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Abstract

A relativistic multiple scattering theory is formulated in the context of meson ex-
change. The elastic scattering amplitude for a fermion projectile satisfies a Dirac equation
with an optical potential derived from a relativistic multiple scattering series. It is shown
that the two-body t-matrix associated with the optical potential is the one with the pro-
jectile on its rass-shell in all infermedia.te states,

PACS numbers: 11.80.-m, 11.80.La, 24.10.Ht, 25.40.Cm



In almost all the relativistic (Dirac) projectile-nucleus scattering calculations done in
the past few years, the optical potential used has been the relativistic impulse approxi-
mation (RIA),! which is the relativistic analogue of the non-relativistic first-order impulse
approximation optical potential. The tacit assumption behind the use of RIA, together
with the Dirac equation, in which the heavy target is taken to be on its mass-shell, is
that there exists a multiple scattering series for the oﬁtical potential { in which the RIA
is an approximation to the first term). However, neither the existence of the relativistic
multiple scattering theory (RMST) nor the relation of it to the RIA has been consistently
derived. The lack of a RMST not only prevents us from performing a systematic study of
the higher order multiple scattering terms, but also from making other corrections, such as
off-shell effects and Pauli blocking, in a consistent manner. Therefore it is highly ciesira.ble

to have a RMST.

In this work we show that 2 RMST can be formulated in the context of a relativistic
meson exchange model. In the following we will consider a scalar “nucleon "interacting
with a spin, iso-spin zero A-body target through meson exchange. A minimal set of
meson exchange diagrams required for any such theory is the set of ladder and crossed
ladder diagrams. In the limit when the heavy target becomes infinitely massive, this set
reduces to 2 one body equation for the lighter particle moving in an instantaneous potential
produced by the heavier particle { the one body limit ?), and at high energies gives the
eikonal approximation to scattering.® We will assume that the theory we seek is one in

which these relativistic ladder and crossed ladders are summed efficiently.

The contributions to second order in the projectile-meson interaction are box and
crossed box diagrams, shown in Fig 1. Since the target is a complex system with (in gen-
eral) many closely spaced energy levels and continuum states with different combinations
of clusters, we assume that all of these states can contribute, at least in principle, to the
intermediate states. These states will be labled by the index n, with n = 0 referring to the
ground state. Included in this sum are states where one, two, and possibly many nucleons

are knocked out of the target. The elastic scattering matrix for the two diagrams in Fig 1

2



is, for spin zero particles,
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where the total four momentum in the center of mass is P = (W,0), g =p'+p-k and

the meson propagators are

1 1
Alk-p) = - = -, 3
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The meson-projectile vertices which couple the ground state to the nt” excited state are

gon and gng, and
ex = (m? + k)2 ; B, (k) = (M2 +Kk2)1/2 (4)

where m is the projectile mass and M, = My + A, is the mass of the n'® excited state of
the A nucleon system with excitation energy A,, with Ag = 0.

The key to our derivation is the analysis of the singularities of the box and the crossed
box diagrams in the complex kg plane. For this purpose we work at threshold where

P =p' =0 and W = My + m. The singularities are shown in Fig 2.

(i) If the ko contour for the boz diagram is closed in the upper half plane, the pole at
My — En(k) + m dominates. This pole corresponds to restricting the target ground state

to its positive energy mass-shell.

(ii) If the ko contour for the box diagram and the crossed box diagrams are closed in the
upper half plane, the the double poles at kg = m —w nearly cancel. The sum of these two
terms is propotional to

1 1 . 2(Mo — E,)

- = 5
En-My+w My—E,+w w? — (Mg — En)?’ (5)

so that when n =0 and My — oo, the pole calculated in (i} above gives the ezact answer

(the negative energy poles are also negligible in this case).
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(iii) For ezcited states of the target nucleus, the pole in the box diagram at Mo — E,(k)+m
may overlap the double meson pole or even the negative energy nucleon pole at —eg.
( This happens when A, = w or 2m. ) Such overlaps, which seern to be a manifestation
of dissolution singularities,* introduce spurious singularities into the equation. However,
all of these spurious singularities are eliminated if the contour is closed in the lower half
plane. Keeping the pole at kg = e still permits us to separate out the leading term from
the box, but in this case the cancellations in (ii) will go like {m — ex}/w?, which does not
approach zero as A — co. However, this loss of convergence can be accepted since the

contributions from excited states are generally smaller anyway.

These observations lead us to write the equation for the projectile target t-matrix in

the following operator form
T=V+VG{T +VGh T (6)

where G is the propagator for the projectile and the target in its ground state, with the
target on its mass-shell, and waéo is the propagator for projectile and excited states of the

target, with the projectile on the mass-shell. In this equation
V= Z v+ V! (7)
i

where v' are the OBE diagrams describing the interaction of the projectile with the sth
nucleon in the target and V"’ is the sum of all irreducible terms remaining from the full
ladder and crossed ladder sum. Points (i)-(iii) imply that V'’ is very small, and if A and m
both approach infinity the leading OBE terms are exact.? In general Eq(6) sums ladders
and crossed ladders exactly if V"’ is included.

While Eq(6) is an exact formulation of the problem, it is too complicated to be useful.
We need a philosophy for identifying leading contributions which will be summed exactly
and others which will be treated perturbatively. The philosophy we use is familiar from
non-relativistic multiple scattering theories.® The leading effects are assumed to arise from
multiple scattering through the intermediate states in which the projectile interacts re-

peatedly with the same target nucleon. This is important compared to the terms where
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the projectile is interacting with two or more different target particles since the matrix
elements of the latter are propotional to (small} correlation functions involving two or
more particles. It is not our intention to improve on these basic assumptions, but rather
to describe how they can be implemented in a relativistically covariant manner.

For elastic scattering, a convenient first step is to introduce an effective potential IV

(the optical potential). In operator form, the t-matrix in terms of the potential U is
T=U+UGST (8)
where the equation for the optical potential follows from Eq(6)
U=V+VG U=V +UGE,V " (%)

Eq(92) sums all inelastic contributions; (9b} is convenient for projecting the result onto the
elastic subspace needed in Eq (8). For large A4, Eq(8) is an effective one particle equation
for the projectile moving in a fixed, instantaneous field generated by the target. If the
projectile has spin 1/2, Eq(8) is a Dirac equation.

To take into account all the leading effects from rescattering from the same nucleon,
which controls the strong short range NN interaction, we introduce the multiple scattering
series as discussed above. To this end, separate out V’ from V', introduce 2 new propagator
g¢ such that

th =o' + viget (10)
= V" 4+ vigot (11)

where V' = V//A. Note that g; describes the propagation of the i*» nucleon in the nucleus,

but is otherwise unspecified. With these definitions, Eq(92) becomes

Ul=t'4 ) 668 — 0ibi)U7 +5°(1+ GP L, 3 1) (12q)
5 7

where

v=> u (126)
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Eq(12) is our final result for the optical potential. It gives the exact result for the sum of
all ladders and crossed ladder diagrams, and in the nonrelativistic limit (m—0), 3 — 0.

The propagator g; should be chosen to minimize the contribution from inelastic chan-
nels, so that the second term on the right hand side of Eq(12a) can be treated perturba-
tively. If these contributions are dominated by one nucleon knockout processes as discussed
above and illustrated in Fig 3, choosing g; to be the propagator with botk the heavy A -1
cluster and the projectile on mass-shell will ezactly cancel the dominant inelastic contri-
butions from the second term in Eq{122) and ensure that they are exactly accounted for
in the summation of Eq(10) which produces ¢*. Restricting the 4 — 1 cluster to its mass-
shell® ensures cluster separability of the remaining two nucleon system.” Eq(10) for ¢¢ then
reduces, in the NN subspace, to the one particle on shell (spectator) equation previously
introduced by one of us,® the only cha.nge being the shift in the total energy of the two-body
subspace due to the motion of the 4 — 1 cluster.

Finally U can be projectqd onto the elastic subspace using Eq(9b). This leads to an
effective two-body t-matrix for the first term on the right hand side of Eq(12a) (denoted
by ¢ ) which has both nucleons in the initial and final states off shell and is obtained by

quadrature from the spectator amplitude ¢
=5+ ﬁ"g.'f?'. + ﬁ"g;t'-g,'ﬁi. (13)

Here i is the OBE potential with all four legs off shell (unless one of the legs is projected
on-shell by g,). In applications the first term in Eq(122) is usually simplified by using the
tp approximation and is referred to a.s. the RIA. Our derivation suggests that the full first
term of Eq(12a) with g; defined as in Fig 3 is a more precise definition.

In conclusion, we would like to emphasize that, in the context of the meson exchange
model, the projectile-nucleus t-matrix does not readily assume the form convienient for
multiple scattering analysis. In order to obtain a more manageable kernel and the corre-
sponding t-matrix, we need to consider the explicit cancellations of meson poles between
the box diagram and the crossed-box diagram. Once the integral equation for the t-matrix
is obtained, the optical potential can be derived in a straight forward manner. The optical

potential can then be expressed as a multiple scattering series, Eq(12), and in the impluse
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approximation the t-matrix associated with the optical potential is found to be the one
with one particle on its mass-shell.
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Figure Captions

Fig.1.

Feynman diagrams for elastic scattering of a projectile (solid line) from a nucleus
(double solid line) in its ground state. These diagrams are second order in the meson
(dash line) projectile coupling g, but contain interactions of the A-body target nucleons

to all order in g. The index n denotes an arbitrary excited state of the target, withn =20

the ground state.

Fig.2.
Singularities of the box and crossed box diagrams in the complex ko plane for W =
My + m, and p = p’ = 0. The circle around the meson poles are to indicate that they

are double poles when p = p’. All the poles move as [k| varies. Cuts comming from the

structure of the couplings go. and gn.g are not shown.

Fig.3

Diagramatic representation of second order rescattering of the projectile with the same
target nucleon through intermediate states in which one nucleon is knocked out and the
remaining A — 1 system is in some excited state n,..;. Choosing g; as shown ensures that

these leading terms are exactly included in the first term of Eq(12a), and that the other

terms are snia.ll.
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