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I would like to welcome all of you. This is a treat for me because it is
a chance to discuss physics. I want to talk about parity violation in the
nuclear domain, and I will start by saying a little about electron scattering to
set the framework [1].

In electron scattering there are three electron variables (Figure 1): the

initial and final wave number K . and K_, and scattering angle 8, or

a’
equivalently, the four momentum transfer squared q’, the quantity v =

q.p/M! which is simply the electron energy loss v = ¢ 1 - € in the laboratory

frame, and the electron scattering angle 6. The S-matrix for this process
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takes the usual form, where the T-matrix is the product of the M¢ller
potential created by the electron and the matrix element of the electromagnetic
current for the hadronic system. I am going to use superscripts to denote
isospin. Here 7 just denotes the electromagnetic current. Given the T-matrix,
one can compute the cross section, which is going to involve known electron
variables and bilinear combinations of the current matrix elements for the
target. This bilinear combination, when averaged over initial states and

summed over final states, is a Lorentz tensor which can depend only



on the two four-vectors p and q left in the problem. The electromagnetic

current is conserved, and one can construct the general form of this Lorentz

tensor.
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It consists of two functions of the Lorentz invariants qz and q.p; their
coefficients simply exhibit the Lorentz structure of the tensor. This is a well-

known theorem. One can then calculate the double-differential cross section

for electron scattering.
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oy is the Mott cross section; it is the cross section for the scattering of a
Dirac electron on a point charge. The structure of the target is contained in
the two response surfaces which are functions of q’ and q.p. If those
variables are kept fixed and one makes a straight-line Rosenbluth plot against
tan ’9/2, the contribution of those two response surfaces can be separated.

If one looks at electron scattering to discrete states of the target,

*
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then there is a relation between p.q and q° which is obtained by simply
squaring the statement of conservation of four-momentum. M* is the mass of
the final state. There is clearly only one independent variable left, and we
take that to be q’.

Let me give an example; Suppose we have a 0° target. The general
form of the matrix element of the current for a 0 target can be written in

the following form.
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This follows simply from Lorentz invariance, current conservation, and parity.
There is a single electromagnetic form factor which is a function of qz, and
the remaining terms exhibit the Lorentz structure of the matrix element. The
response tensor can be constructed and then the cross section for scattering

from the 0" target.
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One has the Mott cross section, the recoil factor, and the electromagnetic form
factor which is a function of q’. I give you my favorite example in Figure 2.
This is the measurement of the elastic cross section for °Ca done at Saclay
[2]; it is essentially the square of that form factor, as a function of the
momentum transfer q; this is the diffraction pattern that you observe. Note
the log scale which extends over 12 decades. The charge distribution in *®Ca
is obtained essentially by taking the Fourier transform of the form factor and
the extracted charge distribution for *®Ca is shown in Figure 3 as a function
of distance from the center of the nucleus measured in Fermis |2, 3]. Recall

1F = 10*%cm. The band indicates the experimental uncertainty in this



charge distribution. The heavy dashed curve gives you an indication of our
current ability fo calculate the charge density on theoretical grounds within the
framework of what I call quantum hadrodynamics or QHD. By that I mean
a relativistic quantum field theory of the nuclear system based on hadronic,
baryon and meson, degrees of freedom [3]. Let me just say a little bit about
how you do that calculation [4]. This result is calculated within the mean
field approximation where the scalar and vector fields are replaced by their
expectation values and the baryons move in these mean meson fields. This
relativistic mean field theory gives you a very nice description of calcium.
Eventually that description starts to break down at high qz where you look at
the short distance structure of the charge demsity. How do you improve this
approach? You include exchange currents. These are additional currents in
the nuclear system arising because of the sub-nucleonic degrees of freedom.
The mesonic degrees of freedom can create currents flowing between the
baryons. From the nuclear physics point of view, the distribution of current
and charge in this nuclear system arises from complex hadronic processes. In
theory, we work harder and harder to try and get a better and better
description of that charge and current distribution.

I am now going to talk about parity violation [1, 5]. As Stan Kowalski
has already indicated, there is in addition to the electromagnetic interaction
through the exchange of a virtual photon, a weak-neutral-current interaction of
the electron through the exchange of the Z° (Figure 4). The effects of this
weak-neutral-current interaction are completely masked at the energies that we
are talking about (significantly below 100 GeV, the mass of the Z°) by the
electromagnetic interaction. The effects are characterized by the Fermi
coupling constant G = 1.02 x 10_5/m:; they are very small unless you look
at something that is dependent on the presence of the weak interaction, like
parity violation.

The extension of the T-matrix in Eq. [1] which includes these two

processes is:
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In addition to the Mgller interaction with the electromagnetic current, there is
an interaction with the Z° which can be replaced by a point coupling as long
as we are working at energies well below 100 GeV. I have factored out an
overall factor 4m/q’, 8o the weak interaction term gets multiplied by the
inverse of that factor. This gives rise to the characteristic factor qu/&lm'\/zT
that is going to characterize the strength of the interference structure. It has
been assumed here, for generality, only that the weak-neutral-current
interaction has a V-A structure. a is the strength of the vector coupling of
the electron, b the strength of the axial-vector electron coupling, and the weak
neutral hadronic current is assumed to have the form

(e) _ y(o) (o) . V-
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That is, it will be assumed that the weak neutral current is the sum of a
Lorentz vector and a Lorentz axial vector.
In the Standard Model of Weinberg, Salam, and Glashow (6, 7, 8].
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As Stan indicated, a is very close to zero, and b is simply -1.

Now the Standard Model also says more about the weak neutral current
in Eq. [8]. It says that it is composed of two terms, one of which is a
different isovector component of the same current that give rise to charge-

changing semi-leptonic processes.



(10)

,S"’ = JI’ + Jﬂsvs - 2sin29' (J; + J;s) ; nuclear domain

The second term, mixed in through the Weinberg angle, is just the

electromagnetic current.

JZ = Jz + J;’ (11)

The isospin structure of the weak neutral hadronic current in the Standard
Model is now explicit. These relations hold in what I will call the nuclear
domain, a term which will be defined more precisely later in the talk. This is
the same expression that Stan was talking about.

Given a T-matrix, one can calculate a cross section. We are here
interested in the interference term between the weak and electromagnetic
interactions. That interference term can again be characterized by two
tensors. One tensor is the interference between the electromagnetic current
and the vector part of the weak neutral current, and the second is the
interference with the axial-vector part. If one assumes that the vector part of
the weak neutral current is conserved (this is not essential here, it just makes
life a little simpler) then the general structure of this tensor can again be
exhibited just as in Eq. [2].
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We can also exhibit the general form of the second tensor.
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Since this involves an axial current, it must be a pseudotensor; and there is
only one pseudotensor which can be constructed from p and q.

Given these tensors, the cross section can be computed. In particular, one
can calculate a general relation for the electron scattering asymmetry, which is
the difference in cross section for the scattering of right- and left-handed

longitudinally polarized electrons (Figure 5) divided by the sum [1].
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Just as in electron scattering, there are three independent electron
variables {qz, q.p, 6}. The target response surfaces are functions of q2 and
q.p. If those two variables are kept fixed, one can, in principle, separate the
terms with a Rosenbluth-like plot against §. Only the V-A structure of the
weak neutral currents has been assumed, and there are three target response

functions that one can obtain from a general asymmetry measurement.



Let us discuss this result. The first comment is the one just made; the
structure functions are functions of qz and q.p. One can separate them by
looking at the 6 dependence. If one looks at a transition to a discrete state
of the target, then again the structure functions are functions only of q’; all
other factors cancel in the ratio and only form factors appear in this
expression. Steve Pollock is going to talk this afternoon about the expressions
one gets for elastic scattering from the nucleon. What has been assumed in
the derivation of Eq. {14]? A V-A structure for the weak neutral currents has
been assumed, as has Lorentz invariance, one-photon exchange, and
conservation of the vector weak neutral current (the latter is not an essential
assumption). Two-photon exchange gives a correction of 0{a) to this result.
Good parity has been assumed for the hadronic structure. That is, since one
is looking at an interference term which is proportional to the weak
interaction, parity can be used to characterize the nuclear matrix elements in
evaluating this term.

What good is the expression in Eq. [14]?7 Well, I can use it to study the
structure of the hadronic weak-neutral-current interaction. The nucleus can be
used as a laboratory to select and study various pieces of the current. For
example, nuclear isospin selection rules can be used to select various pieces of
the weak neutral current. Angular momentum selection rule can also be used
to select various multipoles and pieces of the current. Furthermore, one can,
in principle, use that expression to measure a and b.

A few other obvious comments are worth keeping in mind. Only the
parity-violating part of the weak-neutral-current interaction can be measured in
this experiment. There is a parity-conserving part of the weak-neutral-current
interaction which is always going to be masked at our energies. The only
way to get at that part in the nuclear domain is to do neutrino experiments.
The electron-scattering asymmetry can therefore never replace neutrino

experiments.



We now have the ratio of the two form factors characterizing the
electromagnetic and weak-neutral currents. A priori, these currents have
nothing to do with each other, and the two form factors characterizing the
distributions of electromagnetic and weak-neutral charge would have nothing to
do with each other. And think for a minute about the hadronic point of
view where one tries to explain the charge distribution in 2 nucleus like *?Ca
in terms of sub-nucleonic hadronic degrees of freedom. It becomes a very
complex situation; charge is carried by mesons and baryons. The weak-neutral
charge is &lso carried in sub-nucleonic hadronic degrees of freedom. It is also
carried by mesons and baryons. A priori those things have absolutely nothing
to do with each other.

On the other hand, let us go to the Standard Mode! in the nuclear
domain where we know that the weak nuclear current has the structure
exhibited in Egs. (10-11). Suppose one has elastic scattering from a nucleus
with isospin 0 like 132G or **Ca. Only the isoscaler part of the weak nuclear
current can then contribute. The only place you have an isoscaler piece in
the weak neutral current in the Standard Model shown in Egs. (10-11) is in
the electromagnetic current itself. The weak neutral current is precisely
proportional to the isoscaler current in this case and hence to the
electromagnetic current itself. That means that the weak neutral current and

the electromagnetic current are precisely proportional for these transitions.
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This, in turn, implies that the form factors are precisely proportional.

FE (¢ = - 2sin®9_ P 1(q) (18)



Which means that the ratio of form factors required in Eq. (16) is simply a

constant. The expression for the asymmetry is then [9, 1].
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At Bates there is an experiment underway to measure this quantity for elastic
scattering from '*C.

Now Eq. (18) is really a remarkeble result when you think about it.
What does it say? This relation holds at all momentum transfers, hence it
holds at all distance scales. Think in terms of the Fourier transform, the
larger the momentum transfer, the shorter the distance scale one is probing.
So what does the equality in Eq. (18) mean? It means that these two form
factors, or equivalently the distribution of the electromagnetic charge and the

distribution of the weak neutral charge, are precisely the same no matter at

what distance scale you probe the system. This equality holds at long
wavelengths, or low momentum transfers, where one sees only the gross
features of nuclear structure; it holds at shorter distances or higher momentum
transfers, where one sees neutrons and protons; it holds at still shorter
distance scales or still higher momentum transfers, where one sees sub-
nucleonic hadronic degrees of freedom, that is, where one sees the hadronic
exchange currents; and, finally, it holds all the way down to the distance
scales where you see quarks. Those two charge distributions are identical in
all the complicated nuclear degrees of freedom. Let me put it another way -
in a more dramatic fashion. If one could measure the parity-violating form
factor for *°Ca through this experiment, one should see precisely the result
exhibited in Figure 1. What has been assumed? I have assumed Lorentz
invariance, isospin invariance, and the Standard Model. I mean, it is really a

spectacular result. Nowhere in this expression is there any nuclear structure.



Nowhere does it matter where the charge is distributed in that system.
Nowhere does it matter what this diffraction pattern looks like. It is just
spectacular!

Isospin invariance has been assumed. How good is this in the ground
state of carbon? It is probably good to a small fraction of a percent for this
state in carbon. I do not know anything about the qa dependence of the
isospin breaking. There are several corrections at the 1% level, some of which
are very difficult to calculate.

Let us take another example. Let us look at an inelastic transition to an
unnatural parity state where the initial state has isospin T=0 and the final
state T=1 (Figure 6). An isovector transition selects the isovector piece of
the weak neutral current, and the parity-violating asymmetry can then be
written as a known term, plus another term which now depends on nuclear

structure.
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The nuclear structure enters in the ratio of the axial vector electric matrix
element to the corresponding electromagnetic magnetic transition

amplitude.
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Again, the nuclear state has here been assumed to be an eigenstate of parity.
There is now one function characterizing the nuclear structure, and again in
an experiment one can, in principle, separate this term by keeping q’ fixed
and varying the electron scattering angle 8. In fact, these two are
measurable. Again, the first term is a known expression independent of
nuclear structure in the Standard Model. Consider a specific example: let us
look at the excitation of the 15.1 MeV 1*.1 level in *2C (Figure 7). First let
me show you what the magnetic dipole form factor looks like for this
transition in *?C in Figure 8 [1}. This is the square of the magnetic dipole

matrix element.
Fp = 11T (g) 11012 (22)

The solid curve is based on a very simple model. If one assumes that 2C is
a closed p 3/2 - shell and that this is a particle-hole excitation in the p- shell
(Figure 9), then the form factor for that transition is just the single-particle
matrix element of the magnetic dipole operator, which one can calculate within
the traditional framework of nuclear physics and electron scattering [1, 10]. In
fact, that picture is too simple. If one does an open-shell RPA calculation,

then that single-particle matrix element is essentially reduced by a factor £.
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And the solid curve in Figure 9 is calculated within the traditional nuclear
physics approach, using harmonic oscillator wave functions with an oscillator
parameter fit to elastic charge scattering, and the parameter £ is varied to

obtain the solid curve [1]. Now I can use exactly the same approach to



calculate the transition matrix element of the axial vector current which, in
this simple approximation, is just proportional to the spin matrix element for
the nucleus. So now one can calculate the parity-violating asymmetry within
exactly the same approach. Figure 10 is a plot of the figure-of-merit, which
is the square of the asymmetry times the cross section. Other people will
speak in more learned fashion about the figure-of-merit. It is relevant because
in order to measure the difference in cross sections one has to measure the
spin-up and spin-down cross sections individually to a specified statistical
accuracy. The dashed curve in Figure 10 is the figure-of-merit for this
inelastic transition in *C [11]. Note that there is now interesting nuclear
structure in this figure-of-merit.

Now let me come back to the point I mentioned before. In fact, nuclear
states are not eigenstates of parity if the weak interactions are fully taken into
account. In the hadronic sector of the weak interactions, there is a parity-
edmixing piece. The role of this term in the nuclear domain is model
dependent. The semi-leptonic interaction can be handled in a model-
independent fashion, but one must make a model to analyze the role of the
purely hadronic weak interaction. The solid curve in Figure 10 is the result
of a very simple model calculation. This was done by Brian Serot as part of
this thesis. He took a one-r exchange potential, and made one vertex parity-
conserving and the other parity-violating one-x vertex was taken from parity
experiments that have been done in nuclear physics. Given this potential, one
can do perturbation theory and every nuclear level will have a small wrong-
parity piece mixed in. Now in addition to the interference term between 7
and Z° exchange (Figure 4} there will be a familiar electromagnetic multipole
transition matrix element that connects the different-parity pieces of the wave
function. The solid curve in Figure 10 is the calculation of Serot of that
piece for this particular transition in ?C for 1GeV electrons [11]. Over most
of the region of q’ it is a completely negligible affect. It is also true that
this contribution falls rapidly with q’ whereas the interference term relatively

grows with q’. So over most of the regime, at least for this case, admixing



wrong-parity states in the nuclear wave function does not effect the previous
interpretation over the relevant range of q’ to several orders of magnitude.
However, if one completely measures this figure-of-merit as a function of qz, it
is evident from Figure 10 that one has the possibility of, in fact, extracting
that parity admixture in the nuclear wave function from this same experiment!
You have to do this at very low qa where this contribution is the dominant
term; you have to measure at very forward angles.

For the remainder of this talk I want to concentrate on quarks and
quantum chromodynamics (QCD) [12]. Although you do not see quarks as
asymptotically free particles, if one introduces quarks as fields or particles and
assigns the quantum numbers indicated in Table 1, where the first column is
nuclear isospin, the second the third-component of nuclear isospin, the third
charge, the fourth baryon number, the fifth and sixth strangeness and charm,
and the final hypercharge, then one can explain the existing multiplets and
supermultiplets of hadrons. The baryons are assumed to have the quantum
numbers of the three quark system (qqq) and the mesons have the quantum
numbers of bound (qq) systems.

Furthermore, if one assumes that the electroweak currents can be
constructed from point quark Dirac fields, then a marvelously simple and
predictive description of these currents is obtained. This is an amazing
assumption - to assume that one can construct the currents from point Dirac
fields of the quarks. What is the electromagnetic current, for example? Well
it is simply the Dirac current for each of the quark fields, multiplied by the

electromagnetic charge on the quarks.
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The charge-changing weak current is also constructed from the quarks.
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The first term takes a down (d) to an up (u) quark, the second a strange (s)
to a u quark, and the third and fourth take d and s quarks to a charmed (c)
quark. These terms happen to appear in this particular combination. It is
slightly screwy. They are mixed up a little bit by what is called the Cabbibo
angle 8=. The weak neutral current in this Standard Model is composed of
terms that are diagonal in the “flavors” of the quarks; there are no off-

diagonal quark terms in that weak neutral current.
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The last term is our old friend the electromagnetic current which is mixed in
through sinzﬁv. Now I have underlined the terms that involve the u and d
quarks in Egs. (24-26). The other terms involve the heavier strange s and
charmed ¢ quarks.

Let me now more precisely define what I call the nuclear domain. The

nuclear domain is that sector of the Hilbert space that contains only u and d
quarks and any numbers of pairs of those quarks. One can clearly make all
non-strange and non-charmed baryons and mesons in that domain.

Let me make another crucial point. QCD is a local gauge theory based
on color as an internal intrinsic degree of freedom. It is an internal degree of
freedom like isospin. QCD is a local gauge theory of the strong interactions
binding quarks into the observed hadrons. The force in this theory is
mediated by gluons, which are massless quanta similar to the photon in
quantum electrodynamics (QED). In the Standard Model of the strong and
electroweak interactions based on 8U(3), x SU(2)_ x U(1) , the gluons are
absolutely neutral to the electroweak interaction. That is, when you go to
QCD, the electroweak currents are still given by Eqs. (24-26) (summed over
quark colors). This is a crucial point. These are still the electroweak
currents in the Standard Model.



Let us work in the nuclear domain where one has only up (u) and down

(d) quarks. Let us combine those up and down quarks into a field ¥.

= (:) ; nuclear domain
(27)
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c
This field transforms as an isodoublet under isospin. Let us further combine
the Cabbibo angle with the Fermi constant to give an effective charge-changing
weak coupling constant G as indicated in Eq. (27); since cos# Z 0.97 this is
a 3% effect. The electromagnetic current can be rewritten in terms of this

isospiner ¥ in the following form.
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And now you recognize the first quantity as the third component of an
isovector and the second as an isoscaler. So the electromagnetic current has
precisely the structure we assumed before in the Standard Model. The first

piece of the charge-changing weak current can also be written in this fashion.
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You can see that these are simply the raising and lowering components of an
isovector operator. And the first part of the weak neutral current can

similarly be written in terms of the field ¥ in the following fashion.
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You can see that the first term is the third component of an isovector; it is

the sum of a Lorentz vector and axial-vector current. The second term is the

same electromagnetic current that appeared in Eq. (27).



So now within the nuclear domain, and within the Standard Model, the
electroweak currents have all the transformation properties assumed previously
in Egs. (10-11). And all the results we obtained on identity of form factors,
and on cancellation of form factors in ratios, depended only on the general
structure of the currents.

Let me just note in passing that this analysis neglects the following piece

of the current.
i
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It is a piece of the current that involves strange quarks and charmed quarks.
It is a pure isoscaler because charmed and strange quarks have no nuclear
isospin. It is a pure isoscaler that depends on the presence of heavy quarks.
Now one knows that there is no net strangeness or charm in the nucleus to &
very good approximation, but there may be pairs of these quarks in the
nucleus. There are, in fact, “sea-quarks” in the nuclear system, and thus, to
a certain extent, there are ss pairs in the nucleus. From the hadronic point
of view, if there are any §§ mesons present, then to the extent that these are
ss pairs, one has an additional mechanism for introducing these pairs in the
nuclear system. So this is also a correction to everything said previously. I
expect its role to be comparable to that of isospin breaking, but this is just a
gut feeling which I cannot back up with quantitative calculations.

Let me say a little about the SLAC parity-violation experiment [13].
Vernon Hughes was intimately involved in that experiment. It was an
experiment on deuterium (*H) in the deep-inelastic region [14]. What do I
mean by the deep inelastic region? It is the region where q2 gets very large,

and the energy loss v gets very large.
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This is the so-called scaling region where the ratio is fixed. In fact, in this
region one is pulling the nucleus apart. We have just blown it to pieces;
hadrons are coming out. In this regime the theory of QCD is asymptotically
free {12]. What does that mean? It means that the strong interactions
become very weak. At short-distances, or at very high momenta, the strong
interaction becomes very weak, and, in fact, in the SLAC experiments, the
strong interaction provides a perturbative correction to the interpretation in
terms of simple non-interacting quarks.
To make life simple, let us assume that the electron scattering angle is
small as in the SLAC experiment, that means 6+0. Let us also assume that

sin28'51/4 in which case the nuclear axial-vector term drops out of Eq. (14).

6+0
, (33)
a = - (l1-4sin 6)=0

So life is really simple, in fact all we need now to get the parity-violating
asymmetry is the ratio of the (VWa) for the interference term between the
electromagnetic and vector weak neutral current and for the electromagnetic
current itself. That is all that is left in the general formula.

Let us work in the nuclear domain, which I have now precisely defined.
Let us further assume that the proton is made up of three quarks, (aud) and
any number of gluons as shown in Figure 11. Recall that it is the nonlinear
interaction of the gluons that gives rise to confinement, and nobody really

knows how to do this part of the problem.



Let us use the quark-parton model for the required ratio of the structure
functions {14]. I am not going to go into detail on the quark-parton model,
but the important point is that if all you what is a ratio, and if the gluons
are absolutely neutral, then all of the gluon dynamics cancels in the ratio, and

the only thing that enters is the ratio of the charges of the quarks.
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So all one has to do now is to look up the electromagnetic and weak neutral
charges of the quarks, which one can get from Table 1 and Eqs. (28, 30).
You add the contribution from the neutron and the proton incoherently in the
theoretical analysis of this experiment. This expression tells us what the

parity-violating asymmetry for the deuteron in the SLAC experiment should
be.

Gq® 4

J%2n=_ 41ra'\/2_ g

(35)

Figure 12 compares this result with the results of the SLAC experiments.
This is the world’s supply of data on the asymmetry measured at SLAC for
deep inelastic scattering from deuterium. The theoretical result in Eq. (35)
depends solely on q’; after you divide by q’ it has no dependence on the
other variables in the problem, for example, on the electron scattering energy
loss. The expression in Eq. (35) clearly provides a very good representation of
the data.

So what do we learn from all of this? I just want to draw my

conclusions.



What does the nucleus look like? Figure 13 gives a schematic sketch of
the nucleus. The nucleus is a collection of hadrons with a fixed baryon
number. The baryons are confined quark triplets. It contains, in addition,
sub-nucleonic hadronic degrees of freedom; there are mesons present in the
nuclear system. These represent quark-antiquark pairs. Each of these hadrons
is confined by the nonlinear interaction of the gluons.

If 1 consider an electroweak interaction with this system, through the
exchange of a photon, a Z°, or a W%, the electroweak interaction sees only
the quarks. The gluons are absolutely neutral. Electroweak interactions are
also colorblind; the color of the quarks doés not matter.

Now you can see the reason for the simplicity of those previous relations
on the currents and on form factors. It does not matter if it is a photon, or
a Z°, or what have you; they all see the quarks. They see the same quark
distribution, no matter how complicated it is, whether in mesons or baryons,
and the different electroweak interactions simply look at different isospin
components of those currents. These have precisely the same spatial
distribution, no matter how it is distribution in the hadronic degrees of
freedom. From the nuclear physics point of view, that is a miracle. From a
high-energy physics point of view, it is obvious! It does not matter how
complicated the hadronic structure is for those relations to hold.

So in summary: Why do I like the parity experiments? I like the parity
experiments because they test the full structure of the Standard Model. That
is, they test the structure of the strong interactions, the local gauge theory
QCD based on color, and the unified gauge theory of the electroweak
interactions. They test the full theory of the Standard Model based on

SU(3), x SU(2)_ x U(1)_ in the nuclear domain where the strong interactions

are strong, and not asymptotically free. And these are truly nuclear physics

experiments, for to quote Nathan Isgur;
“Nuclear physics is the study of the strong interaction, confinement aspects
of QCD”. [N. Isgur, CEBAF Summer Workshop (1984)].
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FIGURES

Kinematic situation for target response in semileptonic processes.
Elastic {e,e) cross section for “’Ca vs, momentum transfer. The

~ scattering here is from the charge distribution.
Experimental charge density with estimated uncertainty from elastic
electron scattering (solid lines and shaded area) and relativistic Hartree
calculation of this quantity within the framework of QHD (heavy dashed
line). Taken from Ref. [4].



Fig. 4  Parity violation in electron scattering (e,e”).

Fig. 5  Scattering of right- and left-handed longitudinally polarized electrons.
The particle-violating asymmetry depends on the difference of these cross
sections.

Fig. 6  Unnatural parity, isovector nuclear transitions.

Fig. 7 Magnetic dipole, isovector tranmsition in 12C.

Fig. 8 Transverse magnetic dipole form factor squared [Eq. (22)] for the
0°,0+1%,1 (15.11 MeV) state in ‘2C [1].

Fig. 9  Simple particle-hole picture of the transition in Figure 7.

Fig. 10 Figure of merit for parity-violating asymmetry for 0+,0+1+,1 (15.11 Mev)
transition in 2C (dashed curve). The solid curve shows the contribution
of the wrong-parity admixtures in the wave functions. These calculations
are due to Serot [11]. An incident electron energy of 1 GeV is assumed
here,

Fig. 11 Mode! of the nucleon.

Fig. 12 Result in Eq. (35) compared with SLAC data for parity-violation
asymmetry in deep inelastic (e,e”) from 2 [13].

Fig. 13 Picture of the nucleus in the Standard Model.

Tables
Table I. Quark quantum numbers
Field/Particle T T, Q B S C Y=B+S4+C
u 1/2 /2 2/3  1/3 0 1/3
d /2 -1/2  -1/3  1/3 0 1/3
8 0 0 -1/3  1/3 -1 0 -2/3
c 0 0 2/3 1/3 0 1 4/3
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Figure 13. Picture of the
nucleus in the Standaré Model.




