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ABSTRACT

We compute single nucleon emission cross sections in infinite nuclear matter
within the context of a consistent, relativistic field theory with a conserved elec-
tromagnetic current. Special emphasis is placed on calculation of the 4 nuclear
response functions, the full differential coincidence cross sections, the integrated
singles cross section, and the Coulomb sum rule. Experimental inelastic cross
sections can be used to fit the two free parameters in our theory for specific
nuclei. Also, we analyze the kinematics required to measure the “out of plane”

response functions.
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1. Introduction

Motivated by the possibility of a wide range of single nucleon emission mea-
surements at the Continuous Electron Beam Accelerator Facility (CEBAF), we
present some numerical predictions for coincidence cross sections. We work in a
renormalizable, relativistic quantum field theory with meson and nucleon degrees
of freedom" (called QHD-I). In particular, we use an infinite nuclear matter
approximation to calculate the unpolarized nuclear response functions. This ap-
proximation gives a simple nuclear picture — it is a relativistic, shifted mass fermi
gas. The theory is fully relativistic, allowing consistent calculations at arbitrary
kinematics. It keeps the full relativistic vertex, and our electromagnetic current
is explicitly conserved. In principle a more sophisticated approximation in the
same general framework could be used to improve the calculations. However,
this model may be useful as a first orientation for the future (e,e’N) coincidence

programs at CEBAF.

Using the nuclear response functions, we compute full coincidence cross sec-
tions, and also integrate over the ejected nucleon degrees of freedom to compute
inelastic singles cross sections and the Coulomb sum rule. One emphasis of
this calculation is to examine the contributions of the “out of plane” response
functions, as this gives new information on hadronic nuclear matrix elements
unobtainable in any singles experiment. In addition, we interpret the shape of
the coincidence response functions in terms of a sampling of nucleon momenta

throughout the fermi sphere.



2. General Form of the Cross Section

The kinematics we consider are shown in Fig. 1 . We write the matrix ele-

ments of the hadronic current as

J, = (J,1J.)
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Then, one can derive the exact result (to leading order in &)™
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where the Mott cross section is

402e cos?(0/2)
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and k* is the virtual photon 3 momentum, W the total energy, and q the outgoing
nucleon’s momentum, in the center of momentum frame. E, (M,) and E, (M,)
are the initial and final recoil nucleus energies (masses), e, is the final electron
energy in the lab, and 6, (f);) the electron scattering angle (solid angle) in the

lab. We quantize in a large box of volume {l. The superscripts refer to the
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helicity components of J*:

1 .
J:‘: - :FE(JI :t 1J2)
For infinite nuclear matter, the center of momentum frame is equivalent to the
lab frame, and the M,’s and W’s drop out. The first line in the brackets, above,
yields the longitudinal response function familiar from singles cross sections. The
second line gives the transverse response, while the last two lines are new. In

(sl

fact one can show quite generally " that their azimuthal dependence is explicitly

given by

2

_k +1)» -1
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(2.3)
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with ¢, as defined in Fig. 1. Thus we see that with purely in-plane experiments

(¢'lies in the scattering plane, so ¢, = £x/ 2) we can not isolate the term Ts.

3. Mean Field Theory

In QHD-I, we have a nucleon field 1, a scalar meson field ¢, and a vector
meson field V,,. In the mean field approximation, these field operators are replaced
by their expectation values, which are classical fields. In infinite nuclear matter,
these become constants, independent of Z. In this case, the equation for the
nucleon fields can be solved exactly, and just give “free” Dirac spinors with
shifted mass m* and shifted energy. The energy shift cancels in differences, and

thus our model is a relativistic Fermi gas of nucleons with mass m*.(See Ref. 1)

Figure 2 shows the kinematics in this case. We note that in this model wy, is

determined by the magnitudes of the nucleon 3-momentum and the “missing”,
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or hole momentum:

wkz\/q-'2+m.2_\/i)"22+mc2-

This simplification of kinematics is a consequence of our Fermi gas model. Note
also that it is clear from Fig. 2 that, given a fixed I;, wy, has sharp maximum
and minimum cutoffs. Also indicated in the figure is the fact that a variety of
¢, p2 combinations, namely those which end up in the plane perpendicular to
E, all yield the same energy loss. (In the nonrelativistic limit this surface is
a plane, in general it is a bit more complicated) Given an energy loss wy, and
virtual photon momentum I?, one sees from the diagram that there are a range
of ;s allowed, and as f, runs from zero to its maximum value, we are sampling
different regions of the Fermi sphere, from the center out to the edge. This is a
nice physical picture in which to interpret response functions and cross sections
plotted as functions of w; and cosf,. At fixed energy loss, the 8, dependence is

just “mapping out” the Fermi sphere.

In order to calculate the response functions in this model, we also must

assume a form for the electromagnetic current operator. For a free nucleon

(#19.00) [p) = =8(8) B (), + B (K)o k. u(o)

where F; (k?) and F,(k?) are the usual single nucleon form factors. For the current
matrix elements in the mean field model (in the rest frame of the nucleus), we

use

(Par g1 9u(0) 22 = 8(0) [ (B30 + B (K)o k] u(~2)

X 0(1q| — kg)0(ks — |P2])6(wi — (€ — €p,))
(3.1)

. o . 1] o .
This comes from assuming an effective current operator’ which is conserved, co-
variant, and reproduces the structure of the free nucleon. The structure functions

then come from simple trace calculations (see appendix A).
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4. Results
4.1 Coincidence cross sections

The response functions for a particular choice of electron kinematics are
shown in figure 3. In each set, they are plotted with identical scales to show
their relative sizes. Note that a slice at fixed wy gives the dependence of the
response functions on the scattered nucleon’s initial momentum in the Fermi
sea, as discussed in Section 2. As 0, varies from 0 out to its maximum, we are
scattering from nucleons lying progressively further from the center of the Fermi
sphere. We show a typical differential cross section curve in Fig. 4 . For this plot
we have integrated over azimuthal angle to get a “¢ averaged” coincidence cross
section. Note that neither of the last two structure functions contribute after
integrating over ¢,. In this plot, the relation of the coincidence cross section to
the singles cross section is clear. At a fixed energy loss, the singles cross section
is just the area under the slice. Thus, even just considering the “¢ averaged”
cross section, where the two new structure functions do not contribute at all, we
can see the significance of coincidence measurements: they provide a mapping of

the momentum distribution of the nucleons in the nucleus.
4.2 Singles cross sections

Figure 5 is a plot of the full singles inelastic cross section, including both
proton and neutron emission. We have fit k; and m* to experimental data. Note
that there is no arbitrary binding energy put in to fit the data — we only have
the two infinite nuclear matter parameters to change. In figure 6 we show the
results of fitting several different nuclei. Note that in the smaller nuclei, our
fitted Fermi momentum is lower than its value for infinite nuclear matter. In
more sophisticated approximations (e.g. Thomas Fermi, or Hartree calculations)
the Fermi energy would be dependent on radius, decreasing at the surface where
~ the nuclear density falls off." In our model with no radial dependences, this

results in an overall reduction of the Fermi momentum. As nuclei get larger, the



surface becomes less important, and the average Fermi momentum approaches
its value for infinite nuclear matter. This is clearly demonstrated in figure 6.
Similarly, the effective mass m* should approach m at the surface, so the value
we obtain for m*/m is closer to 1 for small nuclei, and approaches its asymptotic

infinite nuclear matter value as A increases.

4.3 Sum rule

Figure 7 shows the integrated longitudinal sum rule. This is defined as

=~ Kt 1 [d2oCo
SL(k) - ./dw F OMott (dﬂzdez > (4.1)

Note that with this definition, the sum rule is not normalized to Z at high mo-

mentum transfers (even in the nonrelativistic limit) since there are single nucleon
form factors buried in the differential cross section. We observe that the data lie
significantly below our calculations. It is unclear what the origin of the discrep-
ancy between theory and experiment is, although finite nucleus effects may be

important. t®

Relation to previous work on the sum rule. There has been some discussion of
o1 171

the coulomb sum rule in the literature, and it is interesting to see how our

calculations compare with others. A modified sum rule is often defined by

. o1 d2oCout-

Here the modified Mott cross section ps.: tncludes the square of the single

nucleon dipole form factor

- _ 2
OMott = OMott Gp

1

- TR (4.3)

[1)5]

Using this definition, the theoretical non-relativistic sum rule just gives the total

nuclear charge Z for large momentum transfers. This is in fact modified when



using our full effective current (3.1) which includes anomalous magnetic moments.
Within the context of a relativistic mean field theory, the full sum rule can still
be theoretically calculated, and is of course no longer just z." However, it is
important to note the the kinematically accessible sum rule (KAS), the sum
rule measurable in electron scattering experiments, is only integrated up to the
maximum kinematically available energy loss w = |E| One consequence of this
is that the timelike contribution to the theoretical sum rule does not contribute
to the KAS."™ This timelike piece can be quite significant, and does not vanish
for large momentum transfers. The KAS is in fact much reduced from the non-
relativistic prediction. In figure 8 we plot the coulomb sum rule (4.2) for various
values of effective mass m*. To compare with previous references, we assume a
direct dipole dependence for the single nucleon form factors ¥; and F,, which
breaks down at higher momentum transfers.” In figure 9 we present the same
calculation, only assuming a dipole dependence for G, and Gg, which is a more
accurate representation of the data.” Note that this makes a rather significant
change, implying that the sum rule is quite sensitive to the nucleons’ structure.
To understand this change, note that a simple dipole fit for G, and Gy yields
e.g.

Frrot — g (1 -+ upk2/4m§)
1 (1 + &2/4m2)

(rather than just Ff = gp), so that at k=1. GeV, (for w small) Ff ~ gp x 1.4,
a very substantial change, caused by the anomalous magnetic moment of the

proton. “

4.4 Out of plane response functions

The last two terms in the cross section (2.2), Ty and T,, have the explicit az-
imuthal dependences indicated in eq. (2.3). Both of these “out of plane” response
functions contribute maximally when ¢, = 7 /2, where the outgoing nucleon is

in fact sn the electron scattering plane.(See fig. 1) When ¢, goes from +7/2 to
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—m /2, the term T, changes sign and so can be isolated from purely in-plane mea-
surements. However, Ts does not change sign, and thus can only be separated
by making out of plane measurements. As seen in Fig. 3, this response function
is very small in the infinite nuclear matter approximation. We have performed
a kinematics search in order to find the conditions which optimize its contribu-
tion. For a few different beam energies, and electron scattering angles, we have
evaluated the fractional contribution of the third term to the “¢ averaged” cross
section over the entire allowed range of energy loss and nucleon scattering angle.
We present the particular values which maximized this contribution in Table 1.
It appears that small electron scattering angles and lower beam energies increase
its contribution. There is, however, an experimental constraint which favours
high beam energy. A likely experimental setup will have the two spectrometers
in a plane, and out of plane measurements will be made by bending the incident
electron beam direction. The required beam bend is calculated in Appendix B,
and tabulated in Table 1. This bend angle gets large as beam energy drops,
thus preventing us from going to very low energies to measure the out of plane
response function. In general, the term T; is quite small, and even under optimal
conditions is at most less than 10% of the total cross section. In other nuclear
models, this response function may not be so small,"” and hence would be an

extremely interesting quantity to measure.

5. Summary

We have calculated the four response functions for single nucleon emission in a
mean field theory of nuclear matter. We show representative plots, including the
full coincidence cross sections, integrated singles cross sections, and the Coulomb
sum rule. Our model is fully relativistic, with a conserved current, and our
calculations can therefore be done for any kinematics. While more sophisticated
models certainly exist,"” it is instructive to see what basic physics we can extract

from a physically clear relativistic Fermi gas calculation. We reproduce singles



cross sections quite well, although the sum rule indicates a possible breakdown
of the model. Nevertheless, we produce general guidelines for expected cross
sections, and kinematical requirements such as minimum incident beam bend

capability, and energies.
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APPENDIX A

Derivation of the structure functions

If the initial and final target polarization are not observed, the four terms in
the cross section can all be immediately obtained as components of the general

response tensor ). . J:J, with J, given by equation (2.1) Pulling out an

overall normalization factor N, we want

So T = NP Y [8(0) [P + Faow b Ju(p)?
if/ (84

. where p, = (—pa, €2) = g, —k,. But this is extremely similar to the usual structure
function in the Rosenbluth formula for elastic e-p scattering."” Keeping in mind
that our spinors have a mass m*, we can then immediately read off from the

Rosenbluth formula:

K.k, .
)

2 (k2
e (T“(Fl +2m* F5)?(6,, —

€p€q

Y JiJ. =N
54

+(E +EED)pu + 3h) (50 + 3))

with e, = /P22 + m*?; e, = /@2 + m*?; (p, + 1k,) = (qu — 1k,); ka = 1wy, ete.

* In fact, one can quite easily extend eq. (2.2) to take into account the possibility of polarized
electron beams. However, the new helicity dependent response function which appears turns
out to be zero in this model, as there are no final state interactions.
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So
EAEDY )&
(954
—2|N|? k2
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To define |N|, note that in writing equation (2.2) we have implicitly included a

phase space integral over the magnitude of the outgoing momenta, absorbing our
13]

overall energy conserving delta function"” , and using
o1 o4 ge, E, :
dqdp; 6*(ky +pr — k2 —p2 — q) = W anq, ; CM frame

In the case of infinite nuclear matter, E; and W‘ are both infinite, and we instead

need to use an infinite nuclear matter phase space integral
/ dg'dp; 6*(ky + p1 — ks — p2 — q)

= /dq"s (wk— Ve +m? - \/(f—ic‘)’+m-2)

€p
€p — eq(l -k- q“/qz)

= ge.dfl, [
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and thus combining with equations (2.1) and (2.2) gives

INJ? = 2e, (] €
(47)* L&, —eo(1~ k- /g?)

0 = 372Z/k,® comes from normalizing a fermi gas of Z particles in a volume (1.

In our numerical calculations, we obtain the free proton form factors F; and
F, by assuming a dipole dependence for the Sachs electric and magnetic form

factors. In particular:

Git' (F*) = FP™ + 2Myeo FP™ = G (0)gp (K)

2

k
Gy (k) = 7" — P = G (0)a ()

where My, = .938 GeV is the free space nucleon mass, G (0) = u»" are the free
nucleon magnetic moments, GE"(0) = 1,0 are the nucleon charges, and gp (k?) is

given by eq. (4.3).

APPENDIX B

Out of plane kinematics

The out of plane structure functions require measurements at ¢, # +x/2. To
-achieve this, one can either move the proton spectrometer out of plane, or bend
the incident beam out of plane. The kinematics in this latter case are shown
in Fig. 10 . Note that the kinematics is not changed, only the notation and
definitions of angles. In this case, the electron spectrometer is set at angle 6,
from the incident beam’s forward direction. The beam bend angle « is given by:

) —sinfsinf, cos ¢
sina = g L

1
sin’ 0, cos? ¢, + -‘I-‘;_g[e1 sin 8 cos 0, + (e; — e, cos 0) sin 8, sin @, ]
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In the case of maximum out of plane scattering, ¢, = 0 and this reduces to

. —sinfsinf,
sina =

2
. € .
\/ sin® 0, + -I_;.L sin’  cos? 0,.
2

The electron spectrometer angle 6, is related to the true angle between incident
and final electron # by

cosd
cosf, =

cosa
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Table 1. Out of plane structure function contributions.

(2% 0. We COS 0q Ts/(Tl + Tz) a

4 GeV 10° .386 9417 7.6% 3.7°
20° 1.15 .986 4.9% 3.9°

90° 3.44 9977 0.6% 4.0°

2.5 GeV 10° 16 .8625 8.5% 5.2°
20° 513 .96 6.5% 5.9°

90° 1.99 994 1.0% 6.4°

1 Gev 10° .029 .563 9.7% 8.3°

20° .06 717 8.8% 13.8°

90° .613 967 2.1% 15.8°

T; here refers to the i*® line in the cross section formula. Thus e.g.

Note that in each row, with e, and 0, fixed, we have chosen both w, and é, to
maximize the contribution of T5. We consider small angles for 4, (10,20°) since
the out of plane response is enhanced there, and include a larger angle (90°)
for comparison. « is the incident beam bend angle required at these particular
kinematics, in order to result in ¢, = 0 (i.e. maximally out of plane), as discussed

in Appendix B. Note also that the physical electron spectrometer angle 8, differs

from 4, slightly.

T, = (k2/2k*) 2Re(J*"J7)

16




FIGURE CAPTIONS

1. Kinematics and conventions for coincidence cross sections.

2. Picture of the scattering in this model. The incoming virtual photon has
momentum l?, the struck nucleon has momentum -p,, and the outgoing nu-
cleon has momentum §. Note that the ejected nucleon still has an effective

mass m*, since the nucleus is infinite.

3. a) The four proton response functions evaluated per prof.on, and plotted as
functions of energy loss and cos 6,. Here k = .5 GeV and ¢, = 7/2. We use
k, = .28 GeV and m*/m=0.56 (appropriate for infinite nuclear matter"™ ).
The vertical scale is 15.0 GeV~2 for all four response functions.

b) Neutron response functions (per neutron). The vertical scale is magni-

fied over fig (a) by a factor of 5.

4. Three dimensional plot of the proton coincidence cross section (per nucleon)
integrated over the outgoing proton’s azimuthal angle ¢y, d*o/dQde;d cos b,.
The electron kinematics and independent variables are the same as in the
last figure, with e, = 4.0 GeV. The cross section is plotted on the z axis,
and ranges from .15 GeV~*/sr to 3.51 Gev~3/sr.

5. Inelastic singles cross section for *C in units of 10~*2 cm?/sr/Mev, as a
function of energy loss. Beam energy is e¢; = .5 GeV, electron scattering
angle is § = 60° The data is taken from Ref. 4. The fit (ke=.19 Gev,
m*/m=.725, here) is by eye.

6. Fitted Fermienergy and effective mass, as functions of Atomic number. The
fits are described in the previous figure. Here, for infinite nuclear matter
values we show a value of k;=.26 GeV which reproduces the interior charge

density of lead in the Hartree approximation."™
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10.

The longitudinal sum rule for **Ca evaluated from equation (4.1). Data is

from ref. 8. The solid curve is m*=1.0, the dashed curve is m*=.56

Coulomb sum rule found by numerically integrating eq. (4.2)over kinemat-
ically accessible energy loss. The dashed line results from setting m* = 100.
This reproduces the nonrelativistic sum rule, which is just 1 for & > 2k;,.
The other curves are for values of m*/m=0.01, .56, .7, and 1. For this plot

’

we assume a dipole dependence for F, and F,, rather than G, and Gg.

Same as previous figure, but assuming a dipole dependence for G,, and Gg

rather than F, and F,

Out of plane kinematics definitions. See Appendix B.
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