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In the last 3 years I have given several talks on relativistic
equations for nuclear physics, and on relativistic effects in few nucleon
systems'. In preparing for these talks, and in responding to the
discussion which followed them, my thinking about relativistic equations
and relativistic effects has gradually evolved. I want to begin this
talk by focusing on several issues which naturally arise when discussing
this subject, and then turn to a brief discussion of relativistic three
nucleon equations. The latter topic has not been reviewed recently, and
is particularly of current interest because of the beautiful form factor
measurements of the He - 2H system recently completed at Saclay® and
Batess, and the accompanying speculation that relativistic effects are
important for understanding the three-nucleon system.

I. Issues

Relativistic equations for the two body scattering amplitude take the
following very general form

M=V +VGM (1)

where M is the 2 body scattering matrix, V the relativistic kernel or
potential and G the two body propagator. Equation (1) can be regarded as
a shorthand for the infinite sum

=
]

V+VGEGV+VEVEV+VEVCEYCV + ....
(2)
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th 4erm in the sum is the n*® Born approximation to the

where the n
amplitude. Solving Eq. (1) is a method of summing the series (2) which
is essential when many terms contribute to the series (which usually is
the case for low energy scattering) or when the series diverges (near the

bound state poles of M).

1.1 Lorentz invariance

The first issue concerns the meaning of "relativistic" in the content
of this subject. What I shall assume is that the Eq. (1) and the
corresponding series (2) are Lorentz invariant in the sense that (a) it
is clear from the equations themselves how to calculate M in any franme,
that (b) a law telling how to transform M from one frame to another can
be deduced, and that this law makes it possible to write the components
of M in any frame in terms of those in, say, the rest frame, so that M
need be calculated originally conly in one frame, and (¢} matrix elements
involving M can be explicitly shown to be Lorentz invariant using the
transformation law for M.

Many equations which use relativistic kinematics or are derived from
relativistic objects (such as Dirac spinors) do not satisfy these
stringent requirements. For example, Bag models which are based on a
relativistic lagrangian density are not Lorentz invariant because we do
not yet know how to boost bag states, although some progress on this
topic has been made recently. For the same reason, wave equations based
on time-ordered perturbation theory which use relativistic kinematics may
also not satisfy these criteria, even though they may provide an
excellent dynamical description of the nucleon-nucleon interactions, and
include some effects of relativistic origin®.

It is important to compare intermediate enmergy data with Lorentz
invariant calculations -- only in this way can we eliminate uncertainties
arising from the breaking of Lorentz invariance and assure ourselves that
we are really testing the underlying dynamics. This is particularly
jmportant for programs which study = the few body system at intermediate
energies, such as those which we expect to carry out at CEBAF.

1.2 Choice of propagator

The requirement of Lorentz invariance does not uniquely define the
equation; it is necessary to specify the propagator. A large number of

choices are possible, but three which have received the most attention



are the Bethe-Salpeter (BS) , the one-particle-on-shell equation (G )
and the Light Front (LF)’. If two particles have total 4-momentum P and

relative 4-momentum p, so that

P=p +p
. (3)
2 (Pl - P2)

P

then in all cases the total momentum is conserved, and the propagator
depends on p only. In the BS case it depends on all 4 components of P,
so that for spin gero particles the BS propagator is

Id“pcnscphfdp[m—(—P+p>]1[2-(2P-)] @

where n, and m, are the masses of the two particles. For the cone
particle on shell equation (particle 2 if m_ > ml), the propagator
depends only on three components of p, the 4° being constrained in a
Lorentgs invariant manner by the mass-shell condition, so that

Xd‘*p 5,[m5 - GP- 07 6 = Jd4p26+ (a5 - p2] [a2- ( - py)?)
(&)
j’—-ﬁ B} - (W-Ep?~?

where the last expression holds in the enter of mass of the pair, with
P = (W,a) and E1,z = (m:’:I + 52)1/3. (It is important to identify thg ]
function with the volume integral -- particle 2 in this description is
removed from the equation from the start and does not propagate.) One
may also specify particle one to be on shell. Finally, in the LF
formalism, the light front variables pt =P, P, and p, are used, so
that p =p'p - RL and the propagator can be written

[d‘% Slms - GP- 0?6y = Id“pz S[ng - pal [n2 - (P - pp)?%7?

(6)
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where, in the last expression, P = (P*, P, #L) = (P, W2/P, 6) and x is

the famous longitudinal momentum fraction

B+

(M)

]
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Note that the final answer shows that this propagator is completely
symmetric under the interchange of particles 1 and 2; we would have
obtained the same result if we had begun with 6[m: - (1/2 P + p)?).
Furthermore, if both particles 1 and 2 are on the mass shell, then

m2 . 2 m2 . 2

s ST SN SR )

pl_ +sp2— + (8)
(1-x)P xP

so that the LF propagator can also be written

Prdp* d%

—= Ip] + 0y - P77 ®)

o 2o ot Pp * Py
Py Py

showing that the propagation is off the p~ shell. Hence, the LF
formalism.shows some resemblance to time ordered perturbation theory,
with p~ playing the role of energy. However, the LF formalism is
invariant under boosts in the g direction and rotations in the 1,2 plane,
but is not invariant under rotations which mix the 3¢ axis with the 1,2
plane, while the time ordered formalism is invariant under rotations, but
not under boosts.

The LF formalism is very suitable for high energy problems where
there is a preferred direction®. It has become a standard tool for the
analysis of high energy quark interactions, but has seen less application
to nuclear physics, where explicitly angular momentum conservation is a
very useful tool”.

It is amusing to note that the 01 formalism and the LF formalism bear

certain formal similarities'®. If we introduce

E, +p
x' = % (10)



we can transform (5) into (6), the only difference being that x° replaces
x and the limits of integration on x” are from 0 to ® instead of O to 1.

1.3 Relationship between equations

It is important to realize that these equations are equivalent if the
kernel V is chosen correctly. In proving such relations, it must be
recognired that some equations depend on more variables, and equivalence
can only be proved in a region where both amplitudes are defined. I will
illustrate this by comparing the BS and G1 equations. To do this
introduce an operator P, which fixes the variables mo that particle 2 is
on shell. Suppose that MBS is the BS amplitude, H; is its projection
HisP, and “1 is its double projection PMBSP. Then if

¥ps = ¥ps * Vps Cps ¥pg 1)

and Vi satisfies the equation
Vi = VBSP + Vﬁs (GBS - PGlP) Vi (12)

it can be readily shown that
Hi = Vi + Vi G1 Ml . (13)

Hence, to determine the BS amplitude when particle 2 is on shell in
either the initial or final state, it is sufficient to solve the G1
equation

M = V) o+ VyG M @

1 1 171

rhere‘V1 = PV;, and use Eq. (13). This theorem is well known, but
usually the role of Eq. (13) is not emphasized.

The significance of these observations is that one can just as well
start with the G1 equation as with the BS equation. Since the BS kernel
Vog is an infinite series, use of either of these equations must
inevitably involve an approximation in which this series is truncated
after a finite number of terms, usually the first corresponding to one
boson exchange (DBE) or one gluon exchange (OGE). I have argued
elsewhere that the series for Vl is probably more convergent than that

for th, and will not develop this further here'’!!.



1.4 Singularities

The last issue I will discuss in this section is the presence of
singularities in relativistic equations. These can readily arise because
of the indefinite nature of the Lorentz metric; the squared 4-momentum is
not positive definite as it is in non-relativistic physics, and this
leads to singularities in propagators which are not always physical.

The singularities in the BS equation are usually eliminated by
performing a Wick rotation of the energy variables to complex values.
For the G1 equation, singularities occur which must be eliminated in
other ways. I wish to discuss one of these, the so called dissclution
singularity, and show how it is dealt with'?.

The propagator (5) can be factoriged:

6, (p) = (By +Ey - W' (B, + W-E)~ (15)

Note that this has singularities when W = E1 + Ez and when W = E2 - El'
The former is the usual elastic cut, and is physical and should be
present. The singularity at W = E3 - E1 is spurious; it would imply that
the interaction is strong at small W, regardless of the dynamics.

This singularity can be removed if it is desired to use the G1
equation for small W. To understand its origin and to see how to remove

it, return to the BS propagator

Gps = [B - G +p)% - el B2 - §-p% -1 ()

which has four poles in the P, complex plane, as shown in Fig. 1. When ;

is small and W = mo+om,

from the positive energy ones, and integrands will be dominated by either

the negative energy poles are widely separated

the positive energy pole of particle 1 (if the P, integration contour is
closed in the lower half plane) or by the positive energy pole of
particle 2 (if the upper half plane is used). However, when W is small,
the positive energy pole of particle 2 is pinched by the negative energy
pole of particle 1, and a singularity will arise unless both are
retained. If both are kept this would lead to a generalization of (5):



]«1‘%2 5, - b3l [ - (P- p) 171 s j d*p, 6 [my - p°) [n2 - (@ - p?~!
’ (17)
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This leads to a coupled set of equations with potentials with different
values of the relative energy P, corresponding to different retardation.

- (my +W/2) W2 - niu? P, Po
i 11 4 ] 14
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Figure 1

When W -+ E2 - E1 the two 6 functions become identical so that the

different potentials become equal and the singularity at W = E2 - E1

cancels. At this point the propagator reduces to

J o o3 By 6G (ByEy) + 1)
P p -

. (18)
2 o2
2 BBy [(B + Ep)° - ¥4

As long as one is interested in solutions far away from W = E - E1’ it
is an excellent approximation to neglect the negative energy channel.
This is because the retardation factor in the potential which couples
this channel to the positive energy channel is very large (making the
potential small) unless W is small.

II. Relativistic Three Body Equations

Applications of relativistic two-body equations have been discussed
widely in the past, and will be discussed by Tjon at this conferencel?®.
In the space remaining to me, I would like to discuss some recent work on

a generalization of the G1 equation to three particles'®.



The equations naturally have a Faddeev structure, with the spectator
and one of the two interacting particles on shell. That the spectator
must be on shell follows from a consideration of all ladder and crossed-
ladder exchanges between three particles. An example of a sequence of
interactions between particle 1 and 2 followed by 2 and 3 is shown in

Fig. 2; it can be seen in this special case that particle 1 and 3
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alternate as spectators, and the topology of the diagram requires that
the propagator correspond to particles 1 and 3 on shell, and particle 2
off shell. Consideration of other interactions leads one quickly to the
observation that all three propagators corresponding to the three
combinations of two particles on shell are needed. The equations are
shown diagrammatically in Fig. 3 in the case where all three particles
are different and three body forces are neglected. Note that a symmetric
treatment requires 6 Faddeev amplitudes instead of the three required in
non-relativistic physics, and that the two-body driving amplitudes are
identical to those obtained from the G1 equation, except that all four
two-body amplitudes corresponding to the four possible choices of which
of the two particles in the initial or final state is to be on shell, are
needed. For identical particles this complication disappears, since the
Pauli-principle leads to the observation that the four possible two-body
amplitudes are all equal, and that there is really only one Faddeev
amplitude.
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Figure 3

This approach has several advantages. First, note that the BS
treatment of the relativistic 3 body problem would have 8 internal
variables corresponding to the two independent 4 vector momenta. Using
the G1 equation, the internal relative energies (or relative times) are
fixed in a covariant way by the two mass shell conditions, leaving two
internal relative three momenta, just as in the non-relativistic case.
Hence the G1 approach has considerably simplified the problem. It is not
very much harder to to solve the three body problem using the Gl equation
than it is to solve the non-relativistic three-body problem; the
equations can be reduced to coupled two dimensional integral equations.

The G1 equation also satisfies the cluster property -- in the limit
when one of the three particles is removed to infinity, the interaction
between the remaining two particles is independent of the presence of the
third, except for the requirement of emergy conservation which constrains

the energy le of the pair

Vg = ¥p - By (19)

where M& is the total (CM) energy of the three body system, and Es is the
physical, on shell energy of particle 3.



The explicit form of the bound state equation for three identical

spinless particles15 is:

1
d3k1 n(%(Pl - Pz) ’ E(kk = k2)i P - Ps)

3 2 _ 2
(27)“2E, o, - ky

I'(py» % (p; - Py)) = -2 S

(20)

where k2 =P - Py - k1’ and H(p,k;Plz) is the two body scattering
amplitude which solves Eq. (5) and T(p',p) is the Faddeev amplitude with
the spectator momentum equal to Py and the relative momentum of the
interacting 1-2 pair equal to p. All of these quantities are manifestly
covariant, so the M matrix is a world scalar.

The Lorentz invariance of the helicity formalism makes it convenient
for carrying out the partial wave decomposition. Using the paper by
Wick!® the algebra can be carried out, giving the result:

.. M(q, @ W)
. dp’ g’dg r %3 M9
r(qu;m)=-Z..,I—P— C - (21)
j'm Ep. Eq' W12(2E° w12)
xD (x, 8, ) T(P p'q"j" m")
where

o Vo2 v 1) @i« 1!/
8(2n)3

(22)
D(x, 8, 87) = 6[1 - leos 871] d2. (1) &3 _(8) &3  (6°)
where T'(P, p q j m) is the.projected Faddeev amplitude with p as the

magnitude of the spectator 3-momentum, g the magnitude of the relative 3
momentum of the interacting pair in the CM of the pair, j the angular

momentum of the pair (defined in its CM), and m is the projection of this
angular momentum in the direction of the spectator momentum B (equal to
the negative of the 3 momentum of the pair). Similarly, M is the jth
partial wave of the pair, with enmergy (in the CM of the pair) ¥ , and
relative momenta q and q,- The total angular momentum of the bound state
is J. In terms of the variables p, q, p” and q° the kinematic quantities

are:



+ m2 - 2MTEp

]
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S

W2 =12 . a2 - 2UE .
E = (u°+ %)1/2 —-—1—2 W2, - W2+ 2W,, E_.]
P'q’ cos 67 = (Mp - E_)E . - Wy, B
Pq, cos 6 = (HT - Ep) Eo - le Ep,
PP’ cos y =W, E - E_. (i - E) | (23)

The d’s are the usual Wigner rotation functions. The relations between

P, P, q°, and qQ, and the angles &, 6°, and X are summarized in Figure
4. .

Figure 4

I have presented Eq. (21) in its entirety to show that an explicit
formula exists, and to underline the fact that it is no more complicated
than the usual non-relativistic formula. Eq. (21) uses the partial wave
amplitudes of the two body driving terms derived in the two body rest
system. The somewhat complicated relations between q, and the
integration variables p° and Q" occurs naturally as a result of the
covariance.

I will close this talk by noting an unusual feature of the G three-
body equations. As the spectator momentum increases, the energy of the



interacting pair, Eq. (19), decreases. Eventually the momentum and

energy become equal, which occurs at

Perit © % " - (24)
if H& = 3m. At this point the mass of the interacting pair is zero, and
it is traveling at the speed of light; the Lorentz transformation effects
are enormous. It looks at first as if the singularity discussed in
Section 1.4 will arise here, but as it turns out the Lorentz effects
over-compensate, and the amplitude is gzero at this point, not singular!

This happens because the propagator actually becomes (cf. Eq. 23)

W12(2Eo - le) : Wé3(2Eq, - Wéa) (25)
P 7 Perig

and any singularity whick might arise from W;' + 0 is cancelled by a
similar factor in the numerator. BHence the propagator is finite, but
because q, **, the amplitudes W 0, making ' = 0 at the critical
~it) they
are zero at the boundary and above this region are driven by two body

point. Hence the 3 body equations can be truncated to p ¢ P,

amplitudes with space-like 4-momenta, a region of small effects safely
ignorable.

The fully relativistic three body problem is therefore ready to be
solved, but given experience with the non-relativistic problem we can
anticipate that good numerical results are not likely to be ready for

several years!
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