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PERTURBATION METHOD FOR CALCULATION OF
NARROW-BAND IMPEDANCE AND TRAPPED MODES

S. A, HEIFETS

Continuous Electron Beam Accelerator Facility,

12070 Jefferson Avenue, Newport News, VA 23606

A report given at LBL workshop “Impedance above cut-off”,
Berkeley, LBL, 19 August 1987

An iterative method for calculation of the narrow-band impedance is described for
a system with a small variation in boundary conditions, so that the variation can be
considered as a perturbation. The results are compared with numeric calculations.
The method is used to relate the origin of the trapped modes with the degeneracy
of the spectrum of an unperturbed system. The method also can be applied to

transverse impedance calculations,

1. INTRODUCTION

In many cases a system can be described as a combination of simple systems, each
of which can be relatively easily described analytically. For example, we have a pill-
box cavity with narrow tubes attached to it. This system may not have cylindrical
symmetry, but the field pattern can be close to that of the closed pili-box cavity
almost everywhere. Another example of system that could be considerad similarly

are weakly coupled cavities.

In this paper we describe a perturbation theory that gives expression to the field
pattern, the impedance, the width of the narrow-band impedance, and the shift
of frequencies, all in terms of the parameters for an “ideal” unperturbed system,

for which the eigen modes and frequencies are known. We prefer to describe the



method on simple pill-box cavity with attached tubes, rather than giving a general
formulation of the approach. This clarifies the idea and allows comparison of the
result with rumeric calculations. The general use of the method and its applicability

are expected to be clear from the example.

In the last section we use the method to explain the existance of the so-called
trapped modes, i.e., very narrow resonances substantially above cut-off that were
found in numeric simulations’. We relate the origin of the trapped modes to the

approximate degeneracy of the spectrum of the “ideal system?”.

2. FORMULATION OF THE BOUNDARY CONDITIONS

First, let us formulate the exact boundary conditions for the system. The pill-box
cavity has width g and radius b; attached tubes with radii @ have their axes in the
direction of the z-axis with the opening at |z| > g/2. The tangential electric field
on the boundary is zero everywhere except at the openings, where the tangential

component can be related with the normal component.

The field in the tube is the superposition of the waves ¢,,(r, 2) :

v
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The coeflicient B,, of Eq. (1) can be found from the continuity of the normal
component of the field E, at the opening as

B, =

A < Ym|Ey(r,9/2) > (2)

B,, defines the tangential component of the field in the tube and, from the conti-
nuity, the tangential component of the field in the cavity. The field component is
equal to zero everywhere on the surface of the cavity except at the openings, where

it must satisfy the condition:

E,— £8)am a¢m / iSy: B )

211'1/

Here the integral and the functions ¥,,,E, and E, are taken on the surface S of the

openings.

Eq. (3) is the exact boundary condition that relates the r and = components of
the field 7n the cavity at the openings. Subsequently, we can forget the tubes and
consider the wave equation within the cavity only. The equation however has to
be solved with the boundary condition of Eq. (3) instead of setting the tangential

cornponent of the field to zero as in the case of a closed cavity.
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Eq. (3) gives the linear relationship between the tangential components of the

electric field and the magnetic field H,, where H, = {3E,/dr in the form

E = §H¢,.

The coefficient ¢, as defined, is the effective surface impedance of the opening.
Hence, the tune shift, caused by the opening, can be calculated using the well known

result? for the tune shift due to surface impedance:

— 2
: dS¢|d
o —wy = e Jd5¢H]

2 [(H] - |E[)(7dS)

3. PERTURBATION THEORY, MODAL ANALYSIS.

The Fourier component of the EM field in a cavity with frequency w, excited

by an ultrarelativistic particle with charge Q, can be written as

(5)

, 21Qa v, v,r tsin A,z
— ike n
E, = AMG,{r,b)e** + —= Zﬂ: TAMJI(T)df( )

CO8 Apn2

and

E, = —IMGo(r,b)e** +

2:Qa Vnvg g (Valy o [ COS Apnz
Te 2 5 ) Tl )dn (isin)\bnz) (6)

n

where df are the amplitudes of the even and odd modes respectively, and

Qk

k= .
rey?

and M =

W
c

The cylindrical coordinate system is choosen with the axis along that of the pill-box

cavity, and z = £¢ at the openings, b is the radius of the cavity, and g is the width
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of it. The functions G, and G, in Egs. (5) and (6) are

kr Ko(%)
G, Ky(—) — u
(0) = Kol ~ 1) 7,
and
kr kr Ko(%)
G(r,b) = I 7
1( ) (,},) 1( y ) Io(%)
Ko, are McDonald functions. For 4 >> 1,
_ 20 _
YMG,(b,b) = ypeye Z, = 3771Q1.

The substitution of Eqs. (5) and (6) into Eq. (3) gives a set of linear equations

for amplitudes d*:

4 = lpesink = 5 Fdt cosx,) (7
and

d; = cos£x.. [pn cos u + % Z T nd;, s8in x,,] (8)
where

- g’\b,ma = gk/z'
The parameters I, ,, and p, are defined as follows:

_ 4gv}, (a)4 Jo(vna/b)Jo(vma/b)

aXm J2H{vm)

Lo = Onym (9)

where

p Z V (ka)? — ¢
- v — (vna/b)?][f — (Uma/B)2]’
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and

P = (9/20xn)Jo (Vna/b) /I3 (V)

Substitution Egs. (5) and (6) into the definition of the impedance,

a/2
Z(w) = __%r / dzE,(a,z}e""**

_g/g

gives

2(0) = 25 2 Blena/ol(e; +d5) A=) @y - apy X)) (1

A set of equations equivalent to Egs. (7) and (8) can be obtained by matching

the fields in the regions r < ¢ and r > a at r = @ ®. Both methods of matching are

equivalent.

The Eqgs. {7) and (8) were solved by truncation so that only a finite number of
equations was retained *®. The accuracy of the truncated system depends both on
the rank of the matrix retained and on the method of matching. For small openings
calculation of narrow-band impedance by matching at z = 4-g/2 is preferable, while

for broad-band impedance matching at r = a is adequate.

In this paper we calculate the narrow-band impedance. It can be expected
that for a narrow opening, the field pattern is close to that in the closed cavity.

Therefore, for such frequencies that the following conditions are met

siny, =0, X.~x°=nn odd modes,

and
cos X, 0, xomx2=(n+1/2)r even modes,
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only modes d may be retained in the Eqs. (7) and (8). This gives

d = tp.sinp (11)
8iN X + £Tpa €O8 X

and

d. = P TRE (12)
COS X, ~ ;I‘M 8in X,
Other amplitudes d,,, where m # n , describe the mixing of the modes of the
closed cavity and in this approximation are zero. The next iteration, substitution
of Egs. (11) and (12) into the right-hand side of Eqs. (7) and (8), gives d,, # 0. The

iteration then can be repeated.

Egs. (11) and (12) have a typical Breit-Wigner resonance structure with the

width ~,,,, of the resonance lines

4 o
=Xnp

T = T (13)

This expression is simply the ratio of the energy leak in the tubes W, to the energy
of the mode W,,;

Tan = —55. (14)

The energy fiow W,‘,,‘ in the - mode of the tube field with amplitude B, ;, excited
by coupling with the n- mode of the field in the cavity, is given by the integral of

the Poynting vector over the cross-section of the tube. The result is

. k
Wei= —CT/\GI;IB,,,‘-PU‘?J:!(V.-).
The coefficients B, ;, and hence the energy of the n- mode W,,, can be calculated
according to Eq. (2)

_ 2 I'A.,.'p/?f Z‘_r o
B, = m—_u,?Jf(v.-)e rdrJo( " )E,,n(r,g/Z) (15}

[+]

if the field £ in the cavity is approximated by the field of the n- mode of the

closed pill-box cavity. This approximation gives the same result, as Eq. (13).
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cavities can cause a multipole reflection of the wave and, as a result, give a long
decay time to the mode. This explanation does not seem to be satisfactory because,
above cut-off, the reflection rate is relatively small even on sharp edges and goes
to zero rapidly if the edges are rounded. The rate is exponentially small if the

function, describing the boundary, is continuous with all its derivatives.

Another explanation is that each mode in the cavity generates a wave in the
tube that, under certain conditions, can cancel one another. We considered this
explanation for the trapped mode of the pill-box cavity with attached tubes that
can be seen in Fig. 2 as the small spike near ka ~ 4.5. The amplitude of the spike
is actually much higher then shown in Fig. 2, and it gets bigger if the simulation is

done with smaller steps of ka.

Calculations with URMEL confirmed existence of the trappped mode. In Ta-
ble 1 below some frequencies f and ratios of shunt impedances to Q-factors r/Q
are shown. They were found by URMEL for pill-box cavities with attached tubes
closed at the ends with different ratios of the total half-lengths of the structure to
the tube radius [/a. Other parameters are a/b = 0.318; g¢/2b = 0.600.

Table 1. Frequency and r/g

lfa=10.0 [/a=5.0 l/a=8.0

f r/Q f r/Q f r/Q
218.276 1.50 223.534 30.65 219.533 2.10
232.173 0.32 232.660 0.45 no mode found
232.485 0.40 233.338 0.00 233.236 0.015
234.881 0.14 239.157 4.50 239.296 3.08

For the mode in the third line with f = 233.3, which corresponds to the mode
ka =2 4.5, the field goes rapidly to zero outside of the cavity, and this corresponds

to the definition of trapped modes. The ratio /@ for this mode is unusally small.
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If ka = 4.5, there is only a single wave that can propagate in the tube. In the
closed pill-box cavity with the parameters given in Fig. 1, there are two modes of

the same parity and with field pattern of the following form:
E;, ~ Jo(vr/b) cos(irz/g)},

The modes have eigen frequencies close to ka = 4.5; (1) at k,,1a = 4.5176 , v, =
5.5200, and ! = 5 and (2} at k,,,;a = 4.5053, v, = 11.7915 and ! = 3. Fig. 4 shows
the spectrum of the closed pill-box cavity under consideration. The wavein the tube
is mostly generated by coupling with the two resonant modes in the cavity. The
amplitudes B, ; of the wave in the tube can be calculated according to Eq. (15),
where E, ., is defined by Eq. (6) with the coefficient d] given in Eq. (12). The
first term in Eq. (6) is proportional to 1/4* and negligibly small at high energies.

Omitting the common factor in both modes, the amplitudes B, , can be written as

2 )
vip.Jo(vna/b) sin x,, (17)

B, - :
* v — (av,/b)?  cosxn — iTansiny,

where the p, and I',., are defined in Eq. (9).

Numeric calculation gives the values for them:

py = 0760 and I';;=0.363 for mode wy = 5.520,

pa=-296 and TI,,=0.753 for mode v, =11.792.

These values give the ratio of the amplitudes

By

= -~3.07
B,

Therefore the trapped mode can not be explained by destructive interference in a

straightforward sense, at least for this example.
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We believe that the existence of two almost exactly degenerate modes in the
cavity is crucial and might provide another explanation for the origin of the trapped
modes. The two degenerate modes cannot be considered independently. Neglecting
the amplitudes in Eqs. (7) and (8) except those of the two resonance modes, the

system is reduced to two equations:

t r . r .
dy = [pacosp + “22d,8in x3 + —22d, sin X4)
COS X2 2 2
and (18)
1 T : T .
dy = [pscosp + —2dssinx, + —=2d, sin x,].
CO8 X4 2 2

Usually, the widths of the resonances are of the order of I';; and I',, and are
relatively large for ka = 4.5. In the ke interval 4.3 — 4.8, the range of variation
of the coefficients of the Eq. (16) is relatively small, and the coefficients never go

through zero. The range of the coefficients are:

P (0.805) — (0.709), p2 (—3.5) — (—2.49),
—  (0.367 + 14.2107%),
—~  (0.688 + 10.15),

I, (0.358 + 15.5107%)

Ie. (0.838 4 40.26)
Tz (2.34-140.16) —  (1.92 —10.096),

)

Ty (0.128 — i0.881072 -~ (0.131 —40.65107%)

The determinant of the system of Eq. (18), however, changes substantially in
this interval, and crosses zero as shown in Fig. 5. At the zero point the two modes of
the cavity are mixed strongly and could give one mode that is completely decoupled

from the field in the tubes and corresponds to the trapped mode.

In Fig. 6 the frequencies of the closed pill-box cavity are plotted vs the ratio
of the radii a/b with a fixed value of g/2b = 0.600. Under these conditions, two
frequencies remain degenerate. The trapped mode exists for all a/b and it location,

indicated by the crosses, follows the variation of the degenerate frequencies exactly.
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It would be interesting to determine, how general this situation is.
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