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Introduction

The short bunch lengths and the associated high frequencies found in the lat-
est designs of linear colliders, superconducting linacs, FEL drivers, damping rings,
and synchroiron light sources have heightened the importance of understanding
the high-frequency behavior of the interaction of an accelerator beam with its en-
vironment. This parametric domain is at the limits of both the numerical and
analytical tools which have been developed to date, and consequently there exits
some question as to the correct asymptotic frequency dependence. The resulting
uncertainty in the coupling of a particle beam to vacuum chamber discontinuities
has hindered evaluation of bunch lengthening in storage rings and transverse beam
blowup in linacs, and limits confidence in assessments of beam quality in proposed
designs. Another high-frequency phenomenon, which is of particular concern in
damping and storage rings, is the synchrotron radiation process in the presence
of conductive boundaries. Estimates! have indicated that this effect can provide
the dominant limit on peak beam current in small, smooth-walled machines, but
this earlier work does not take into account fully the complex, finite-Q resonance
structure which is present. The charge to the August 1987 Impedance Beyond Cut-
off Workshop at Lawrence Berkeley Laboratory was to investigate these issues in

some depth and to provide clarification of the main features of the beam coupling



impedance at frequencies well-above the lowest propagation frequency of the beam
pipe. Subsequent papers in this volume present the detailed results of the workshop
participants. In this note the motivation for this effort, an overview of the progress

made, and a few remarks on remaining questions is offered.

Basic Notions of Impedance and Wake Potentials

A charged particle beam pessing a discontinuity in its vacuum chamber can
deposit electromagnetic energy. Alternatively, a charged particle beam passing
through a bending magnet can synchrotron radiate, again depositing energy. The
source term in either case can be the macroscopic charge distribution of a bunched
beam or the microscopic random currents at essentially arbitrarily high frequency
(Schottky noise) of incipient beam instabilities. These beam induced electromag-
netic fields act on the beam and create a potentially unstable feedback loop which
may limit beam current through instability and phase space dilution. The notions
of wake potential and coupling impedance provide a major tool in the analysis of
these processes. Consider a charged particle beam passing down the center of a
cylindrical beam pipe which has an isolated cavity-like structure. The longitudinal
current I(z,t) will generate a longitudinal electric field E,(z,t) which for a localized,

time independent structure will be of the form
E,(z,t) = / dz'dt’ f dkdk'dw Gk, k',w)eks— k' —iwlt=t) 1,1 41y (1)

where G(k,k',w) is the Fourier-transformed Green function which must satisfy
causality and relativistic locality. (In general, there is an additional term describing
the contribution of the charge density which will not be discussed here.) Although
it is this Green function G{k,k’,w) which enters into a complete beam stability
calculation, if the motion of the particles is well approximated by constant velocity

trajectories during transit through the localized structure, the simpler notions of



impedance and wakefield provide sufficient information for a sound analysis. Con-
sider a test charge moving at a constant velocity v along a trajectory r =0, 2 =
—s + vt of the cylindrical beam pipe. The integrated longitudinal field W (s) seen

by the test charge is

W(s) = fdzcu 6("‘ te_ t) Ey(2,1) (2)

v

On inserting (1) into (2) and integrating, we have
W(s) = (2n) f dkdk’ G(k, k', kv)I(k', kv)e~ % (3)

where f(k,w) is the Fourier transform of the longitudinal current I. The time
dependence of the beam current is generated both through the gross motion of
the nonuniform spatial distribution of charge in the beam and through changes in
that distribution. For a quasistationary distribution of charge moving at a velocity
v; that is, when the transit time is short compared to the characterisitic time for
changes in the distribution, the primary time dependence will be given by I{(z,t) =

Io(z — vt). With this approximation
I{k,w) = 2x Iy (k)6(w — kv) (4)

Inserting Equation (4) into Equation (3) yields

(2
|

The wake potential W (s) is defined by (5) for a delta function exciting current; that

Wi(s} = :l)z f dke*%* G(k, k, kv)Iy(k) (5)

is,

W(s) =

(2”)2 —tikas
ol f dke™*** G(k,k, kv) (6)

The wake potential is the effective Green function for interaction with a vacuum

chamber component in the in the quasistatic limit. The Fourier conjugate of the

wake potential is the coupling impedance, which is given by the relation

(2m)?
vl

Z(w) = Gk, k, kv)

(7

kv=w



A current I(w) yields a voltage

V(w) = I{w)Z(w) (8)

when averaged over the structure in the quasistatic limit. Similar considerations
are applicable for transverse coupling, where a transverse effective Green function
(the transverse wake potential) and conjugate impedance can be defined.

If the motion of both the source current and test particle is not simply linear (for
example, with synchrotron oscillations or betatron oscillation) the relation kv = w
between wave number and frequency breaks down. For example, with synchrotron
oscillations at w, the kernel G{k,k',kv + pw,) for integer u is needed. If for the
strongest sidebands k + pw, = k' + vw, implies k = k',u = v; then only the
G(k,k, kv + pw,) are necessary for analysis. In the limit of an infinitesimally short
structure at position z, the (k,k’) dependence is simply exp((k — k")z) for finite
(k, k'), and G(k, k, kv + pws) follows immediately from the knowledge of G(k, k, kv)
for all k.

The full knowledge of G(k, k’,w) is required in situations in which the perturba-
tion of trajectories by induced fields during transit across the impedance generating
structure is essential to the correct physical picture. An example of where the
simplest notions of impedance and wake potential are inadequate is found in the
phenomena of regenerative beam breakup? induced by a single transverse mode in
an extended structure. Consider a bunch passing through the center of a cavity
which has a low level excitation of a transverse deflecting mode. The associated
longitudinal electric field rises linearly from zero on axis. The transverse deflection
produces a finite, albeit small deflection into a region of longitudinal electric field
which can couple energy out of the bunch longitudinal motion and into the mode
field energy. The time dependence of the trajectory perturbation smears the relation

between w and k, and in turn allows coupling of k& # k'. The feedback loop formed



can go unstable at sufficiently high current, when the excitation from the orbit per-
turbation exceeds inherent mode damping. Although order-of-magnitude estimates
of threshold current can be obtained from knowledge of the transverse impedance,
a correct treatment requires detailed information on the field pattern and phases of
the mode. Since the trajectory varies from linear in transit, the usual straight trajec-
tory wakefields do not provide sufficient information. In fact, the functiona! form
appropriate inside the extended structure is not the usual wakefield expansion.®
Similar considerations may apply to instability driven by the synchrotron radiation
impedance, discussed in a subsequent section, where the fields and beam interact

throughout the vacuum chamber. Furthermore, transverse variation of the coupling

across the beam may be of significance.

Phenomena Driven by High-Frequency Impedances

The impedance of a variety of particle accelerators has been found in practice
to begin to rolloff at frequencies of the order of the lowest waveguide cutoff, typically
a few gigahertz. Because of this fact, the dominant current limits for an unbunched,
continuous beam, which can be excited in a very narrow frequency band, is dom-
inated by antidamping modes of relatively low frequency content. The very short
bunched beams found in a ﬁumber of current accelerator designs, however, present
a quite different picture. Consider the excitation of a localize structure by coherent
internal oscillations of a bunch of rms length r. Because of the finite length, the
frequency spectrum offered by an arbitrary perturbation of the bunch has width
of 1/(2 n7) and is centered about the typical frequency of the perturbation. For
example, a 1 mm bunch generates a corresponding frequency bandwidth of about
50 GHz. Therefore, any successful model of internal bunch stability for these short-
bunch designs will include significant frequency smearing over a range where there

is considerable variation in the coupling impedance and over frequencies well-above



typical cutoff frequencies of a beam pipe.

Internal bunch instabilities, both transverse and longitudinal, have provided a
fundamental limitation in the design of short-pulse-length synchrotron light sources,
high-phase-space-density damping rings, and single-pass FEL drivers. Although
several formalisms have been developed to describe this class of beam instability,
they share in a common structure.® A set of basis states (possibly degenerate) is
chosen which describe perturbations of the bunch phase space and current, with the
higher states corresponding roughly to shorter wavelength internal ripples. For each
mode there is an associated eigenfrequency. The impedance generates an additional
interaction between the states, and the determination of stablility reduces to an
infinite dimensional eigenvalue problem. The fundamental matrix is formed from
the unperturbed eigenfrequency spectrum and expectation values of the product of
the impedance and beam current with the baais set. Since the basis set represents
modes on a bunch of finite length 7, the expectation values effectively average the
impedance over a frequency range 1/7. In general, reactive impedance can couple
a basis mode to itself, yielding a frequency shift. On the other hand, resistive
impedance provides the primary coupling between neighboring states and acts to
induce instability.

Determination of the threshold current for longitudinal and transverse insta-
blity requires solution of an infinite dimensional matrix eigenvalue problem. In prac-
tice, the matrix is truncated and certain general features which determine instability
onset are observed. Heuristically, the off-diagonal matrix elements (through the re-
sistive component) provide a potential growth rate; the reactive component yields
frequency shifts which can either increase or decrease the eigenfrequency spacing
for basis states which are of the correct class to couple. Instability is observed
(antidamping eigenfrequencies) when the potential growth rate exceeds the mode

spacing. A large reactive impedance (when averaged over the mode spectrum) can



reduce mode spacing and allow a relatively small resistive coupling to induce insta-
bility. As the current is increased the modes can cross and stability can be restored,
yielding & stopband structure in current. Therefore, the threshold for this insta-
bility becomes a sensitive function of the averaged reactive impedance. For short
bunches this average is carried from the low frequency inductive impedance through
to the high frequency capactive impedance of the tail, and estimates of stability can
become extremely sensitive to both the assumed value of the transition (i.e., cut-
off) frequency between inductive and capacitive behavior and the functional form
in frequency of the high-frequency rolloff. Longitudinal impedance models invok-
ing so-called “Spear scaling” (with an implicit w7 dependence) and a “Q =1
resonator” (with an implicit w=! dependence) have been widely used. As will be
described later in more detail, the primary discussion of the Impedance Beyond
Cutoff Workshop centered about whether the high frequency rolloff of the longi-
tudinal coupling impedance is dominantly w—!/2 or w~3/2, For short bunches the
choice of model can significantly affect stability estimates. Similarly, assumptions
with regard to the “cutoff” angular frequency where rolloff begins—for example, at
c/a or 2.4 ¢/e (the TM cutoff in & circular pipe of radius a}-—can yield either bunch

lengthening or shortening in some parameter regimes.

The meaintenance of beam quality for the short, highly charged bunches found
in proposed linear colliders,5 multipass superconducting beauty factories, and FEL
drivers is a second issue which is intimately tied to the high frequency behavior of
the transverse and longitudinal coupling impedances. Since the longitudinal wake
potential is related to the coupling impedance by a Fourier transform, an w™3/2
asymptotic form implies that the é-function wake W (s) divergesat s =0 as 1//s
whereas an w™3/? dependence yields a finite limit. The functional dependence of
the transverse wake varies typically as the integral of the longitudinal wake, which

implies 51/2 or s behavior, respectively, in the neighborhood of 8 = 0.



The longitudinal loss factor k¢(c) is defined by the relation

Q%ke = j * arr(r) ]_ " aIW(r —1) (9)

—0o0

and Q%k, gives the total energy loss of a bunch of charge Q for a current distribution
I. For reasonable charge distributions, 2Qk, gives the approximate head-to-tail

energy variation induced by the longitudinal wake. The transverse loss factor k; is

defined by |
szg = f+°°dtI(r)fr dtI(t)Wg(T— t) (10)

- 00
where Wy(r) is the transverse wake potential and Qk; gives the average induced
transverse kick. If w—1/2 asymptotic behavior as discussed above is assumed, then

for a gaussian bunch of sufficiently small rms length ¢

ke xo™% (11)
and

ki x of (12)

If, on the other hand, w=3/? behavior is assumed, then
ky o constant (13)

and

k: o« o (14)

As is clear from Equations (11-14), in extrapolating either measurements performed
with relatively long bunches or numerical estimates at the limits of computer capac-
ity to shorter bunches, one again is faced with substantial differences which depend
on the asymptotic form of the high frequency coupling impedance and can strongly

affect the evaluation of performance.



Earlier Results High Frequency Rolloff

The behavior of the longitudinal impedance at very high frequencies has be
investigated by several authors. Two models which have been used extensively are
the diffraction model of Lawson® and the optical resonator model. In the diffraction
model the power lost by a charge traveling along a beam pipe which opens to form
a resonator is estimated. For a relativistic particle the field looks very much like a
plane wave, and the approximation is made that diffraction of this wave occurs at
the pipe edge. The energy that is diffracted outside the beam pipe radius is reflected
at the far side of the resonator and is lost. The primary result, from the point of
view of this workshop, is that the energy loss of a point particle increases as v1/2,
The relativistic distortion of the electric field to an opening angle 1/ provides a
high frequency cutoff of order ¢vy/a of the field spectrum of a point charge at the
pipe radius a. Thus, the v1/2 dependence of the loss factor in the diffraction model
translates into an w—1/2 asymptotic behavior in frequency.

The opticdl resonator model provides an alternative description of energy loss
based on the work of Vainshtein.?”'® The analogy is drawn between a set of infinite
plates with circular holes and the pair of circular mirrors with infinite reflections
of the optical resonator. In this model, the energy loss for large v is found to be
independent of «, and indicates the the asymptotic form of the impedance at high
frequencies must be fast enough to yield convergent integrals. Detailed analysis of
this model yields an asymptotic dependence of w—3/2,

Both models describe the energy loss mechanism in terms of diffraction; the
fundamental distinction is that the Lawson diffraction model treats a single, iso-
lated cavity, whereas the optical resonator model more immediately addresses a
periodic array. Keil's® work which numerically evaluates the losses in an infinitely
long sequence of accelerating cavities suggests that the distinction drawn between

single, isolated structures versus periodic structures is of particular significance.



The work finds that the energy loss is strongly 4 dependence at low energies, but
7 independent at high energies. Since s the energy is increased higher frequencies
are generated this result would indicate the validity of the optical resonator model
for truly periodic structures. At lower energies, the frequency spectrum has not
entered the asymptotic regime. The work of Hazeltine, Rosenbluth, and Sessler®
for the energy loss of a charged rod which moves at a constant speed past an infinite
set of parallel semi-infinite conducting plates shows an even more benign behavior
for a periodic structure, with the energy loss ultimately falling with increasing ~.
However, the semi-infinite geometry itself reduces the dimensionality of the problem

and may provide additional regularization of the beam-structure coupling.

Workshop Conjectures

The efforts of the theory group of the Impedance Beyond Cutoff Workshop cen-
tered on two primary issues. First, whether w—1/2 was indeed the correct asymptotic
behavior for an isolated cavity, and secondly, for how long, if ever, must a struc-
ture repeat before the w=3/2 behavior characteristic of the optical resonator model
sets in. Results for an isolated pillbox cavity are presented in papers of this work-
shop proceedings by Déme, Heifets and Kheifets, Bane and Sands, and Henke. In
addition, Palmer presents a diffractive model in the spirit of Lawson’s work which
indicates the possible nature of the transition between the single cavity and periodic
limits.

Doéme’s model is based on the assumption that for a pillbox cavity with beam
pipe of radius a, the field pattern within the cavity at radii greater than e are
undistorted from the closed cavity solutions. With this approximation and summing
over modes with appropriate time delays, he obtains an w—1/2 behavior. The work
of Heifets and Kheifets provides an iterative solution of Maxwell’s equations for

a pillbox with beam pipe. The leading term agrees with the result of Déme. In



addition, it is shown that the next term in the expansion is “small” with respect to
the leading term. Thus, although convergence is not assured, there is evidence that
the iteration is well behaved. Bane and Sands have investigated the high frequency
behavior using Weiland’s TBCI and have compared these results with their version
of the Lawson diffraction model. For short bunches the TBCI computations are
found to approach the predictions of this model, and are therefore consistent with
w=1/2 rolloff. Finally, in the work of Henke the field problem is solved with a
mode matching technique. It is found from numerical solution that the longitudinal
impedance for a radial line behaves as w—1/2. In summary, a variety of independent
techniques including anelytic iterative methods, time-domain and frequency domain
numerical solution to Maxwell’s equations, and diffractive approximations agree on
the asymptotic form of the longitudinal impedance for an isolated cavity excited
by an infinite energy beam. Of course, iterative methods may not converge, and
truncation of matrices and finite mesh size may introduce spurious behavior, but
the preponderance of evidence from this workshop points to an asymptotic rolioff
of w—1/2, A rigorous result, without approximation, for some closed geometry with
beam pipe, unfortunately, has yet to be achieved. Palumbo, however, does give an
analytic solution for a single step which shows a rolloff that is even slower than
w—1/2,

The discussion of the second issue—what is the nature of transition between
single cell and periodic behavior—yielded a scale length conjecture which followed
from a rather simple interference picture. Consider a length of structure L formed
by a series of many cavities with beam pipe of radius a. When y*iewed from the axis
the path length difference between the first and the last cavity is given by

2
6=L-LcosﬂzL% (15)

with 8 approximately a/L. The condition for maxima! coherence of the diffracted



radiation on axis is when § is of the order of the wavelength or
L =~ ka? (16)

where k = w/c. Palmer’s paper derives an equivalent scale factor from his diffractive
model. Thus, for a given k, there is a minimal length of structure required before
the structure looks infinitely periodic. There appears to be both a high and low
frequency bound to this periodic behavior. For small enough k, L may less than a
single cavity length, and the system is not well modeled by multiple interference.
For high enough frequency, on the other hand, the structure is not long enough
for full coherence to be established. Thus from this argument, it would appear
that for any finite length structure, at sufficiently high frequency, w=1/2 behavior
can be expected, but that typically there would be a middle region which would
mimic w=3/2 behavior. In the limit of an infinitely long structure, this middle
region would extend out to infinite frequency. It is important to recognize that this
picture represez.lts a conjecture of the workshop made with the hope of stimulating
a more indepth investigation as to the nature of the transition, if it indeed does
occur, between single-cavity and periodic-structure rolloff. A multitude of length
scales appear in the problem: k—1, total length, aperture radius, cavity radius, cell
length, and cell separation——all of which may all be involved in the determination

of asymptotic behavior.
Synchrotron Radiation Impedance

For small storage rings there appears to be another important source of inter-
action of the beam with its environment-—the synchrotron radiation process. The
effect of synchrotron radiation in a bend of radius p, and angle # may be expressed

in terms of a machine impedance of magnitude!?

1Z(n)| = 354(%)*(2%) ohms (17)



at harmonic n relative to the machine circumference 2rR. However, the synchrotron
radiation in the bend magnets is suppressed at frequencies below a cutoff value many
times the TM mode cutoff. For a “vacuum” chamber consisting of two, infinite
parallel plates separated by 2k, the synchrotron radiation will be fully unshielded

only for harmonics n satisfying

n> %(%); (18)

The peak value of the coupling resistive component of the coupling impedance is

found to be well approximated by?!2

Re(Z(n)) ~ s00% (19)

For small machines (radius less than 100 meters) this effect apparently can provide
the dominant source of high frequency impedance. Random currents (Schottky
noise) which exist at arbitrarily high frequecies on a bunched beam can in principle
self-couple through this mechanism and generate internal bunch instabilities. How-
ever, the parallel plate geometry for which (17} and (18) apply is open and does not
exhibit the full resonant structure that would be found in a closed, toroidal vacuum
chamber. Thus, although it can be expected that (19) holds in some averaged sense,
there is the need to clarify the resonance structure including widths. This analysis is
the topic of the contribution of Warnock and Morton. Lee addresses the transverse
counterpart and shows the importance of chromatic effects. It should be noted that
application of the longitudinal impedance found should not be naively applied to
standard bunch lengthening formulas since the frequency, phase, and spatial char-
acter of the synchrotron radiation impedance is quite different from that which has
generated instabilities in existing rings, which are less smooth than those that are
now being proposed. In particular, since the structure is not short compared to the

wavelengths of interest, stability analysis is entirely in a transient regime.



Future Directions

Although the results of this workshop indicate strongly that the longitudinal
impedance of an isolated cavity-like structure has an w=1/2 rolloff, a rigorous proof
has yet to be achieved. Finite length systems as presented by this isolated cavity
problem or by bunched-beam stability analysis have proven intractable in the exact
sense, with most work relying on truncation of an essentially infinite dimension_a.l
problem. Any progress in this area would not only yield possible confirmation
of the various approximate results of this workshop proceedings but would offer a
powerful tool to address a variety of accelerator beam dynamics questions. An issue
which was only addressed in passing during the workshop is the effect of tapering
on reducing the beam coupling to vacuum chamber discontinuities. To date there
have been no clear analytic results on the scaling with bunch length and taper angle

of the impedance reduction offered by tapering.

The results of Warnock and Morton of this proceedings and also of Ng!? clearly
indicate that in a closed geometry, there is a self-interaction of the beam through
the synchrotron radiation process which is not of negligible strength. In fact, the
impedance values estimated demand further study to ensure that the phase space
densities desired in both damping rings for linear colliders and high brightness
synchrotron light sources is obtained. This work should include both theoretical
beam dynamics calculations and experiments on small electron storage rings. Un-
fortunately, the combination of discontinuity cleanliness and small radius required
to observe synchrotron radiation induced instability may be hard to find in the
older generation of machines, and an small experimental machine dedicated to this
study meay be needed. Such a device would also be of use in evaluating component
impedances (cavities, bellows, steps, slotted vacuum chambers) at frequencies too

high for confident wire or bead pull measurements.
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