlcally display greater similarity to
phenomenological potentials than do IA optical potentials. This is due to LDA
density correctlions which significantly suppress the imaginary 1;.!0!:ent;i:-.\lsm'21
and is consistent with the close agreement seen in Fig. 2 for the quasielastic
{e,e’) predictions made by the LDA and phenomenological optical models.

The nonrelativistic on-shell results, shown in Figures 2¢ and 2d, are very
similar in size and shape, supporting the earlier claim that the on-shell
matrix elements of the varlous Topt are much better constrained. It would be

very surprising 1if thls were not the case. In comparison with the full
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calculatlion the on-shell curves are greatly suppressed, emphasizing the
importance of off-shell contributions. The large differences observed in the
full calculations are not reflected in the on-shell results, indicating that
these effects are due to the different off-shell extensions of Topt. Also,
the high-energy tails In the full calculations are seen to be solely the
result of off-shell contributions, as expected.

In Figure 3 analogous calculations are shown at a momentum transfer of 550
MeV/c. Although these figures show much the same qualitative features as in
Fig. 2, the differences among the various calculations are much smaller. The
twe IA calculations are again very close together, showing almost identical
results. The LDA calculation iIs now much closer to the other calculations
than it was at 410 MeV/c. This is consistent with the behavior of LDA
modifications to the N-N amplitudes, which fall as the energy increases or as
the momentum transfer increases at fixed energy. Figure 3 also suggests that
at higher momentum transfer reasonable nonrelativistic FSI may display less
varlability in their quasielastic (e,e’) predictions. Resulis for the
phenomenological potential used in Fig. 2 are not shown here because of the
restricted range of validity of this potential.

The nonrelativistic FSI suppress the peak heights (relative to the
corresponding plane-wave calculation) of both response functions. In
comparing the effect on the two response functions, the suppression of RT is
slightly greater than that for RL. This is a consistent feature of our
calculations that is not at all in agreement with the trend observed in the
experimental data. While suppression of the peak height of RL is needed for
agreement with the data, the FSI-induced suppression ls too small by a facter
of about 2. Moreover, in the case of Rr ., little if any suppression is
apparently required by the data, while the predictions using realistic FSI
imply a suppression of about 20%. However, this latter contradictlion need not
be taken too seriously since it is evident from the data that much more
transverse strength is present in (and below) the dip region above the
quasielastic peak, and that this strength is large enough to affect RT at its
peak.® Whatever the source of this additional strength, it is then clear
that It can appreciably enhance the quasielastlic peak so that appropriate FSI
suppressions of RT will ultimately play an important role in achieving
theoretical consistency with the RT data. In this regard, it is important to
emphasize that the transverse anomaly can have absclutely nothing to do with

validating, in any sense, a plane-wave treatment for Rr' All of the
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transverse gquasielastic strength contained in the plane-wave limit is present
in the treatment of (16c) of the FSI, by virtue of its unitary character in

the Pa -space as expressed, for example, by (17) and {18). This is also made

1
obvious by writing Ag in (18) in its (biorthogonal) spectral form and noting

that the energy integral then Just reproduces the one-bady plane-wave
completeness relation.36 Thus, the effect of the FSI is to redistribute the
transverse strength in the q-w plane by dispersive processes which,
physically, must be present. Whatever the additional physical mechanism
responsible for the observed enhancement of the transverse quasielastic peak,
it must be in addition te the physics contained in the nonrelativistic optical

model treatment of the Pm -space and thus physically has nothing to do with
1
the plane-wave limits. Finally, in contrast to the transverse case, the shape

of the longitudinal quasielastic peak appears to be in qualitative agreement
with the data. The nonrelativistic FSI systematically overestimate the peak
hejghts of HL as found in earlier calculations.?’

In discussing the figures individually it is now convenient to make some
global symbelic assignments of curve types. 1In the following flgures the
dotted curve denotes the relativistic plane-wave calculation for the relevant
value of q. Dot-dashed curves represent the on-shell limit of the calculatidn
depicted as a dashed curve in the same figure, with short or long dashes being
used to distinguish between different sets of curves.

Quasielastic predictions made on the basis of two relativistic dynamical
descriptions of the FSI are displayed in Figures 4 and 5 at momentum transfers
of 410 MeV/c and 530 MeV/c, respéctively. In each figure the long-dashed line
denotes the prediction based on the global, phenomenclogical energy-dependent,
relativistic optical potential of Ref. 27, while the short-dashed curve
denotes Lhe microscoplic relativistic IA optical potentlal of Ref. 23. The
former 1s simply referred to as the "relativistic global" FSI. The
corresponding on-shell calculations are also shown and are dencted in accord
with the convention deseribed earlier. In both figures and for both FSI the
importance of the redistribution of strength caused by the FSI, which reduces
the quasifree peak and enhances the tails of the distributions, is again
observed. Quantltatively, however, the trends are somewhat different than for
the nonrelativistic dynamics. In Flgure 4 the suppression of the longltudinal
quasifree peak (relative to the plane wave prediction) by the relativistic FSI
is about 26% for the global potential and about 38% for the IA potential.
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Similarly, the suppression of the transverse response is about 19% for the
global potential and about 32% for the IA potential. The same pattern is
found at gq= 550 MeV/c in Figure 5, with the peak longitudinal response
producing & reduction of about 274 for the global potentlal and abec:t 32¥% for
the IA optical potential, while the suppression of the transverse response is
about 224 for the global potential and about 25% for the IA potential. Thus,
in all of the relativistic dynamical calculations the suppression of the
lengitudinal Is slightly greater than the suppression of the transverse
quaslielastic response. This is opposite to the trend observed for the
quasielastic response based upon nonrelativistic dynamics.

The IA predictlons for the longitudinal reéponse are now in good agreement
with the data at 410 MeV¥/c and are appreaching agreement at 550 MeV/c. The
corresponding predictions of the global potential do not fare quite so well,
considerably overpredicting the peak strength at both q values. The IA
predictions also graphically emphasize that it is the relative RL—R_r peak size
which needs to be understood, not simply a suppression of RL , because the
agreement with RL is good while RT is inexplicably large. Too much should not
be made of this, however, since the reasons for the difference between the
predictions of the relativistic global and IA FSI are not clear. On the other
hand, this change of focus, from an apparent suppression of RL to an apparent
enhancement of RT , receives some support from recent exclusive measurements
where an unexplained enhancement of RT was observed.®® The on-shell
predictions deo not reflect any systematic deviations. The two relativistic
potentials yield similar, but not identical on-shell results. At 410 Mev/c
Figure 4 reveals that most of the differences between the predictions of the
two potentials is due to differing off-shell contributions. The opposite is
true at 550 Mev/c in Figure 5 in that the differences appear to be primarily
on-shell iIn nature. This can be attributed to the fact that at higher
momentum transfers (and therefore higher ejected nucleon energies}! more and
more of the strength is near the on-shell limit, as should be expected.
Finally, it is noted that there exists a qualitative agreement between the
relativistic dynamical predictions and the data, particular for both tails of
the longitudinal distributlion, and the low-energy tail of the transverse
response,

It has already been noted that the nonrelativistic FSI tend to suppress RT
slightly more than RL (relative to the plane wave approximation), while the

relativistic FSI suppress RL more than RT. To better observe these relative
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suppressions, representative quaslelastic predictions of the relativistic and
nonrelativistic dynamical models are explicitly compared in Figures 6-9.

Figs. 6 and 7 compare the predictions made by the relativistic global FSI to
those of the nonrelativistic LDA optical potential at 410 MeV/c and 550 MeV/c,
respectively. The nonrelativistic LDA calculation was seen in Figs. 2 and 3
to be representative of nonrelativistic phenomenclogy at 410 MeV/c and of
generic nonrelativistic results at 550 MeV/c. Flgures 8 and 9 compare the

Ial = 410 and 550 Mev/c quasielastic predictions made by the microscopic
relativistic and nonrelativistic IA optical potentials of Ref. 22 and 23. The
corresponding on-shell limits are shown for all of these cases. Although the
on-shell predictions shown in the comparisons of Figs. 6-9 do show some
differences in detall, it is clear that this is not the effect of primary
importance. 1In all four figures, at the quasielastic peak, the additional
suppression of the longitudinal response due to relativistic dynamics’ is much
larger than the additional relativistic suppression found for the transverse
response. [In fact, the relativistic suppression of RL is about 20% whereas
the corresponding suppression of Rr is on the order of 10% or less. Purely
nonrelativistic FSI dramatically suppress RT relative to RL at the quasifree
peak, while the converse iIs true with added relativistic FSI dynamiecs. Thus,
relativistically, the transverse response function is reduced slightly, while
the longitudinal response is suppressed significantly towards the data, If
the relativistic Global FSI are compared directly with the nonrelativistic IA
predictions the longitudinal response is suppressed by 3% at |3| = 410 Mev/c
and 11% at |3| = 550 Mev/c, while R_ is enhanced by 11% at 13| = 410 Mev/c and
suppressed by about 2% at lal = 550 Mev/c. In this case the phenomenclogical
evidence is overwhelmingly in favor of including relativistic dynamics. In
comparing the on-shell-only results in Figures 6 and 7 there doesn’t appear to
be any systematic behavior, while in Figures 8 and 9 some of the trends
observed in the full calculations can be traced to the on-shell contributions.
The on-shell effects are not very large and it is clear that the main effects
are due to the off-shell behavior of T;pt. The origin of the observed
relativistic FSI effects is clarified in the next set of figures.

Physically, the main differences between the relativistic and
nonrelativistic calculatlions are the contributions that arise due to
negative-energy channel effects in the relativistic optical potentials and
T-matrices. Figures 10-12, for q = 410 MeV/c, 550 MeV/c, and 700 MeV/c,

respectively, resolve the global relativistic quasielastic predictions into
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their compenent parts. As described earlier, the negative-energy
contributions can be ascribed toc two categories. The NEP calculation includes
virtual palr effects used in the construction of the positive projection of
Topt, while excluding expliclit negative-energy state couplings by T;pt. The
full calculations are depicted by the long-dashed line and the corresponding
NEP and NP calculations by the solid and short-dashed curves, respectively.
Assocliated on-shell limits follow our standard convention and again the
differing on-shell FSI effects are not of essential importance. Because the
NP limit 1s reached by turning off all final state pair effects, it may be
regarded as scomething of a nonrelativistic limit of the global relativistic
calculation. 1In fact, the NP limit of the relativistic IA calculation is the
nonrelativistic IA calculation by definition (See ref. 23). If the global NP
limits are compared with the nonrelativistic predictions of the preceding set
of figures, Figs. 6-9, the off-shell differences between these two
“nonrelativistic” calculations account for about 50% of the additional
relativistic suppression of RL seen in Figs. 6-9 and essentially all of the
additional suppression of Rr’ For RL turning off only the explicit pair
contributions reduces the suppression of the quasielastic peak. Turning off
the remaining pair contributions (virtual pairs in intermediate states in the
integral equation for T;pt). in addition, further reduces the suppression.
Thus for RL both palr contributions suppress the peak quasielastic strength.
For RT the trends are somewhat different, with turning off the explicit pair
contributions suppressing the quasifree peak. Turning off the remaining pair
contributions then effectively cancels this effect. Thus for RT explicit pair
contributions enhance the quasielastic peak, but this is canceled by the
suppressive effect of the remaining pair contributions. The net result is
that off-shell effects of 2 nonrelativistic type account for half of the
relativistic suppression of RL and all of the relativistic suppression of Rr’
Manifest pair contributions account for half of the relativistic suppression
of RL’ but have little effect on RT. The net effect seen due to negative-
energy contributions Is typical of all relativistic potentials examined.

As a slde note a very interesting trend is seen in Figures 10, 11 and 12,
involving the off-shell contributions. As the momentum transfer Ial is
increased, the predicted response functions are increasingly well-represented
by thelr on-shell limit. This is not a surprising result and in Figures 12a
and 12b the on-shell-only curves are almost the same size as the full curves.

However, the large high-energy tail and shape modifications due Lo off-shell
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effects remain even at 700 Mev/c. Within the nuclear medium the final state
interactions shift the ejected nucleon off-shell, but as the momentum transfer
increases, the ejected nucleon becomes relatively less affected by medium
effects near the quasielastic peak. However, the tails always depend upon
momentum-transfer sharing with the FSI so that even at Ial = 700 Mev/c there
Is still a significant off-shell effect.

Figures 13-16 investigate the effect of nonhermitean FSI on the
quasielastic response functions. Figures 13-15 compare, at g = 410 MeV/c, 550
MeV/c, and 700 MeV/c, respectively, the quasielastic predictions associated
with the global relativistic optical potential, (long-dash)} and those cbtained
from a Hermitean relativistic Hartree potential, (solid).32 Also shown in
these figures iIs a comparison of the quasielastic predictions of the NP
"nonrelativistic” limit for both the Global (short~dash) and Hartree
{(dot-dash) FSI. As is to be expected, because the Greens function formalism
preserves the completeness relation on the one-body space, no dramatic
reduction In overall quasielastic strength results from nonhermitean optical
potentials. Rather, the effect of the nonhermiticity is, and can only be, to
provide a somewhat different dispersive mechanism through which to
redistribute the quaslielastic strength. This is discussed in more detail
relative to the Coulomb sum rule elsewhere.®® As is evident in Figs. 13-15,
for the peak of the longitudinal response, where the relativistic effects are
larger than for the transverse case, the nonhermitean effects are much smaller
than the differences between relativistic and NP "nonrelativistic"
predictions. For the transverse response, however, nonhermitean effects are
somewhat larger at the quasielastic peak. It is clear from these figures that
there is a systematic difference in shape between the energy-dependent,
nonhermitean, global optical potential and the energy-independent, Hermitean,
Hartree potential for both relativistic and nonrelativistic dynamics. The
response functions for the Hartree potential are noticeably broader than the
corresponding response functlions for the global potential. Since the
Integrated strength should be roughly the same for Hermitean and nonhermitean
potentials, the response functlons for the global potential have a much larger
high energy tall than those for the Hartree potentials, which compensates for
the relatlively narrow quaslielastic peak. These differences in shape become
more pronounced with increasing momentum transfer.

In comparing the shapes of the quasielastic peaks calculated with the

energy-independent Hartree and the global energy-dependent phenomenclogy, it
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is apparent that the energy dependence of the potentials is important. The
energy dependence is related to the analytic structure of the optical
potential, where the real and lmaginary parts are connected through a
dispersion relation. Energy dependence also arises from the nonlocal
structure of the optical potential. It is apparent that the quasielastic
response functions calculated in the optical model approach are sensitive to
the energy dependence of the optical potential.ﬁ'43

Finally, the full relativistic global calculation (dashed-line} is
compared im Fig. 16 to predictions from an otherwise identical calculation in
which the nonhermitean part of the Dirac global optical potential is turned
off (solid line). Here, as might be expected, the observed effects of the
nonhermiticity on the quasielastic response are more distinctive, with the
quasifree peaks showing an appreciable suppression due to nonhermitean FSI.
Of course, the associated enhancement of the tails of the distribution by the
nonhermitean FSI 1s also seen. Thus, Fig. 16 provides a more direct
confirmation of the characterization of nonhermitean effects inferred from
Figs. 13-15. Although the gross features of quasieiastic electron scattering
can be mimicked by modifications to purely hermitean, energy-independent FSI,
additional nontrivial features are produced by a realistic complex optical
potential. For a microscopic description of the quasielastic response it is
necessary to properly lIncorporate the reactive content represented by the

nonhermiticity and energy dependence of the optical potential.

V. Summary and Conclusions

In this paper a microscopic theoretical, Green's-function formalism for
analyzing the response functions of the inclusive quasielastic (e,e’) reaction
has been reviewed, developed and applied. This formalism properly
incorporates the nonhermitean potentials needed to reflect inelastic multistep
and absorptive processes. The Green's function formalism provides a
conceptually clear framework for treating the quasielastic inclusive reaction
that goes far beyond simple plane-wave or Hermltean potential models,
permitting a relatively clear identification of approximations and appropriate
corrections. The formalism also provides an advantageous numerical framework
for analyzing FSI, relativistic dynamics and other mechanisms relevant to
inclusive quasielastlic (e,e’). A number of relativistic and nonrelativistic

dynamical models of the final state interactions have been examined for the
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case of “Ca. This was done in a manner which allowed for the isolation of
several distinct dynamical mechanisms. A number of conclusions can be
inferred from these investigations.

1. FSI effects can never be neglected or approximated away. For
meaningful comparisons with the data, FSI are essential; plane-wave
approximations are never adequate. The FSI serve to suppress the heights of
the peaks for both quasielastic response functions and transfer strength to
the talls of the distributions. Off-shell scattering dynamics, which is not
well constrained by elastic proton scattering, determines the q-w distribution
of approximately 50 percent of the response functions. Differing off-shell
behaviors of the optical potentials result in significant modifications to the
response functions: off-shell FSI are invariably important.

2. The reactive content of the optical potentials, which ls manifested
in the energy dependence and nonhermiticity of the optical potentials, is
important to the description of the response functions. Hermitean, energy-
independent potentials, such as the Hartree potential, fall to produce the
appropriate shape for the response functions. This defect becomes more
pronounced with increasing momentum transfer. Hermitean, energy-independent
potentials transfer insufficient strength to the high energy tails of the
response functions. Energy-dependent, nonhermitean optical potentials provide
a much more realistic and physically appropriate analysis of quasielastic
electron scattering.

3. Since FSI suppress both RL and RT » the transverse response must be
enhanced by physical mechanisms which are not included in the one-body optical
model. This is supported by recent experimental and theoretical work in the

47 The transverse anomaly cannot be used to justify the

(e,e’p) reaction.
plane-wave approximation nor should models which do not incorporate FSI
suppression of the transverse response relative to the plane wave result be
considered acdvantageous,

4. Relativistic negative-energy contributions, which are the new
dynamical degrees of freedom included in the Dirac FSI, result in greater
suppression of the longitudinal response than the transverse response. For
the nonrelativistic FSI, the predicted suppression of the two response
functions is roughly the same. Half of the additional “relativistic”
suppression of the longitudinal quaslelastic peak, and all of the additional
“relativistic" suppression of the transverse peak, arises not from pair

effects but from nonrelativistic~type off-shell differences in the optical
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potential. The effects of~exp11cit and implicit negative-energy “pair"
contributions are of approximately the same magnitude; both suppress the
longitudinal response while the two contributions tend to cancel for the
transverse response. Thus pair effects double the additional relati ristic
suppression of the longitudinal response, but have little impact on the
transverse response. The negative-energy components of the bound state wave
functions have a negligible effect on the response functlions.

5. The longitudinal response functions calculated with relativistic
dynamical FSI have the appropriate shape, but the suppression is inadequate to
account for the avallable data. No parameter-free description of the FSI was
found able to simultaneocusly describe existing experimental data for both the

longitudinal and transverse quasielastic response functions.
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Appendix A

This appendix extends the unsymmetrized formalism (7)-(19) of the text to
properly reflect the full implications of the Pauli principle. The purposes
of this are [1] to provide a fully antisymmetrized formal development, [2] to
show that all of the main results of the text, namely (16)-{19), are
consistent with the fully antisymmetrized development, and [3] to point out

some interesting theoretical points that arise as a result of the Pauli

principle.

Given (9) we wish to connect the operator Pa GPa to the optical theory as
1 1 -
before. First the ejectile-nucleus antisymmetrization operator A is

introduced, where A 1s a full A-particle antisymmetrizer normalized according

to
A=A A, (A.1)
so that

A= NA (A.2)
is the usual projection operator onto antisymmetric states

A=A . (A.3)

The antisymmetrization requirement on G is made explicit in (9) by replacing

P GP P AGP , (A.4)
[+ 4 [+ 4 & [» 4
1 1 i i

so that (9) becomes
vu = . t - v .
T « £ gl <l J%(q) P“: AG Pal U . (A.5)
This follows, for example, by replacing G by AG in (5) and carrying it forward

to (9). Now from the resolvent identity

GA (A.6)

n
3]
»
*+
o
R
<
o
4

ol
= Ga, + Gal TAGS Gml (A.7)

&
where T‘és‘ls the Alt-Grassberger-Sandhas (AGS) form of the antisymmetrized
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transition operator48

T! =¢lgacgt-gl | (A.8a)
AGS [+ 4 & a
1 3 1
o T B -1
=v'acgce !+ (a-1)c i (A.8b)
& [+

1 1
If we now make the replacements (11) » (A.6), (13) » (A.8), make use of the

definitions (12) and {14), and replace (1/A)Z -3 E , Where the latter sum

[ ¢ 1
1
[+4

runs over physically distinct channels, (16) is recovered where now Voét is
the AGS-based optical potential of refs. 28 and 29. It is not at all
surprising that it is this optical potential which should arise here.

fact, (A.8a) is Hermitean analytic sc that the associated optical potential is

28, 30
In

Hermitean analytic as well. Thus the unitarity and dispersion relatiQns
(17)-(19) are also recovered in the same form as in the text.

In contrast, the optical potential based on the more usual "prior" form of
the antisymmetrized transition operator, which is just the first term on the
right-hand side of (A.8b), is not Hermitean analytic and hence neither is its
associated optical potential. Because of this, discontinuity and unitarity
relations do not coincide and relation (19) is not obeyed. This is of
interest because the multiple scattering thecretic basis for high-energy
approximations to the optical potential is derived on the basls of the prior

form of the 'I-matrix31 [See, however, Ref. 30 for a multiple scattering series

based on T 1.
AGS
It is interesting that the result of this appendix implies that, at least
in principle, (16) requires the use of the optical potential based upon the
AGS form for T, in distinction from other off-shell extensions of T. From

{(A.6) - (A.8) this is connected to the spectral decomposition of G and thus
@

to the Coulomb sum rule, as well as to the analytic structure of Vo;t . Since
«

the optical potential based on Taés Is free of the elastic a -channel unitary
cut whereas the prior-based optical potential is not,?*° this dichotomy

carries over at least formally to the Coulomb sum rule within the context of

the cone-body oplizal model.
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Fig. 1 :
Fig. 2

Fig. 3 :
Fig. 4 :
Fig. 5§ :

Figure Captions

Diagram of the final state interaction contribution to the forward
virtual Compton amplitude, which i1s the scattering of virtual
photons from a nucleon in the nucleus. The "T " represents the
final state interaction between the ejectile and the resldual

nucleus. J* and JV are photonuclear electromagnetic vertices,

The longitudinal (a.) and transverse (b.) response functions for
Wea at g = 410 MeV¥/c as a function of energy transfer, w.
Calculations are shown for the free relativistic plane wave
approximation with no final state interactions (dotted line), the
nonrelativistic LDA with Bonn N-N amplitudes (solid line), the
nonrelativistic IA with Franey-Love N-N amplitudes (dot-dash line),
the nonrelativistic optimally factorized IA with Franey-Love
amplitudes (short-dash line), and the nonrelativistic Woods-Saxon

fit (long-dash line). The data are from ref. 4 (solid diamonds) and
ref. 3 (open boxes).

{3a.) and (3b.) are the same as in Fig. 2 except at g = 350 MeV/c.
Figs. 3c and 3d are the same as 3a and 3b, respectively, except only

the on-shell contributions from Topt are included in the

calculations.

Longitudinal (a.) and transverse (b.) response functions for “%ca at
q = 410 MeV/c as a function of energy transfer, «w. Calculations are
shown for the relativistic free plane wave approximation (dotted
line), Dirac global phenomenology (long-dash line) and the Dirac IA
(short-dash line). On-shell curves are also displayed, where Dirac
global phenomenology {dot-long-dash line) and the Dirac IA

{dot-short-dash line) are used.

The same as Flg. 4, except at 550 MeV/c momentum transfer.
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Fig. 6 : Longitudinal (a.) and transverse (b.) response functions for “ca at
q = 410 MeV/c as a function of energy transfer, w. Calculations are
shown for the relativistic free plane wave approximation (dotted
line), Dirac global phenomenology (long-dash line) and the
nonrelativistic LDA with Bonn N-N amplitudes (short-dash line).
On-shell curves are also displayed for the Dirac global
phenomenclogy (dot-long-dash line) and the nonrelativistic LDA with
Bonn (dot-short-dash line).

Fig. 7 : The same as Fig. ©, excepi at 550 MeV/c momentum transfer.

Fig. 8 : Longitudinal {a.} and transverse (b.) response functions for ®ca at
q = 410 MeV/c as a function of energy transfer, w. Calculations are
shown for the relativistic free plane wave approximation (dotted
line), the Dirac {long-dash line) and nonrelativistic (short-dash
line) optimally factorized IA with Franey-Love amplitudes. On-shell
curves are also displayed for the Dirac (dot-long-dash line) and
nonrelativistic IA with Franey-Love amplitudes (dot-short-dash
line).

Fig. 9 : The same as Fig. 8, excepl at 550 MeV/c momentum transfer.

Fig. 10 : Longltudinal (a.) and transverse (b.) response functions for 40Ca
at ¢ = 410 MeV/c as a function of energy transfer, w. The
relativistic free plane wave approximation (dotted line)
calculation is shown along with calculations using Dirac global
phenomenclogy to descrlbe the FSI. The full Dirac calculation
{long-dash line), the pure positive-energy NP calculation
(short-dash line ), and the NEP calculation with no explicit
negative-energy terms in eq. {31) (solid line line) are shown along
with on-shell calculations with (dot-long-dash line) and without

{(dot-short-dash line) negative-energy contributions.
Fig. 11 : The same as Fig. 10, except at 550 MeV/c momentum transfer,

Fig. 12 : The same as Fig. 10 and 11, except at 700 MeV/c momentum transfer.
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Fig.

Fig.

Fig.

Fig.

13 :

14 :

15 :

16 :

Longitudinal (a.) and transverse (b.) response functions for ca
at q = 410 MeV/c as a function of energy transfer, w. The
relativistic free plane wave approximation calculation (dotted
line) is shown along with calculations using Dirac global
phenomenclogy in full Dirac (long-dash line) and positive-energy NP
{short-dash line) format, and using relativistic Hartree potentials
in full Dirac (solid line) and positive—energy NP (dot-dash line)

format.

The same as Fig. 13, except at 550 MeV/c momentum transfer.
The same as Fig. 13, except at 700 MeV/c momentum transfer.

Longitudinal {a.) and transverse (b.) response functions for *°Ca
at g = 410 MeV/c as a function of energy transfer, w. The
relativistic free plane wave approximation calculation (dotted
line) is shown along with calculations using Dirac global
phenomenology to describe the FSI. The full Dirac calculation
(solid line) and a calculation, where only the real part of the

same optical potential (dashed line) is used, are shown.
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