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Abstract

In nearly all high energy electron storage rings the effect of beam polarization
by synchrotron radiation has been measured. The buildup time for polarization
in storage rings is of the order of 10°® to 107 revolutions; the spins must remain
aligned over this time in order to avoid depolarization. Even extremely small spin
deviations per revolution can add up and cause depolarization.

The injection and the acceleration of polarized electrons in linacs is much
easier. Although some improvementsare still necessary, reliable polarized electron
sources with sufficiently high intensity and polarization are available. With the
linac-type machines SLC at Stanford and CEBAF in Virginia, experiments with
polarized electrons will be possible.
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1. Introduction

In storage rings electrons and positrons are polarized by the so-called Sokolov-Ternov
effect (Ref. 1): the spins are aligned antiparallel or parallel to the field lines of the deflecting
field by the emission of synchrotron radiation. In the absence of depolarizing effects the
maximum achievable degree of vertical polarization Pnay is 92.4% and the buildup is
described by a simple exponentional law:

P(t) = Prax(1 — e7t/) (1)
The buildup time 7, is given by

R® [meters] <R>

Tp [sec] = 98. E5[Gev] R (2)

where R is the bending radius in the magnets and < R > is the average bending radius in
the storage ring.

In the presence of depolarizing effects Ppax becomes

r
Prax =92.4-—2F - (8
max = 92.4—— (3)
and equation (1) becomes
P(t) = Ppax(1— e~/ (4)
with
1/T=1/Tp+1/1‘d (5)

72 is the depolarization time constant.

The depolarization time constant 7; must be kept large in order to obtain a reasonable
net polarization.

Spin and particle motion are linked together by a simple law. When a magnetic field
vector deflects an electron by an angle o« the spin is rotated around this vector by an angle

v

y=22, (6)
where g is the g-factor of the electron and « is the Lorentz factor.

Spin motions and particle motions are therefore different. The particle motion is
commutative: the final result is the same even when the same deflections are performed
in a different order. The spin motion is described by the rotation of a unity vector, and
it is well known that this motion is not commutative. With other words: even when the
particle moves on a stable trajectory the spin motion is not necessarily stable. Small spin
deviations in one revolution can add up over many revolutions and destroy the polarization.

From the above-mentioned relation between particle motion and spin motion (equation
(6)) the energy dependence of the spin motion can be easily derived. For the same deflection
angle the spin rotation angle increases linearly with energy. The spin motion is much more
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violent at higher energies. As a result it is much more difficult to obtain polarized beams
at high energies than at low energies.

Another problem arises from the fact that the particle motion is commutative and
the spin motion is not commutative. Even when the particle motion can be described in a
linear way the spin motion can have nonlinear components.

Considering these statements it becomes evident that in high energy storage rings
the nonlinear behavior of the spin motion causes additional depolarizing effects. The
appearance of nonlinearities makes it difficult to apply simple programs for simulating the
spin motion.

In single and multipass linacs and linear colliders these depolarizing effects do not
occur. The only problem to be solved is the construction of a polarized source. Several
possible sources are summarized in Section 5.

2. Compensation of Linear Depolarizing Resonances

ACO in Orsay (France) was the first storage ring in which polarization was detected
(Ref. 2). A few years later at SPEAR (Ref. 3) a laser polarimeter was installed and the
polarization was measured over a wide energy range. Figure 1 shows these measurements.
Polarization is obtained over a wide energy range with depolarizing resonances in between.
‘These resonances occur mainly at the following energies:

-2 _
2
(_g“g'a'V:nin
Lg—;i)'y=n:tQ, (7)

These formulas simply describe resonances at which the spin is kicked by small radijal field
components revolution by revolution a little bit more into the horizontal direction.

With increasing energy one would expect, according to equation (6), the resonances to
become stronger and stronger so that they influence the degree of polarization in between
the resonances. A. Chao (Ref. 4) developed a program called SLIM to simulate the effect of
beam polarization. This program became a major tool for understanding the polarization
effects in high energy storage rings. When this program was applied to PETRA, for
example, it was found that closed orbit distortions of the order of 1 mm already reduce
the degree of polarization seriously (Ref. 5).

Immediately after PETRA was commissioned, a laser polarimeter was installed to
verify these calculations. As was expected, a low level of polarization was found. The
assumption was that the polarization was mainly destroyed by so-called integer resonances
described in the first line of equation (7). The depolarization mechanism for this kind
of depolarization can be described in the following way (Fig. 2). The spin precesses in
the bending magnets around the vertical axis and, in the presence of vertical closed orbit
distortions, in the quadrupoles around a nonvertical axis, e.g. the radial axis.
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If it is assumed that the rotation of the spin in the quadrupoles is mainly around the
radial axis, the depolarization mechanism can be simply analyzed. In the bending magnets
of Figure 2 the spins are rotated around the vertical axis. This rotation can be described
by a matrix. The coordinate system is: z vertical, z radial and y longitudinal.

cos(a) sin(a) 0
M = | —sin(a) cos(a) 0O (8)
0 0 1

a is the rotation angle of the spin around the vertical axis in the bending magnet. If it
is considered that the spin is rotated in the quadrupoles only around the radial axis this
rotation can be described by a similar matrix

1 0 0
Q=10 cos(8) sin(B) (9)
0 —sin(B) cos(B)

where f is the rotation angle around the radial axis.

The basic idea why a particle is depolarized can be simply derived by considering a
part of a storage ring consisting of two quadrupoles and a bending magnet in between.
When the spin is rotated around the radial axis in the first quadrupole by an angle of g8,
in the bending magnet by a, and in the second quadrupole by B,, the spin motion in this
segment can be described by the spin transfer matrix

T=Q,-M-Q, (10)

where the subscripts 1 and 2 stand for the first and the second quadrupoles.
When the matrices in equation (10) are multiplied, the deviation angle of the spin
from the vertical 3 is

cos(B) = cos(B1) cos(Bz) — cos(a) sin(B;) sin(8;) (11)
In first approximation this formula can be simplified
B = P1 + B2 cos(a) (12)

In general the deviation of the spin from the vertical (Aspin) is of interest. Aspin is
proportional to the square of 8. Generalizing formula (12), the total depolarization in the
whole storage ring is proportional to

Aspin ~ (3 i cos(ax))? (13)

Taking further into account that the chosen initial conditions are arbitrary, sine and cosine
terms have to be considered

Agpin & (Z Bicos(e;))? + (Z Bi sin(e;))? (14)

ring ring




This can be interpreted as a Fourier sum. In order to convert equation (14) into a prac-
ticable formula, §; has to be replaced by the field strength in the quadrupole. This can
be done by applying a simple relation. In order to rotate the spin by 90 degrees, an in-
tegrated field strength of 23 kG-m independent of the energy is required. Therefore the
spin deflection angle # and the integrated field strength in a quadrupole are proportional
to each other. Rewriting equation (14) leads to the following final result (Ref. 6)

Aspin = (D Bicos(e:))? + () Bisin(ay))? (15)

ring ring

When this formula is translated into physics the following statement is valid: when the
closed orbit has certain Fourier components, the bearn will be depolarized. This argument
can be inverted: when the beam polarization is small due to closed orbit distortions, a
closed orbit can be superposed to the existing closed orbit so that the dangerous Fourier
components of the superposed closed orbit compensate the Fourier components of the
existing closed orbit. This technique was studied theoretically (Ref. 6) and experimentally
(Ref. 7) at PETRA. Figure 3 shows the results of the measurements. Note that the closed
orbit changes between 20% to 80% polarization are of the order of 0.1 mm and the total
rms closed orbit deviatiation has only changed by an unmeasurable amount.

With this method the first resonance in equation (7) can be compensated. Two
different formulations to compensate the rest of them can be found in the literature. Both
are theoretical approaches and have never been tested in a machine. The first approach
is a general one made by A. Chao: the so-called spin matching conditions (Ref. 8).
These conditions can be easily understood by generalizing formula (15) for all sorts of
oscillations, e.g. for vertical betatron oscillations. When a photon is emitted the particle
performs damped oscillations—betatron and synchrotron oscillations. Taking the vertical
betatron oscillations as an example, the depolarization can be explained in the same way
as before. The different rotation axes in the quadrupoles cause depolarization. The total
depolarization is proportional to

/°° B,(s)e**ds = /-oo e~tTeMa(s5)e" ™\ /B k(s)ds (16)
0 0

B:(s) are the fields in the quadrupoles, 3, describes the vertical optical behavior of the
machine (so-called vertical beta function), 7 is the damping time of the oscillation, v, is
the phase advance of the betatron motion, k(s) is a measure for the quadrupole strength,
and a is the phase advance of the spin motion in the bending magnets defined in a similar
way as above.

The infinite integral can be reduced to a finite one by a simple mathematical trick
(Ref. 9). With the obvious relations

oo L co
/ wods =/ weods +/ ...ds (17)
0 0 L )

(L is the circumference of the machine) and the periodicity conditions of the betatron and
the spin motion

Yz(s — L) = ¢.(s) ~ 27Q;



and
afs — L) = afs) — zwig_;ﬂq (15)

the depolarization is small when the integral

a+L . .
f e'Vre'*\/B.k(s)ds (19)

is zero. This is the first way of formulating a spin matching condition.

The second approach is the following. Equation (19) can also be interpreted as a
Fourier integral (Ref. 6). This integral is not zero when one of the following four constants
is not zero. This relation can be simply derived by applying the theory of Fourier integrals
on equation (19).

(au 012) - /‘H-L :::;?ﬁ:; V/B2k(s) sin(a) ds (20)

a1 a2 cos(a)

In order to minimize the depolarizing effects, these four constants must be minimized by
adjusting the optics.

3. The Compensation of Nonlinear Resonances

All arguments up to now can be applied on the simple type of resonances, namely
the so-called linear resonances defined in equation (7). For higher resonances the situation
becomes more complicated. All calculations up to now are based on the assumption that
the rotation of the spin in the quadrupoles is around the vertical axis (see equation (9)).
This is no longer the case when the spins deviate significantly from the vertical direction.
The particles see both horizontal and vertical field components and the spin is rotated
around an axis which has an angle ¢ to the vertical direction:

¢ = arctan(B,/B,) (21)

With matrix multiplication similar to that done in equation (11), the somewhat lengthy
product can be expanded in a series with components proportional to B, B., for instance.
The total depolarizing effect is proportional to (Ref. 10)

(- +] . '
/ e'¥2e'V=e'*B,. B,\/B,\/B.k?(s)ds (22)
0
leading to resonances of the type
-2
(QT)'7=niQ=:th (23)

This is of course only an example of a depolarizing resonance. All other combinations of
@z, @2, and Q, (the synchrotron frequency) are possible.
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This integral can be treated in a similar way as shown for the linear case (equation
(20)). Depolarization only occurs when at least one of the 8 constants is different from
zero:

a11 @12 @13 @Giq\ _ **+L gin ¥z  ,) sin(a |
(53 ) [ e o

a1 Gzz @33 Qa4 cos(a)

When this theory is extended to a third-order resonance, sixteen spin matching conditions
have to be fulfilled. When this formula is generalized, the following statement is valid: in
order to compensate a resonance of the nth order, 2"t matching conditions are necessary.
The matching conditions can only be fulfilled by modifying the currents of a quadrupole.
Since there is in a storage ring only a limited number of quadrupoles, the possibility of
applying such schemes is limited.

4. Nonlinear Resonances and Storage Rings with Spin Rotators

Spin rotators are devices by which the spin is rotated in front of the interaction
region into the longitudinal direction and after the interaction region back into the vertical
direction. Some of these rotators fulfill the above-mentioned conditions for generating
nonlinear resonances: strong deviations of the spin from the vertical and a relatively
large vertical beam size. These statements can be explained by studying one of the most
elaborate spin rotators, the so-called mini rotator proposed for HERA (Ref. 11). This
rotator bends the spin by a combination of horizontal and vertical bendings. As a result
of the vertical bending the vertical beam size is increased. T. Limberg et al. (Ref. 12)
studied the nonlinear behavior of such a spin rotator by using a program taking second-
order spin resonances into account; the SITROS program developed by J. Kewisch (Ref.
13). The program observes the decay of the vector sum of the spins when the particles
perform betatron and synchrotron oscillations.

_ In a2 normal machine without a spin rotator the second-order effects are negligible.
With spin rotators the polarization is nearly totally destroyed by the second-order effects.
Figure 4 shows the effect. The normally presented curve, polarization vs. energy calculated
with the SLIM program, is shown as a dotted line. The polarization is reasonable. When
second-order resonances are taken into account and particles with three standard deviations
in energy away from the center are observed, the polarization is nearly zero (solid curve).
The depolarizing resonances have the form

-2 "

Taking into account the diffusion speed of particles into the third standard deviation in
energy, the depolarization time of the whole beam is smaller by approximately a factor of
10 compared to the polarization time. The net polarization of the whole beam is nearly
zero. :

In order to compensate this effect in HERA, approximately 25 nonlinear resonances
have to be compensated. Since each nonlinear resonance has to be compensated by 8
matching conditions, 200 matching conditions are necessary to improve the polarization.
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Although these figures seem to be exaggerated (some of the compensations cover
several resonances), it is evident from the calculations that the application of simple linear
compensation schemes (Ref. 14) in a machine with vertical deflections is a too-naive
approach. '

In order to overcome the problem of nonlinear resonances, spin rotators with small ex-
citation of nonlinear resonances have been proposed (Ref. 15,16). The basic idea is to use
compensated solenoids. These solenoids rotate the spin and do not (in combination with
quadrupoles) produce vertical betatron oscillations and therefore nonlinear resonances.
Both systems, a solenoid and a minirotator, are proposed at different institutes (Novosi-
birsk and DESY) and it will be interesting to see if the experimental results agree with
the theoretical predictions.

5. Polarized Beams in Linacs and Linear Colliders

In linacs and linear colliders the depolarizing resonances are negligible. The beam
passes only once or only a few times through the same disturbing fields. In storage rings
the depolarizing resonances can build up over 10° and more revolutions.

Although the problems with depolarization do not exist anymore, a new problem has
to be solved: the construction of an efficient polarized source.

One of the best source of polarized electrons or positrons is a storage ring. One could
imagine that at the beginning of a linac the particles move in a strong magnetic field
emitting photons and becoming polarized. The required field strength for such a source
can be easily derived from equation (2). The bending radius is related to the magnetic
field and the energy by a well-known formula:

E [GeV]
=33, 26
R [m] 334H[kG] (26)
With this relation equation (2) becomes
3.64 - 10°
Tp [sec] = (27)

H3 kG- E7 [GeV]

If it assumed that the deflecting field strength H is, for example, 100 kG (in a supercon-
ductive solenoid) the polarization time becomes

3.64

Tp [sec] = E7[Gev]

(28)

From this result it is evident that a fast build of polarization can only obtained at high
energies in a storage ring type machine.

For polarization of low-energy electrons different sources have to be used. The most
popular source is the so-called GaAs source (Ref. 17). Longitudinally polarized photons
emit polarized electrons from the surface of a GaAs crystal covered with a thin layer of
Cs. This source has the advantage that the output current can be very high (up to 1012
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particles per laserpulse) but the disadvantage that the polarization is limited to = 40%.
Another advantage is the possibility of reversing the electron polarization in a simple way
by reversing the laser helicity.

Sources with higher polarization but lower current use the following effects: .

o Stern-Gerlach effect. A neutral alkali beam is emitted from an oven (Ref. 18). The
beam enters a sextupole field where atoms with different spins are separated. After
the separation the beam is ionized and the polarized electrons are extracted. The
polarization of the beam is nearly 85%, but the current is less than 1 BA.

* Optically pumped He-discharge (Ref. 19). A stream of helium atoms passes through
a microwave cavity where metastable He atoms are produced. The metastable atoms
are optically pumped by a 1.08 um circularly polarized laser beam and polarized.
Afterwards the He-atoms are ionized by collision with a reactant gas and the polarized
electrons are extracted. Below 1 kA the degree of polarization is 80%. At higher
currents the polarization decreases.

Beside these sources several other sources with a lower output current exist (Ref. 20).

The best source for a given linac must be selected individually for each application.
For the polarized version of the SLC, for example, a GaAs source was chosen to be the
best (Ref. 21). It produces high currents and therefore a reasonable luminosity.

For fixed target experiments (especially when polarized targets are used) the degree
of polarization can be more important than a high current source with low polarization.

For CEBAF, a recirculating linac under construction in Virginia, both a GaAs source
and a source with high polarization are under discussion. The technical layout of CEBAF
is shown in Figure 5. CEBAF accelerates in a pair of antiparallel superconductive linacs
a cw beam of 200 A up to 4 GeV. After up to four passes through the pair of linacs, the
beam is split and sent to three end stations.

With a polarized source several additional spin handling devices have to be installed.
The installations depend on the experiments. If, for example, only one end station needs a
longitudinally polarized beam, a Wien filter can be installed immediately after the source.
This filter rotates the spin in such a way that the spin direction at the entrance is longi-
tudinal. The polarization can be adjusted by a laser polarimeter which can measure both
longitudinal and transverse polarization (Ref. 22).

When all end stations need polarized beams at different energies the following way is
possible. A Wien filter at the beginning of the interaction region rotates the spin into the
vertical direction and in front of each end station the spin is rotated into the longitudinal
direction. This is in principle not very simple since all spin handling devices rotate the spin
dependent on its energy. As already mentioned a transverse field of 23 kG-m rotates the
gpin by 90 degrees independent of the particle energy. A spin rotator with simple transverse
bending magnets would therefore deflect the beam by different angles depending on the
energy of the beam. A device which deflects the beam by the same angle independently
of the energy and converts always a transverse spin in a longitudinal direction is shown
in Figure 6. The rotator consists of two solenoids and two bending magnets. The free
parameter is the relation between the field strengths of the two solenoids. When the
energy is changed, the bending magnets have to be adjusted so that the beam leaves the
rotator at the same position with the same angle as before and the spin is adjusted by
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changing the relation of the field strength of the two solenoids. This system works like a
high-energy version of the Wien filter.

6. Conclusion

The production of high-energy polarized electron beams is still a challenge for acceler-
ator physicists. It seems (at least at the moment) that experiments with polarized beams
(especially longitudinally polarized beams) can be performed much more easily with linacs
and linear colliders than with storage rings.
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Fig. 6: A possible solution for an energy-independent spin rotator for CEBAF. When the
beam energy is changed, the bending magnets are adjusted in such a way that the
beam leaves the rotator with the same angle at the same position. The spin is adjusted
by changing the strength of the solenoids.

With such a device all three end stations can be provided with longitudinally polarized
beams even when the beam energies for the different end stations are different.




