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ABSTRACT

A modern treatment of the nuclear few-body problem must take into account
both the quark structure of baryons and mesons, which should be important at
short range, and the relativistic exchange of mesons, which describes the long
range, peripheral interactions. A way to model both of these aspects is described.
The long range, peripheral interactions are calculated using the spectator model,
a general approach in which the spectators to nucleon interactions are put on
their mass-shell. Recent numerical results for a relativistic OBE model of the
NN interaction, obtained by solving a relativistic equation with one-particle on
mass-shell, will be presented and discussed. Two meson exchange models, one
with only four mesons (7,0, p,w) but with a 25% admixture of 4° coupling for
the pion, and a second with six mesons (1,7, p,w,§,n) but pure ¥*+* pion cou-
pling, are shown to give very good quantitative fits to the NN scattering phase
shifts below 400 MeV, and also a good description of the 7 ®Ca elastic scat-
tering observables. Applications of this model to electromagnetic interactions
of the two body system, with emphasis on the determination of relativistic cur-
rent operators consistent with the dynamics and the exact treatment of current
conservation in the presence of phenomenological form factors, will be described.

*Invited talk presented at the Workshop on Electron-Nucleus Scattering, held at the Elba
International Physics Center, Italy, 7-15 June 1988.



1. INTRODUCTION

The major part of this talk will report on an approach to the relativistic
treatment of nuclear systems which has grown out of work using relativistic
equations with one particle off-shell. The essence of this approach is that the
relativistic series of Feynman diagrams describing any nuclear process can al-
ways be reorganized so that only the particles which are interacting are off-shell,
and all other particles, which are spectators to the interaction, can be put on-
shell. For two and three nucleon systems this can always be done so that only
one particle is off-shell, and the amplitudes required are either covariant vertex
functions or covariant scattering amplitudes. With modifications, it appears
that this general approach can be extended to many body systems, and I now
refer to it as the spectator model. |

The spectator model is designed to treat nuclear forces at large distances,
from one to two fermis and beyond, where it is assumed that the forces are
peripheral, and might be correctly described by relativistic meson exchange
mechanisms. The minimal set of meson exchange diagrams which should be
treated is the sum of all ladder and crossed ladder diagrams. Below the me-
son production threshold, this set will be regarded as sufficient, but above the
production threshold self energies must be included, but only as necessary to
insure three (and perhaps four) body unitary. Values of meson and baryon pa-
rameters, particularly masses, will be taken as much as possible from known,
measured results and form factors, which describe the short range structure of
the hadrons, will be treated phenomenologically. The examples developed in
this talk are taken from this relativistic meson exchange picture.

At shorter distances, probably inside of a few tenths of a fermi, it is assumed
that the physics is best described in terms of the underlying quark and gluon

degrees of freedom. The phenomenological form factors, coupling constants and



hadron masses used in meson exchange models would then be eventually replaced
by microscopic calculations of these qualitities. Furthermore, these calculations
will probably requﬁé a full treatment of QCD, or some realistic modeling of the
non-perturbative (confining) forces in QCD. For the next decade, modeling will
probably be necessary. It would be very desirable to develop 2 model which is
compatable with the relativistic meson theory. This would require that both
the relativistic nature of the quarks and gluons, and the relativistic motion of
the composite mesons and baryons be treated together. A model which which
satisfies these requirements is described briefly in section 2 below.

The remaining three sections of this talk deal with the spectator model.
First, the concepts used in the spectator model will be reviewed, and it will be
shown how they are applied to nuclear physics problems, Next, recent unpub-
lished numerical results for NN scattering and § “°Ca will be presented. Finally,
applications to electromagnetic interactions of the deuteron will be described in
some detail.

2. QUARK STRUCTURE

The composite structure of mesons and baryons can be described by their
corresponding relativistic wave function. In a simple approximation, the Fock
space expansions for these wave functions may be limited to the first term de-
scribing the ¢g§ valence component for mesons, and the ggg valence component
for baryons. To insure that the model is relativistic, and that it is compatable
with the spectator model for peripheral interactions, momentum space rela-
tivistic Bethe Salpeter wave functions, derived from the relativistic bound state
vertex functions, are used. This program has just been started in collaboration
with Hiroshi Ito and Warren Buck of Hampton University, and I will refer to it

as the relativistic quark cluster model (RQCM}.

The basic idea is to include quark structure in the manner illustrated in
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Fig. 1. Fig. 1a shows the one pion exchange interaction with phenomenological
form factors at the ¥ NV vertex. In Fig. 1b, the same OPE term is shown, but
now the x VN form factor is given in terms of the nucleon and pion relativistic
vertex functions. If these vertex functions have been previously specified, as

described below, then the form factor is determined. Other processes involving
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Figure 1: {a)OPE interaction with phenomenological form factors can be replaced by (b)OPE
tnteraction with strong form factors given by Ngqq and xqf vertices. Ezamples
of other diagrams arrising from quark structure ere (c]OPE followed by quark

interchange and (d)one gluon ezchange with guark interchange.
quark inferchange can now be calculated. In Fig. 1lc, pion exchange followed
by quark interchange is shown and Fig. 1d shows one gluon exchange. Both
of these processes, which lie outside of the OBE model, can be estimated, and

could provide detailed guidahce as to where to look for important effects due to

explicit quark degrees of freedom.

If quark exchange effects are large (and calculations indicate that they are)



why is the OBE model so successful? One possible answer, shown in Fig. 2, is
that quark interchange effects may be dua! to OBE. In particular, 2 sum of 2
variety of quark iﬁte:change diagrams associated with OPE, one gluon exchange,

and other short range effects may nearly equal the sum of OBE diagrams with
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Figure 2: Sum of quark interchange diagrams may be equivalent to a sum of OBE interac-
tions. This is the concept of duality,

effective form factors and masses. Perhaps the o exchange arrises in such a fash-
ion, or p and w exchange may not be due to the exchange of actual p’s and w’s,
but may be an efficient way to represent the sum of quark interchange processes.
This idea has been previously introduced by Weber and his collaborators!l, and
by many others. The RQCM will permit the study of such effects in the context
of the relativistic spectator model.

The Bethe Salpeter wave functions could be calculated from the Bethe
Salpeter equation? by introducing phenomenological confining forces modeled
after latiice gauge results, but this is a long program, and to get preliminary
results soon we chose to start "in the middle” and parameterize the wave func-
tions themselves, and fit the parameters to data. For the pion we chose a wave

function of the form



N{(1 —n)7* + nEZ|C
(Af ~ @?)(A% — ?)(A] - @?)

%(P,q) =

= S(;P +QT(Pg)ST(3P ) (1)

where P and g are the total and relative quark four momenta, respectively, C
is the dirac charge conjugation matrix, S is the free quark propagator and I
is the mgg vertex function. The constant IV is fixed by normalization, and the
four parameters A; and n are determined from a calculation of the pion form
factor, pion decay constant f,, and # — 2+ decay rate. Note that the wave
function (1) has no poles at (1P + ¢)? = m3, so that it can be regarded as
including the renormalization and shift of the quark mass (from "current” to
"constituent” values) associated with the bound state interaction. Because of
this fact, the fifth parameter, the "free” mass of the light quark m,, enters only
into the normalization of the pion form factor, where it is absorbed in ¥, and
into the m — 2+ decay rate, where it enters into the free propagator S which con-
nects the 2vs in the triangle diagram. We find that the choices A; = 0.75fm™1,
Az = 3.15fm™1, A3 = 3.62fm™1, n = 0.075, and m,=8.4 MeV give excellent fit
to fr, the pion form factor and rms charge radius, and do reasonably well with
the 2+ decay rate (3.13 eV is obtained while the experimental value is 7.37+1.5
eV).%! This model also gives a good deseription of the process 4 +y = 213 After
the nucleon wave functions have been determined, we will be able to estimate
the diagrams in Fig. 1, and {perhaps) insert them as driving terms into the
relativistic spectator model described below.

There are many questions of principle which remain to be answered. These
include the problem of how to avoid double counting, incorporate qauge invari-
ance and chiral symmetry, and how to include a dynamical mode! of confinement

in a consistent fashion.



3. OVERVIEW OF THE SPECTATOR MODEL

This section will review the concepts used in the spectator model, and de-
scribe their applications.

3.1 Concepts

There are three types of amplitudes which are sufficient for most applica-

tions: bound state vertex functions, scattering amplitudes, and off-shell form

factors.

When bound states are present, the relativistic vertex function with one
particle off-shell is required. This vertex function is related to a matrix element
of the interacting field between the bound state and the spectator particles in

the final state, which, for two body bound states, is
I'®(p, Pg) = §0-9(p;) < p,]$(0)|P5 > 2)

where Pg = py+p; and p = 3(py —p;) and S(p2) is the propagator of the off-shell
particle 2. Blankenbecker and Cook were the first to introduce this covariant
vertex for the deuteron?!, and a complete discussion of its relation to relativistic
deuteron wave functions has been given by Remler® and Buck and myself.?! For

three body bound states a similar amplitude is needed’]
I'®)(p, q, P) == 57Y(ps) < p1p2}¢(0)| Ps > (3)

and I believe that the idea can be generalized, with some complications, to four

or more bodies. For systems with A nucleons, a vertex can be defined in a
similar way
I (p4) = 57 (ps) < A — 1|p{0)] 4 > (4)

where nuclear matter can be treated by letting A — oo. These amplitudes are

drawn schematically in Fig. 3a,b, and c.
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Figure 3: Concepts in the spectator model. In all diagrams, the eross indicates that the
particle i3 on-shell, and all bound states and A or A-1 particle systems (denoted
by a heavy dark line) are also on-shell. Two body bound state vertez functions
(o), three body bound state verter functions (b), verter function for one off-shell
particle in an A body system {c), kalf off-shell (d) and fully off-shell (¢) scattering
amplitudes, and equation for the BS amplitude consistent with the spectator model

{1)-



For scattering problems, the off-shell scattering amplitude is needed. For

two body scattering, the Aalf off-shell amplitude is a generalization of (2):
(1 1
M(p,;P) =57 (3P —5) < TP+ plé(0)lp', P > (5)
where p’ and p are the relative momenta of the two particles in the initial and
final state, and the notation is meant to imply that both particles are on-shell
in the initial state, but that only particle 1 is on-shell in the final state. Hence

(%P +;:c)2 = m? (6)

which becomes a contraint on p,. In the CM frame, P = (W,ﬁ), this constraint

becomes
1
Do = Ep - EW (7)

This amplitude is illustrated diagramatically in Fig. 3d. Sometimes the fully
off-shell amplitude is required, which is shown diagramatically for the two body
system in Fig. 3e. Knowledge of these amplitudes implies knowledge of the
relativistic kernel V' from which these amplitudes can be calculated by solving
the spectator wave equation®, which in the CM for two spin zero particles is

M(p,p;P) =V (p,7'; P) + [ (;i:rl)ca Vﬁ’}féviiﬁ(’f?ﬁf) (8)

The equation for the bound state vertex function I'(2) = I can be derived from
Eq.(8) by using the fact that the existance of the bound state implies a pole in
M at P? = P} = M}

M(p,p'; P} = _I‘(P:AI;?:T:E?;,PJ +R (9)

where R is non singular at P? = MZ. Inserting (9) into (8), and demanding
that it hold in the vicinity of the pole, gives the bound state equation.

_{ &k V(p,k)T(k, Ps)
I(p, Ps) = (2r)2 2E, Mg (2E, —jla) (10)




It can be shown that the fully off-shell 2 body amplitude shown in Fig. 3e
is sufficient to obtain solutions to the relativistic three body Faddeev equations
(a three body forcé'term may also be needed), but it appears that a systematic
treatment of four or more particles may require two body amplitudes with both
particles in the initial and/or final state off-shell. Such BS amplitudes can be
calculated consistently within the framework of the spectator model provided
the kernel V is known for all particles off-shell, which will be assumed. The

equation, represented diagramatically in Fig. 3f, is
d*k V(p,k; P)V (k,p'; P)
M®$(p,'; P) = V5, / :
(pp ) (PP P)"' (2 )3 2EkW(2Ek—W)

j’ d*ky &3k, V (p, ky; P)M(ky, k23 P)V (k2,p'; P) (11)
(27)° 4Ey, B, Wi(2Ey, — W)(2Es, — W)

This definition of MBS is consistent in that M®S = M when one particle is
on-shell in both the initial and final state, and the off-shell extrapolation de-
fined in (11) is precisely the amplitude which arises in cases where the spectator
model does not uniquely define spectators in either the initial or final state,
The last concepts needed in the spectator model are the vertex functions
which describe how probes interact with nucleons or mesons. For nucleon scat-
tering, the probe is the nucleon itself, and the amplitudes needed are the M
matrices just discussed. For pion scattering, the # NV vertex function, and the
7N scattering amplitudes are needed. The 7 NN vertex function is contained
in ¥V, and work is underway to apply the spectator model to # N scattering.
Finally, for electron scattering, the off-shell YN N, 4= x, and other current “op-
erators” are needed. Recently, a way has been found to introduce the currents
in such a way that gauge invariance is satisfied exactly, and pheonomological
form factors (both electromagnetic and strong, such as those used at the t NN

vertex) may be used without constraints.®! This will be discussed further in sec-
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tion 5 below.
3.2 Applications

Figure 4 illustrates how the three concepts discussed above are used in ap-
plications. Figs. 4a and b show the relativistic impulse approximation (RIA) to
the deuteron form factor and the three-body form factor (in the three body case,
the pd 3He vertex is also required). The relativistic bound state vertex fune-
tions and the off-shell nucleon form factors are required, and the spectators to
the electromagnetic interactions are on-shell. I originally viewed these diagrams
a2s an approximation to the full diagrams with all internal particles off-shel!%,
but I now believe that these should be viewed as one term (probably the largest)
in the exact current operator, the structure of which is largely determined by the
dynamical content of the two body interaction kernel V (see section 5 below).

Figures 4c, d, and e show various contributions to electrodisintegration. Fig.
4c is particulé.rly amusing; this impulse diagram requires precisely the bound
state amplitude calculated in the spectator model! Figure 4d is 2 meson ex-
change contribution (MEC), and 4e is the final state interaction (FSI). In Fig.
4e, the spectator is again on shell, and the half off-shell amplitude calculated
in Eq. (8) is just what is required for the rescattering. The full MEC contains
many terms, and will be discussed in Section 5.

Figure 4f shows how spectators can be uniquely identified if three body
scattering is regarded as a succession of two body scatterings. Using this analy-
ses, relativistic three body Faddeev equations, driven by the off-shell amplitude
shown in Fig. 3e, can be derived.”l In Fig. 4g the self consistent equations
for an A body bound state are written down diagramatically. The kernel used
in this equation is identical to the optical potential’!l required for relativistic
proton nucleus scattering, and results using such a potential will be reported in

the next section. In the limit when A — oo, if the two body scattering ampli-
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Figure 4: Applications of conceptsin the spectator model. Symbols are deseribed in figures or
the tezt. Two (o) and three (b) body form factors in the impulse approzimation;
d(e,e' p)n diagram for the RIA{c}, MEC(d), and FSI{e} with the half off-shell
amplitude shown in the dashed boz; typical sequence of two particle scattering
which drives the three body amplitudes are shown in (£} with fully off-shell two body
amplitude shown in the dashed boz; equation for A nucleon bound state shown in
(9) with potential for p-nucleus scattering shown in the dasked boz.
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tude M is approximate by its born term V, it can be shown that only o and
w exchanges survive, and the mean field results of Serot and Walecka can be
obtained.’ Hence the concepts of the spectator model can be applied to few
and many body problems in a consistent fashion.

3.3 Assessment

The discussion presented in this section has been very heuristic, but it is
possible to develop the discussion in a more formal and rigorous manner. The

advantages of the spectator model are

(i) it is manifestly covariant; the transformation properties of all amplitudes
under the Lorentz group can be written down explicitly, and all amplitudes
conserve energy and momentum, as required by space-time translational
invariance;

(ii) thereis a close connection to field theory through its expansion in Feynman
diagrams, permiting the dynamics of meson exchange to be introduced in

a natural way;

(iii) the non-relativistic limits of all amplitudes can be obtained naturally in
the m — oo limit, establﬁhing a close correspondence with non-relativistic

theory and facilitating interpretation of all quantities;

(w) it can be shown!®l that the kernel ¥ is rapidly convergent in the m — oo

limit, providing a smooth transition from two body equations to one body

equations; and

(v) there is cluster separability; for example, the 3 body equations are driven

by the same two body amplitudes calculated in the two body problem.”

There are two disadvantages of the spectator approach, only one of which is

serious, in my opinion. The non-serious disadvantage is that the equations ap-
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pear to be unsymmetric because only one of the two particles is on-shell. When
dealing with identical particles, where symmetry is required, it can be obtained
by explicitly symmetrizing the kernel, as illustrated in Fig. 5a for the OBE
model. Once this is done, it can be shown that the two body amplitude is fully

symmetric, as shown in Fig. 5b. Alternatively, with a symmetrized kernel it can

Binn ol el O R O

(a) .

Figure 5: (a)Symmetrization of the OBE kernel. The first term is the direct term, the second
the ezchange term. (b) Diagramatic representation of the symmetry relation for
the scattering amplitude which results from the symmetrized kernel.

be shown that an equivalent form of the equation can be written in which the
propagator is an equal mixture of terms with particle one on-shell and terms
with particle two on-shell. Hence, while the equations may look unsymmetric,
they are in fact fully symmetric for identical particles, and the Pauli principle
for two identical spin % nucleons is satisfied exactly.

A second disadvantage is more serious: the process of putting particles on-
shell introduces spurious singularities into the interaction kernels. (These are
not singularities associated with particle production, which are expected, but
singularities which have no physical origin.) It can be shown’] that such singular-
ities arise from the way in which Feynman diagrams are divided into spectator
and non-spectator pieces, and that when all pieces are added together, these
singularities cancel. This cancellation may therefore be used to justify dropping
the imaginary parts of these singularities. It does not appear that the real parts

(pr’incipa.l values) of the singularities can be discarded without greatly adding to
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the complexity of the equations, but as they occur only when at least one par-
ticle is off-shell, and therefore appear only in virtual intermediate states (which
are integrated over), and as they occur only at rather large momenta, they seem
to have a negligible effect on the numerical results and can be accepted as one
of the features of this phenomenology. Their numerical infuence is presently
being studied in detail in collaboration with J.W. Van Orden.
4. RECENT NUMERICAL RESULTS

This section will report on recent fits to the NN scattering phase shifts and

their first application: the predictions for § *°Ca scattering observables.
4.1 NN phase shifts

Work using Eq.(10) (suitably generalized to describe two spin 1 particles)
to describe the deuteron and NN scattering phase shifts has been underway
for some time. The non-relativistic limit of this equation was studied some time
ago'¥l, and numerical solutions for the deuteron in an OBE model have also been
obtained®.. The present work began in collaboration with K. Holinde (Julich)
who brought an early version of the Bonn phase shift code to Williamsburg.
Recently, J.W. VanOrden has made substa.nltia.l improvements in the code, and
we now can automatically vary the OBE parameters to obtain a best fit to the
phase shifts, scattering lengths, effective ranges, and deuteron binding enérgy.
This work is still in progress, and there will be small changes in the results I
will report on here, but the essential features are clear at this time.

The OBE models presented here have the following features:

(i) The coupling of psendoscalar mesons (7 and 5) includes an off-shell mixing
parameter A,
5 _y y(rr— k) s
g [z\nﬁ + (1= An) 0= ] (12)
defined in such a way that the coupling is independent of A,, when both

the initial and final nucleon are on-shell.
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(ii) The coupling of vector mesons (p and w) also includes an off-shell mixing

(iii)

(iv)

parameter A,
) Km .
Gm {[1 + K:m(l — Am)],,,u + Amz—gtdp (pf -— Pi)v

(1~ /\m)rcm(ﬂf—;'-f‘—)“} (13)

defined in such a way that the coupling is independent of A,, when both
the initial and final nucleon are on-shell. Note that this mixing parameter
gives off shell sensitivity only when the tensor coupling %, is non-zero.

Since the tensor coupling of the w meson is small, A, was fixed at unity.
All meson nucleon vertices have the same phenomenological form factor
A? 2 %
fml(d®) = (M_—Z{f) (14)

where A is an adjustable parameter (the same for all mMesons), Uy, is the

meson mass, and ¢? is the square of the 4-momentum carried by the meson.

The off-shell nucleon carries a form factor of the form

I (o) = (H) (15)

This form factor is essential for convergence of the equations.

Both the direct and exchange terms shown in Fig. 5a use the form of the

four vector g% appropriate to the direct term

¢* = (pr — p:)® = (E; — E)* ~ (By — 5:)° _ (16)

New fits currently being prepared will relax the restriction given in (v), and use

the ¢* appropriate to each diagram. This will also require new form factors.

Some fits of this kind have already been obtained, and the results do not differ

significantly from those to be presented here.
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Two OBE models have been found which fit the NN observables very well.
The fits to NN phase shifts below 400 MeV are shown in Figure 6. While there
are some differences between the fits, these differences are small, and it is not
misleading to regard both models as fitting the phase shifts equally well. Yet

the two models differ significantly in their dynamical content. Model 1 includes

" Table 1: Parameters for Model 1 (upper) and Model 2 (lower). All masses and
cutoff parameters are in MeV.

Eneson -’f; l Km Am | Hm
T 13.83 0.25
14.11 0.00*
o 4.26 491
4.65 510
P 040 | 7.22 | 0.97
0.65 | 6.20 | 0.77
w 749 | 0.26
8.79 [ 0.02
n - -
5.26 0.47
F.) - -
041 520
A= 2760 Ayxy= 1930
2250 2000

*Constrained in Model 2

the exchange of only the four mesons essential to any OBE description of nuclear
forces: w, o, p, and w. The mixing parameter A, = 0.25, corresponds to a 25%
admixture of 4° coupling for the pion. Model 2 constrains A, = 0, giving a pure
~+4# coupling for the pion which many physicists believe is required by pair
suppression and chiral symmetry. To obtain an equally good fit to the phase

shifts, this model requires an additional # and § meson. The § meson is needed
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