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Abstract

We consider deeply inelastic scattering at very high energies in the saturation regime. The emerg-

ing picture corresponds to the propagation of a dipole, the quark-antiquark pair, in a shock wave

color field of the target. We use the fomalism of Wilson lines to study the evolution of dipole

densities in energy logarithms. Our analysis results into an equation in multicolor limit which

sums leading logs but keeps the nonlinearities up to cubic order in densities.
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1 QCD of dense parton systems.

A standard tool in QCD analyses of the deeply inelastic lepton-nucleon, `N → `′X, scattering

(DIS) for moderate values of Bjorken variable, xB, is the factorization theorems and Dokshitzer-

Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equation [1]. This equation describes the

change of the DIS observables with the change of a resolution scale, which for the process in

question is the virtuality of the probe Q2. The latter serves as a microscope which allows to

penetrate deep inside the hadron substructure and observe its constituents with transverse size

δx⊥ ∼ Q−1 and longitudinal extent 1
xB

.

The DGLAP dynamics is based on the separation of the DIS amplitude into a ‘hard’ part

coming from the transverse momenta k2
⊥ > µ2 and a ‘soft’ part coming from low k2

⊥ < µ2, where

µ2 is a scale dividing short and long distance physics. The incoherence of these phenomena allows

for a factorization of infrared part into a universal matrix element of a non-local composite light-

cone operators constructed from quark and gluon fields. On the other hand, the contribution from

hard momenta gives the coefficient functions. The factorization scale µ2 serves as a normalization

point for those operators. The change in µ2 is governed by the conventional renormalization group

equations. Taking µ2 = Q2, we come to the usual result that the Q2 dynamics of DIS cross sections

is driven by the renormalization group equations for the light-cone operators. In terms of QCD

perturbation theory it results from the summation of the contributions of the type (αs lnQ2)
n
,

etc., in momentum transfer.

A very important property of the factorization alluded to above is that the coefficient functions

are purely perturbative. Indeed, the effective coupling constant is determined by characteristic

transverse momenta so that the contributions coming from large k2
⊥ > µ2 are treatable within

QCD perturbation theory as long as µ2 is sufficiently large. The nonperturbative physics enters

the game only when we lower the normalization point µ2 down to a typical hadronic scale of order

∼ 1 GeV. The higher order terms of perturbative expansion, for both the coefficient functions

and the anomalous dimensions of the light-cone operators, lie in the same framework of linear

evolution and lead to corrections ∼ αs, α
2
s, etc. Thus, to compare experimental measurements of

structure functions F(xB, Q
2) at different Q2 we rely only on perturbative QCD and the linear

character of the DGLAP equations makes this comparison especially simple.

The situation changes drastically if one is interested in the domain of small xB. The DGLAP

evolution leads to a strong rise of the DIS structure function

xBF(xB, Q
2) ∼ exp

(
const. ln

1

xB
ln lnQ2

)1/2

, (1)

at small values of Bjorken variable xB. If one bears on using the DGLAP evolution for smaller

and smaller xB, higher loop contributions become enhanced by additional factors ln 1
xB

and the
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perturbative expansion of the coefficient functions and anomalous dimensions breaks down calling

for the small-xB resummation. Recall that DGLAP equation sums logs of the hard scale to all

orders, i.e., terms of the kind (αs lnQ2)
n

and
(
αs lnQ2 ln 1

xB

)n
. It takes only a single logarithm

or none of the energy for a power of the coupling constant. Thus, it fails for very low-xB when

αs ln 1
xB
� 1 and these contributions have to be summed over. In perturbative QCD, the small-

xB asymptotic behaviour is described in the leading logarithmic approximation (LLA) by the

Balitsky-Fadin-Kuraev-Lipatov (BFKL) pomeron [2] which sums up the leading energy logarithms(
αs ln 1

xB

)n
.

Unfortunately, the BFKL evolution, for a review, see [3], suffers from its own caveats. The

first one is the lack of unitarity: the power behavior of the cross section due to BFKL dynamics

xBF(xB, Q
2) ∼ xαIP

B , αIP = 1 + 4Nc
αs
π

ln 2 , (2)

violates the the so-called Froissart theorem stating that a cross section may grow at most as ln2 1
xB

at xB → 0. Obviously, this result means that approximations involved in the derivation of the

BFKL equation become inadequate and in order get the true asymptotic behaviour at small xB,

we must go beyond the LLA. Unlike the DGLAP case, this is not a purely technical problem of

calculating loop corrections to the kernels. There are αs corrections to the BFKL kernel [4], but

in addition there are unitarity corrections which go beyond the framework of the BFKL equation.

At small αs and xB, the latter corrections seem to dominate over the next-to-leading BFKL effects

[5].

The second problem with the BFKL evolution is its infrared instability. We can safely apply

perturbative QCD to the small-xB DIS if the characteristic transverse momenta of the gluons

k⊥ in the gluon ladder are large. For the first few evolution steps, one can check by an explicit

calculation that the characteristic k2
⊥ are of the order ∼ Q2. However, as xB decreases, it turns

out that the characteristic transverse momenta in the middle of the gluon ladder drift towards

ΛQCD making the application of perturbative QCD questionable. This is related to the fact that

the operator expansion for the high-energy scattering in terms of Wilson line operators, which

represent quarks moving with almost the velocity of light, [6] is based on the factorization in

the rapidity, η ≡ ln 1
xB

, [7, 8] rather than the transverse momentum. Unlike the usual light-cone

expansion, the high-energy expansion in Wilson operators does not admits an additional meaning

of perturbative versus nonperturbative separation. Contrary, both the coefficient functions and

the matrix elements have perturbative as well as nonperturbative parts. This happens because, as

we mentioned above, the coupling constant in a scattering process is determined by the scale of the

transverse momenta. When we use the factorization in hard (k⊥ > µ) and soft (k⊥ < µ) momenta,

we calculate the coefficient functions perturbatively, since αs(k⊥ > µ) is small, whereas the matrix

elements are nonperturbative. Conversely, when we factorize the amplitude in rapidity, both fast
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and slow parts have contributions coming from regions of large and small k⊥. In this sense, the

small-xB evolution in QCD is not protected from the infrared side in the same way as the DGLAP

evolution is: in order to compare the two structure functions measured at different (small) values

of xB the perturbative QCD may be insufficient and, in order to explain the small-xB behavior of

structure functions, it may be necessary to take into account the interplay between the hard and

soft pomeron.

Both of these problems can be resolved simulteneously if, as argued in [9, 10, 11, 12] the

partons in the highly energetic nucleon reach the state of saturation: the recombination of partons

balances the rise of the cross section due to parton emission, and the hard saturation scale Qs sets

the scale of the effective coupling constant. Indeed, once we have a rather dense gluon system

created by conventional parton splitting described by the linear DGLAP and BFKL evolution, the

partons populating a given space-time volume inside the hadron start to overlap and an absorption

competes with creation. This is expected to happen when gluons occupy the entire transverse area

of the hadron disc Σ⊥hadr = πR2, i.e.,

Σ⊥hadr

Σ⊥part

∼ πR2

(δx⊥)
2
n
∼ 1 ,

where the number of partons n is proportional to the gluon density xBG(xB, Q
2) which overwhelms

quarks at small xB. This is a result of parton saturation which is expected to tame the growth

of their number. So in the case of gluon overlap, they start to interact strongly although the

QCD coupling may well still be in the perturbative domain. This regime was addressed in the

pioneering work by Gribov, Levin and Ryskin [9] and has resulted into a suggestion of a first

nonlinear evolution equation which goes under their names, the GLR equation. It received an

early discussion in Ref. [13]. A derivation of the later within double logarithmic approximation

has been given in [10]. The question of the value of the scale at which the annihilation takes

over the production based on the analysis and solutions [9, 14, 15, 16] to the GLR equation has

resulted into the aforementioned concept of saturation.

A new era of investigations of nonlinear QCD phenomena has been been initiated by the

experimental results from HERA on small-xB measurement of the DIS structure functions. It

created diverse dynamical approaches to the corresponding physics which we will discuss below

and has led a phenomenologically successful saturation models, see e.g., [17].

The most transparent picture of the underlying nonlinear effects arises in the dipole frame

[18, 19], where the hadron carries almost the entire rapidity, and moves with almost the speed of

light, but still the virtual photon is quite energetic. The incoming photon fluctuates into quark-

antiquark pair, a dipole, and interacts with the target via gluon emission. Since the hadron is

contracted due to Lorentz dilation, the dipole with accompanying radiation sees it as a color
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Figure 1: Scattering of the photon probe off the hadron at high energies. The virtual quantum

fluctuates into a bunch of dipoles which interact with the target.

source of a transverse extent living on the light-cone, see Fig. 1. This color field is created by the

constituents of the well developed wave function of the hadron which in view of its high intensity,

i.e., big occupation numbers, can be considered as classical. The strength of the field in the regime

of saturation is 1/
√
αs. This can be achieved either by going to the very low xB for a hadron

or scattering off a nucleus [11], or both. Actually in the present paper we will consider the last

possibility which justifies the neglect of the so-called Pomeron loops which are suppressed then by

the atomic number of the nucleus as compared to exchange contributions. At high energies, we

can neglect the recoil of emitted gluons so that it is legitimate to use the eikonal approximation

[20, 21]. The proper degrees of freedom for the fast particles moving along the straight trajectories

collinear to their velocities are the infinite ordered gauge factors, mentioned earlier with respect

to an operator approach to the high energy scattering. In this case, the color dipole is given as

two Wilson lines stretched along the light-like direction nµ = 1√
2
(1,0, 1),

U (∞,−∞;x) ≡ P exp
(
ig
∫ ∞

−∞
dx−A+(x−,x)

)
, (3)

and separated by the transverse distance x⊥µ − y⊥µ = (0,x− y, 0), i.e.,

N (x,y) = 〈0|T 1

Nc
tr
(
U (∞,−∞;x)U † (∞,−∞;y)− 1l

)
|0〉 . (4)

It is evaluated in the external field of the hadron or nucleus alluded to above. The structure

functions are given by a convolution of the probability for the photon to fluctuate into the quark-

antiquark pair and the dipole cross section expressed as an integral of the dipole density over the

impact parameter, b ≡ 1
2

(x+ y). Namely, [22],

F(xB, Q
2) ∼

∫
d2z

∫
dz |Ψγq̄q(z,z, Q2)|2

∫
d2bN (x,y) , (5)

with z ≡ x− y.

In doing this procedure one introduces a separation in rapidity as discussed previously, ac-

cording to which the gluons of high rapidity go to the impact factor, — the square of the photon
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wave function alluded to above, — while the slow fields form the dipole. The change of this divide

cannot change a physical observable and it is governed by an evolution equation for N . To find

the dipole density at higher rapidity η + δη, i.e., smaller Bjorken variables, in terms of the one at

η we have to integrate the fast gluon modes out in the strip δη. At low densities, this evolution

stems from an independent branching of dipoles and results into the linear BFKL equation [23].

Saturation effects manifest themselves in breaking of this pattern when the dipoles start to ‘feel’

each other and intensively interact. Thus, there are two types of corrections to this result: First,

radiative corrections to the photon wave functions, and second, contributions of higher, or multi-

ple, dipole densities to the cross section. The latter arise as soon as an additional gluon is emitted

along from one of the quarks in the pair. In the multicolor limit this quark-gluon-antiquark system

is reduced to the pair of dipole densities both of which interact with the target field. n extra gluons

lead to n+ 1 dipoles, etc., which are accompanied in the structure function F by the multi-parton

photon wave functions, i.e., schematically, |Ψ γq̄(ng)q|2N n+1.

A number of studies along this line has led to a nonlinear equation which generalized GLR

equation. It was derived first in [6] where an infinite set of coupled integral-differential equations

has been given and a perturbative kernel for the first nonlinearity has been found. In Ref. [24] the

latter was deduced from the Mueller’s nonlinear equation for the generating functional of dipole

densities [23] in the multicolor limit. In [25] it was rederived using the direct summation of the

fan diagrams. In [26, 27] it was deduced from the functional equation, for the statistical weights

of the Color Glass Condensate, a state of dense gluon matter at high energies for heavy nucleus

[27, 28], derived in [29] and rederived in [26, 27]. The paper [30] dealt with the infinite hierarchy

of equations alluded to above which were summarized in a compact form of the functional Fokker-

Plank equation and its properties has been discussed.

The most general nonlinear evolution equation in the large-Nc limit reads

d

d ln 1
xB

N (x,y) =
∫
d2z K1(x,z,y)

{
N (x,z) +N (z,y)

}
+
∫
d2z K2(x,z,y) N (x,z)N (z,y)

+
∫
d2z d2z′ K3(x,z,z

′,y) N (x,z)N (z,z′)N (z′,y) + . . . . (6)

The necessity to take the multicolor limit will be explained in the main text. Here it is sufficient

to say that it allows the factorization of multiple Wilson line correlations into dipole densities and

leads to a closed equation (6). Note that the term Kn starts from the αn−1
s order in perturbation

theory. The known evolution kernels are K1 and K2. The former, obviously, coincides with the

BFKL evolution kernel and is given by

K1(x,z,y) =
αs
2π2

Nc

{
(x− y)2

(z − x)2(z − y)2
(7)

−1

2

(
δ(2)(z − x) + δ(2)(z − y)

) ∫
d2z′

(x− y)2

(z′ − x)2(z′ − y)2

}
+O

(
α2
s

)
.
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Use also N (x,x) = 0. The kernel for the first nonlinearity has been found in a number of studies

to be

K2(x,z,y) =
αs
2π2

Nc
(x− y)2

(z − x)2(z − y)2
+O

(
α2
s

)
. (8)

Extensive numerical and semi-analytical solutions to the generalized nonlinear equation with

Kn>2 = 0 performed in [31, 25, 32, 33, 34, 35] have demonstrated the desired suppression of the

growth in the parton densities and resulted into quantitative estimates of the saturation scale

Qs where this turnover actually takes place. In Ref. [36] the solution to the equation has been

expressed in terms of a path integral suitable for lattice evaluations.

Our current study is devoted to the computation of the evolution kernel K3. Presently, we

neglect the next-to-leading BFKL terms in K1 and O(αs) corrections to the three-pomeron vertex

K2 and reserve their evaluation for our future study. However, one can expect them to be para-

metrically less important that K3 since a bulk of these O(αs) corrections comes from the effects

of running coupling constant. For rather small coupling constant, the unitarity effects, which cure

the strong rise (2), become dominant at rapidities [37]

η ∼ 2

αIP − 1
ln

1

αs
,

which are smaller than the rapidities when the running of the QCD coupling in the BFKL equation

starts to be important. The latter was estimated to be [5]

η ∼ α−5/3
s .

Therefore, the unitarity restoring effect dominate long before the diffusion constraints, and the

question of unitarity restoration can be considered within the fixed coupling approximation [37].

Those readers who are not interested in technical details of the derivation, leading to the fi-

nal result, can skip sections the most of the consequent presentation and go to section 6.7 and

conclusions. For the rest, our paper is organized as follows. In the next section we consider the

Regge limit of the deeply inelastic scattering amplitude and define the gluon field configuration

of the boosted hadron which serves as a scattering source for the virtual photon. Then, in section

3 we compute the exact quark and gluon propagators in this shock-wave field. We use them in

section 4 for a calculation of leading and next-to-leading nonlinearities in the generalized evolution

equation. Finally, we present a few concluding remarks. The two technical appendices give a de-

tailed account of two-loop computation of diagrams with nonabelian vertices and two-dimensional

Fourier transformation from the momentum to the coordinate space.
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2 High-energy limit and shock-wave.

As we already explained in detail earlier in the dipole frame the external electromagnetic probe,

the photon, having momentum q fluctuates into a quark-antiquark pair and passes through the

Lorentz contracted color field of the hadron or nucleus with momentum p. Let us determine this

field configuration in the high-energy limit. To this end we consider the path integral which defines

the DIS amplitude

Tµν(q, p) = i
∫
d4z eiz·q〈p|Tjµ(z/2)jν(−z/2)|p〉A

≡ i
∫
d4zeiz·q〈p|

∫
DADψDψ̄ exp

(
i
∫
d4yL(y)

)
jµ(z/2)jν (−z/2)|p〉 . (9)

Each field configuration is weighted with the exponential of the QCD Lagrangian L = Lcl + Lgf.

Here the classical part is

Lcl = −1

4

(
Ga
µν

)2
+ ψ̄i 6Dψ , (10)

and the gauge fixing part will be specified later in this section complying with the form of the

external color source which will make the treatment especially simple in the present circumstances.

Our conventions are fixed by the following definitions for the covariant derivative Dµ = ∂µ− igAµ

and the field strength tensor Ga
µν = ∂µA

a
ν − ∂νAa

µ + gfabcAb
µA

c
ν.

Motivated by the demand outlined in the introduction we introduce two light-like vectors nµ

and n?µ such that n2 = n? 2 = 0, and n · n? = 1. We use the conventions for light-cone coordinates

z+ ≡ z · n, z− ≡ z · n?, so that zµ = z−nµ + z+n
?
µ + z⊥µ. Thus z2 = 2z+z− − z2, where z2

⊥ = −z2.

The projection on the transverse plane is done with the transverse metric g⊥µν = gµν−nµn?ν−nνn?µ.

In massless limit the target four-momentum is light-like p = n? and the virtual photon vector

can be decomposed in Sudakov variables as follows

qµ = −xBn
?
µ −

q2

2xB
nµ ,

with xB ≡ −q2/(2q · p). The small-xB limit, λ ≡ 1/xB →∞, can be treated as a rescaling of the

fields in the functional integral [38]

lim
xB→0

Tµν(q, p) = i
∫
d4ze−iz−−iz+q

2/2

× lim
λ→∞
〈p|Tjµ

(
λ−1z+/2, λz−/2,z/2

)
jν
(
−λ−1z+/2,−λz−/2,−z/2

)
|p〉 .(11)

After changing the variables in the path integral we have the amplitude

lim
xB→0

Tµν(q, p) = i
∫
d4ze−iz−−iz+q

2/2〈p|Tjµ(z/2)jν (−z/2)|p〉B . (12)
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evaluated in the background gluon field

B+(z+, z−,z) = lim
λ→∞

λA+

(
z+

λ
, λz−,z

)
,

B−(z+, z−,z) = lim
λ→∞

1

λ
A+

(
z+

λ
, λz−,z

)
,

B(z+, z−,z) = lim
λ→∞

A
(
z+

λ
, λz−,z

)
. (13)

Taking the limit λ→∞ one gets from Eq. (13)

B+ = δ(z−)β(z), B− = B = 0 . (14)

Thus, the background field has the form of a shock-wave type. The field strength tensor for this

potential

Gµν = δ(z−)
(
∂⊥µ n

?
ν − ∂⊥ν n?µ

)
β(z) , (15)

is also localized on the light cone.

Thus, considering the scattering of a dipole in the external shock-wave field we decompose the

total gauge field into its background and quantum parts

A = B + b . (16)

While developing the perturbation theory with respect to the quantum fields we will keep classical

source effects exactly. To make sense out of the path integral we have to impose a gauge condition

on the quantum field b. As it is almost obvious from these considerations, the light-like gauge

b− ≡ b · n? = 0 is the most appropriate choice. For this case, the addendum Lgf reads

Lgf = − 1

2ξ

(
ba−
)2

+ ω̄aDab− ωb . (17)

Since the DIS amplitude is gauge independent we take the limit ξ → 0 in the generating functional

(9) which simplifies considerably the gluon propagator.

The procedure we have just performed can be translated into the language of the Wilson

renormalization group. We have included into the classical field the low frequency excitations of

the gauge fields p0− < Λ0 ∼ 1/xB0, while the quantum part involves fast configuration. Since

the generating functional does not depend on the separation scale Λ0 the change in the latter is

compensated by the renormalization group flow, i.e., in each evolution step we integrate out the

quantum field with the momenta in the strip

p0− < p− < p0− + δp− , (18)

in order to go from the scale p0− + δp− to p0−.
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3 Propagators in the shock-wave background.

As a next natural step we have to find particle propagators in the shock-wave background (14).

We do this by an explicit summation of the gluon emission diagrams. For other related discussions

of the backround gauge propagators, the reader is referred to Refs. [39, 6, 40, 41, 27]. Since we

will use both momentum and coordinate space representations we define the Fourier transformed

propagator according to

G(p, p′) ≡
∫
d4z d4z′ eip·z−ip

′·z′G(z, z′) . (19)

And the Fourier transform of the shock-wave field is

Ba
µ(k) = n?µ 2πδ(k−)βa(k) . (20)

Now, we address the quark and gluon Green functions in turn.

• Quark propagator: iSij(x, y) = 〈0|Tψi(x)ψ̄j(y)|0〉B.

Summing up the gluon emission diagrams with the field (20) we find the following matrix repre-

sentation for the propagator

iS(p, p′) = (2π)4δ(4)(p− p′)iS0(p) + iS0(p)Aq(p, p′)iS0(p
′) , (21)

which consists of a free term S0 and an interaction part S0AqS0. Making use of the explicit form

of the gauge potential (20), the amplitude reads

Aq(p, p′) = 2πδ(p− − p′−)γ−
∞∑

N=1

(ig)N

×
∫ 


N∏

j=1

d2kj
(2π)2


 (2π)2δ(2)

(
p+

N∑

l=1

kl − p′
)
JN (p, p′)

N∏

m=1

β(km) . (22)

Here

JN = − i

N !

∫ 


N∏

j=1

dxj
2π


 2πδ

(
N∑

l=1

xl −A
)(

N∑

m=1

xm

)
N∏

n=1

i

xn + i0 · ε(p−)
=
εN−1(p−)

N !
, (23)

with A ≡ p′+ −
(
p+

∑N
j=1 kj

)2
/(2p−) and the standard sign-function ε(x) = θ(x)− θ(−x).

Using this result one immediately finds

Aq(p, p′) = 2πδ(p− − p′−)γ−ε(p−)
∫
d2z e−iz·(p−p

′) {u(p−,z)− 1} , (24)

where we introduced the notation for the color matrix depending on the external field configuration

uij(p−,z) = eig ε(p−)βij(z) , (25)
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with the gauge field being a matrix in the fundamental representation β ij = βa (ta)i j. Using the

identity

εN (x) = θ(x) + (−1)Nθ(−x) , (26)

one reduces the propagator to the one already known [6].

• Gluon propagator: −iGab
µν(x, y) = 〈0|Tbaµ(x)bbν(y)|0〉B.

The free-field propagator in the light-cone gauge reads

G0, µν(p) =
dµν(p)

p2 + i0
, dµν (p) = gµν −

pµn
?
ν + pνn

?
µ

[p−]
, (27)

where the square brackets on the p−-pole stand for a particular prescription to go around it in

perturbative computations. The main advantage of the light-like b− = 0 is the absence of the

quartic BBbb interaction vertices, so that we have only triple Bbb vertex left. Moreover a simple

analysis shows that the only relevant part of the three-gluon interaction Lagrangian is

δL = −gfabc (∂µb
a
ν)B

b
µb
c
ν , (28)

since other contributions, ∼ bµBµ, vanish by virtue of the orthogonality property of the light-like-

gauge gluon propagator n?µG0, µν = 0, since Bµ ∼ n?µ.

The manipulations analogous to the one we have done previously with the fermion Green

function give:

(−i)Gµν(p, p
′) = (2π)4δ(4)(p − p′)(−i)G0, µν(p) + (−i)G0, µρ(p)Ag, ρσ(p, p′)(−i)G0, σν(p

′) , (29)

with

Ag, µν(p, p′) = −2πδ(p− − p′−)2p−ε(p−)gµν

∫
d2z e−iz·(p−p

′) {u(p−,z)− 1} , (30)

where we used the matrix notation for the gluon field in the adjoint representation βab ≡ ifacbβc

and the adjoint gauge orientation matrix is related to the ones in the fundamental representation

of the color group via

uab(p−,z) = eig ε(p−)βab(z) = 2tr
{
tau(p−,z)tbu†(p−,z)

}
. (31)

Moreover it satisfies the following hermiticity property

u†ab(z) = uba(z) , (32)

to be used extensively later. In Eq. (30) we have also used an obvious property

dµ1µ2(p1)dµ2µ3(p2) . . . dµN−1µN (pN−1) = dµ1µ(p1)dµµN (pN−1) . (33)
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Let us briefly discuss several possibilities for handling the spurious infrared 1/p−-pole in the

density matrix of the gluon propagator. Obviously, it is related to the residual gauge degree of

freedom: one can perform a x+-independent gauge transformation which does not affect the light-

cone gauge condition. This ambiguity can be fixed by imposing a boundary condition in x+ on the

gauge field. The vanishing of the gauge field at x+ = ±∞ results into the advanced or retarded

prescription on the pole
1

[p−]
=

1

p− ± i0
. (34)

Their semi-sum results into Cauchy principal value (PV) prescription (which however does not

follow from the path integral quantization). Next, it can be handled according to the Mandelstam-

Leibbrandt (ML) recipe [42, 43]

1

[p−]
M
=

1

p− + i0 · ε(p+)
L
=

p+

p−p+ + i0
, (35)

which puts this spurious pole on the same footing as the conventional pole in the propagator

treated by means of causal Feynman prescription. This recipe allows for the Wick rotation in

the Feynman integrals. The ML form of the propagator does not correspond to simple boundary

conditions on the gauge field at x+-infinity which manifest a residual gauge freedom. However, this

prescription has been deduced later by means of the canonical equal-time (but not the light-front)

quantization [44] and path integral formalism by means of the Faddeev-Popov trick by changing

gauge condition in the path integral from the temporal to the light-like gauge [45]. The ML recipe

results into a mild infrared behaviour as compared to strong singularities one encounters when

the pole is hadled by means of the Cauchy principal value.

Note, however, that in our present circumstances due to the strip restriction (18) on the

integration over the p− component of teh momentum, the actual pole in the gluon propagator is

not hit and all prescriptions lead to identical results.

4 Nonlinear evolution equation.

In order to derive the evolution equation for the dipole density, we develop a perturbation theory

for the quantum fields integrating them out in slices of p− momentum while keeping the external

shock-wave field to all orders. In the Wilson line formalism, the quark traveling along the path

xµ = x−nµ+x⊥µ interacts with soft gluons by means of the path-ordered exponential (3). For the

gluon field (16) it has the form

U (∞,−∞;x) ≡ P exp
(
ig
∫ ∞

−∞
dx−A+(x−,x)

)
= U (∞, 0;x)u(x)U (0,−∞;x) . (36)
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Here on the right hand side of the equality we have used the form of the shock-wave concentrated

on the plane x− = 0 so that U and u stand for the path-ordered exponentials containing the

quantum and shock-wave fields, respectively. The quantum Wilson line are to be expanded in

perturbation series, e.g.,

U (∞, 0;x) = 1l +
∞∑

k=1

(ig)k
∫ ∞

0
dx1−

∫ x1−

0
dx2− . . .

∫ x(k−1)−

0
dxk− b(x1−,x) b(x2−,x) . . . b(xk−,x) .

(37)

For the hermitian conjugate we have

U † (∞, 0;x) = 1l +
∞∑

k=1

(−ig)k
∫ ∞

0
dx1−

∫ x1−

0
dx2− . . .

∫ x(k−1)−

0
dxk− b(xk−,x) . . . b(x2−,x) b(x1−,x) .

(38)

so that the unitarity property is preserved

U (∞, 0;x)U † (∞, 0;x) = 1l . (39)

Now we substitute the above expansion into the formula for the dipole

N (x,y) = 〈0|T 1

Nc
tr
(
U (∞,−∞;x)U † (∞,−∞;y)− 1l

)
|0〉 ,

and form Wick contractions. Note, that without adhering to the large Nc approximation our

evolution equation will not be closed but rather it will involve the higher correlations of Wilson

lines, e.g.,

N(2)(x,z,y) = 〈0|T 1

Nc
tr
(
U (∞,−∞;x)U † (∞,−∞;z)− 1l

)

× 1

Nc
tr
(
U (∞,−∞;z)U † (∞,−∞;y)− 1l

)
|0〉 , (40)

etc. However, the multicolor limit will give a possibility to reduce all higher order correlation to

a simple product of dipole densities, see e.g., Eq. (51) below.

5 Leading nonlinearities.

To start with let us recapitulate the computation of the BFKL part and leading nonlinearities of

the generalized equation (6). To this end let us compute the diagrams given in Fig. 2. For these

contributions we only need the ++-projection of the shock-wave propagator which reads

G++(p, p′) = −(2π)4δ(4)(p − p′) 2

p2 + i0

p+

[p−]

− 2π δ(p− − p′−)
2i

(p2 + i0)(p′2 + i0)

p · p′
[p−]

∫
d2z e−iz·(p−p

′)

×
{
θ(p−) (u(z)− 1) − θ(−p−)

(
u†(z)− 1

)}
. (41)
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We can cast the free propagator to the form when the particle propagate to an intermediate

point z before it reaches its final destination, a form we have for the interaction part with the

shock-wave background. To achieve this, we integrate, in the Fourier transform of the free light-

cone-gauge propagator, over the p+-component, then insert the unity 1 =
∫
d2p′δ(2)(p− p′), and

use the integral representation of the δ-function. These manipulations lead to the result

G0,++(x− y) = −
∫

d4p

(2π)4
e−ip·(x−y)

2

p2 + i0

p+

[p−]
(42)

=
i

2

∫ dp−
2π

1

[p−]
{θ(x− − y−)θ(p−)− θ(y− − x−)θ(−p−)} e−ip−(x−y)+

×
∫
d2z

∫
d2p

(2π)2
eip·(x−z)−ip2/(2p−)x−

∫
d2p′

(2π)2
e−ip

′ ·(y−z)+ip′2/(2p−)y− p · p′
(p−)2

−δ(x− − y−)δ(2)(x− y)
∫ dp−

2π

1

[p−]p−
e−ip−(x−y)+ , (43)

where we have used a p+-independent regularization of the spurious 1/[p−]-pole, e.g., the ad-

vanced/retarded/PV prescription, not the ML which does depend on p+. However, since p−

integration is resctricted this limitation is irrelevant. In Eq. (42) the last term originates from the

‘Coulomb force’ [46].

Note that if the integration over p− would be unrestricted then one will use a property of the

propagator with ML prescription which follows from its causality and conclude that

G0,++(x+ = 0,x, x−)
ML
= 0 , (44)

which holds when one performs the p− integral in the complex plane and notices that due to the ML

prescription both, Feynman and spurious, poles lie on the same side of the real p− axis. This would

lead in turn to the inability to reproduce the BFKL equation. This will hold even if one would use

the regularization by means of displacing the path from the light-like path adding a deviation δx+

since the corresponding contributions are finite, they do not contain double logarithmic divergence

as in the principal value prescription.

Note that since we have the integration over p− in the restricted domain (18),

∫ p0−+δp−

p0−

dp−
p−

= ln

(
p0− + δp−

p0−

)
= ln

1

xB
,

we never hit the ‘spurious’ pole in the gluon propagator in the one-loop diagrams since the ‘ghost’

part of the propagator is concentrated at p− = 0, namely,

p+

p−p+ + i0
= PV

1

p−
− iπε(p+)δ(p−) .

Therefore, to the leading order in the coupling constant all prescriptions on the p−-pole are

equivalent, as we already mentioned above.
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Figure 2: Leading order diagrams which result into BFKL equation and the first nonlinear

correction to the generalized nonlinear equation.

Adding the free and interaction pieces together we get

G++(x, y) =
i

2

∫
dp−
2π

1

[p−]
{θ(x− − y−)θ(p−)− θ(y− − x−)θ(−p−)} e−ip−(x−y)+ (45)

×
∫
d2z

∫ d2p

(2π)2
eip·(x−z)−ip2/(2p−)x−

∫ d2p′

(2π)2
e−ip

′·(y−z)+ip′2/(2p−)y− p · p′
(p−)2

×
{
θ(x−)θ(y−) + θ(−x−)θ(−y−) + θ(x−)θ(−y−)u(z) + θ(−x−)θ(y−)u†(z)

}

−δ(x− − y−)
∫
dp−
2π

1

[p−]
e−ip−(x−y)+

∫
d2p

(2π)2
eip·(x−y) p

2

p−
. (46)

Since the computation of the one-loop graphs is trivial we just mention that we have used in

the derivation the Euclidean d-dimensional transverse space Fourier transformation,

∫
ddp

(2π)d
eip·z

p2m
=

1

22mπd/2
Γ (d/2 −m)

Γ (m)

1

zd−2m
, (47)

and the following identity

2uab(z)tr
{
tau(x)tbu†(y)

}
= tr

{
u(z)u†(y)

}
tr
{
u(x)u†(z)

}
− 1

Nc
tr
{
u(x)u†(y)

}
, (48)

stemming from the color Fiertz transformation.

The contribution of the exchange-type diagrams (with one of them sampled in Fig. 2 (a)) reads

N (x,y) =
αs
2π2

Nc ln
1

xB

∫
d2z(−2)

(z − x) · (z − y)

(z − x)2(z − y)2

×
{
N (x,z) +N (z,y)−N (x,y) +N(2)(x,z,y)

}
. (49)

The contribution of the diagram 2 (b) (and analogous one with the self-energy attached to the

other eikonal line) is

N (x,y) =
αs
2π2

Nc ln
1

xB

∫
d2z

{
1

(z − x)2
+

1

(z − y)2

}

×
{
N (x,z) +N (z,y)−N (x,y) +N(2)(x,z,y)

}
. (50)
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The ‘Coulomb’ piece does not produce the logarithmic integral at leading order and, moreover,

can be completely eliminated at this order by a regularization of the Wilson line enforcing the

ordering of emitted gluons by a infinitezimal cutoff, so that e.g., x2 ≤ x1 − 0+ in Eq. (38).

In these computations no multicolor approximation has been involved. However, to produce

the closed equation for dipole densities we have to adhere to the large Nc limit,

N(2)(x,z,y) = N (x,z)N (z,y) . (51)

Summing up the expressions (49) and (50) together with the approximation (51) we reduce

the result to the nonlinear equation

d

d ln 1
xB

N (x,y) =
αs
2π2

Nc

∫
d2z

(x− y)2

(z − x)2(z − y)2

×{N (x,z) +N (z,y)−N (x,y) +N (x,z)N (z,y)} , (52)

which is obviously Eq. (6) with K1,2 given by Eqs. (7) and (8), respectively.

6 Next-to-leading nonlinearities.

Now we are in a position to address the next-to-leading nonlinearities to the generalized nonlinear

equation. To this end we have to evaluate the graphs shown in Fig. 3. In their computation we

will keep only the contributions which are bilinear in uab stemming from the gluon propagators in

the external field and omit the color suppressed terms after application of Fiertz identities. Thus

we will not endeavor the calculation of the radiative corrections to the leading results which arise

from the same diagrams but with only one or none internal gluons intersecting the shock-wave.

6.1 Preliminaries.

Beyond leading order all components off the gluon propagator are relevant. Therefore, we find it

instructive to use the Sudakov decomposition for momentum and decompose the density matrix

into the part orthogonal to the vector n? and the rest,

dµν(p) ≡ d⊥µν(p) − 2
p+

[p−]
n?µn

?
ν = g⊥µν −

p⊥µ n
?
ν + p⊥ν n

?
µ

[p−]
− 2

p+

[p−]
n?µn

?
ν . (53)

Obviously, dµν(p, p+ = 0) ≡ d⊥µν(p). Note that the last term is relevant for the free propagator

only since it vanishes in the interacting piece as the d’s are contracted in an index dµρ(p)dρν (p′) =

d⊥µρ(p)d
⊥
ρν (p′).

Similarly to the treatment of ++ component of the gauge propagator in the preceding section,

we find that the most convenient form of the latter is to integrate out the ‘+’-momenta in the
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Figure 3: Samples of diagrams of different topologies inducing the next-to-leading nonlinearity,

cubic in dipole densities, in the generalized nonlinear equation.

d⊥-part. This results into the on-shell condition for the virtuality, p+ = p2/(2p−). In this way, we

have for the free propagator,

G0,µν(x− y) = − i
2

∫
dp−
2π
{θ(x− − y−)θ(p−)− θ(y− − x−)θ(−p−)} e−ip−(x−y)+ (54)

×
∫

d2p

(2π)2
eip·(x−y)−ip2/(2p−)(x−−y−) 1

p−
d⊥µν(p)− 2n?µn

?
ν

∫
d4p

(2π)4
e−ip·(x−y)

1

p2 + i0

p+

[p−]
.

and for the part interacting with the shock-wave background

GI
µν (x, y) = − i

2

∫
dp−
2π

e−ip−(x−y)+

∫
d2z

{
θ(x−)θ(−y−)θ(p−)u(z)− θ(−x−)θ(y−)θ(−p−)u†(z)

}

×
∫

d2p

(2π)2
eip·(x−z)−ip2/(2p−)x−

∫
d2p′

(2π)2
e−ip

′·(y−z)+ip′2/(2p−)y− 1

p−
d⊥µρ(p)d

⊥
ρν(p

′) . (55)

Using these rules together with the conventional expressions for the QCD interaction vertices

we are in a position to compute the graphs displayed in Fig. 3. We divide the diagrams into

graphs of different topologies, which we name self-energy (a-f), vertex (g-i) and box (j-l) types.

Although this division is ambiguous we stick to it for the rest of this section.
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6.2 Self-energy topology.

The calculation of the gluon bubble in the external field leads to the most involved algebra.

Leaving technical details of this exercise to Appendix A, we give here just the final result for the

diagram 3 (a) which reads

N (x,y) = −2
α2
s

Nc

∫ 1

0
du
∫
dp−
p−

∫
d2z d2z′ tr

{(
tau(x)td + tdu(x)ta

)
u†(y)

}
fabcfdef ube(z)ucf (z′)

×
∫
d2p1

(2π)2

d2p′1
(2π)2

d2p2

(2π)2

d2p′2
(2π)2

ei(p1+p2)·x−i(p′1+p′2)·y−i(p1−p′1)·z−i(p2−p′2)·z′

(p1 + p2)
2 (p′1 + p′2)2 (ūp2

1 + up2
2)
(
ūp′1

2 + up′2
2
)

×
{
u(1 + u)

{ (
p2

1 − p2
2

)
p′2 · p′ +

(
p′1

2 − p′22
)
p2 · p+ 2p2 · p′ p′2 · p

}

+ū(1 + ū)
{ (
p2

2 − p2
1

)
p′1 · p′ +

(
p′2

2 − p′1
2
)
p1 · p+ 2p1 · p′ p′1 · p

}

− 2(1 + uū)
{
p2 · p′ p′1 · p+ p1 · p′ p′2 · p

}
− 2(1 − uū) p · p′ (p1 · p′2 + p2 · p′1)

+
2

uū
p · p′

{
u2(1 + u2)p2 · p′2 + ū2(1 + ū2)p1 · p′1

}}
. (56)

Here

p = p1 + p2 , p′ = p′1 + p′2 . (57)

The diagram in Fig. 3 (b) is easily obtained from (a) by keeping only the first term in the color

trace, changing the sign of the whole contribution, and by identifying y → x in the exponential

in the integrand, i.e.,

− ei(p1+p2)·x−i(p′1+p′2)·x−i(p1−p′1)·z−i(p2−p′2)·z′ . (58)

When the gluon self-energy is attached to another Wilson line we keep the second contribution in

the color trace, set x→ y, and multiply the result by the minus sign, i.e.,

− ei(p1+p2)·y−i(p′1+p′2)·y−i(p1−p′1)·z−i(p2−p′2)·z′ . (59)

The two-loop quark self-energy diagrams 3 (c), (d), (e) and (f) are computed along the same

line. The diagram (c) gives

N (x,y) = 16
α2
s

Nc

∫ 1

0
du
∫ dp−

p−

∫
d2z d2z′ tr

{
tatbu(x)tctdu†(y)

}
uad(z)ubc(z′) (60)

×
∫
d2p1

(2π)2

d2p′1
(2π)2

d2p2

(2π)2

d2p′2
(2π)2

p1 · p′1 p2 · p′2
(ūp2

1 + up2
2)
(
ūp′1

2 + up′2
2
)

×
{

ei(p1−p′1)·(x−z)+i(p2−p′2)·(x−z′)u

ū

1

p2
1 p
′
1
2 + ei(p1−p′1)·(y−z)+i(p2−p′2)·(y−z′) ū

u

1

p2
2 p
′
2
2

}
.

The diagram (d) can be deduced from (g), to be computed below, and reads

N (x,y) = 8
α2
s

Nc

∫ 1

0
du
∫
dp−
p−

∫
d2z d2z′ uad(z)ube(z′) (61)
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×
∫

d2p1

(2π)2

d2p′1
(2π)2

d2p2

(2π)2

d2p′2
(2π)2

e−i(p1−p′1)·z−i(p2−p′2)·z′

(p′1 + p′2)
2 (ūp2

1 + up2
2)
(
ūp′1

2 + up′2
2
)

×
{
uūp1 · p2

(
p′1

2 − p′2
2
)
− 2ūp1 · p′1 p2 · (p′1 + p′2) + 2up2 · p′2 p1 · (p′1 + p′2)

}

×
{
if cde tr

{
tatbu(x)tcu†(y)

}( 1

ūp2
1

ei(p1+p2−p′1−p′2)·x − 1

up2
2

ei(p1+p2−p′1−p′2)·y
)

+ if cab tr
{
tcu(x)tdteu†(y)

}( 1

ūp2
1

ei(p1+p2−p′1−p′2)·y − 1

up2
2

ei(p1+p2−p′1−p′2)·x
)}

.

Finally, the diagrams 3 (e) result into

N (x,y) = 16
α2
s

Nc

∫ 1

0
du
∫
dp−
p−

∫
d2z d2z′ tr

{
tatbu(x)tctdu†(y)

}
uac(z)ubd(z′) (62)

×
∫
d2p1

(2π)2

d2p′1
(2π)2

d2p2

(2π)2

d2p′2
(2π)2

p1 · p′1 p2 · p′2
(ūp2

1 + up2
2)
(
ūp′1

2 + up′2
2
)

×
{

ei(p1−p′1)·(x−z)+i(p2−p′2)·(x−z′) 1

p2
1 p
′
2
2 + ei(p1−p′1)·(y−z)+i(p2−p′2)·(y−z′) 1

p2
2 p
′
1
2

}
,

and 3 (f) is

N (x,y) = 16
α2
s

Nc

∫ 1

0
du
∫
dp−
p−

∫
d2z d2z′ tr

{
tau(x)tbtcu†(y)td

}
uab(z)udc(z′) (63)

×
∫

d2p1

(2π)2

d2p′1
(2π)2

d2p2

(2π)2

d2p′2
(2π)2

ei(p1−p′1)·(x−z)+i(p2−p′2)·(y−z′) 1

uū

p1 · p′1 p2 · p′2
p2

1 p
2
2 p
′
1

2 p′2
2 .

The color algebra will be done in section 6.5.

6.3 Vertex topology.

The diagrams having vertex topology are dealt with the same technique. We refer the reader the

Appendix A for the computation of the diagrams 3 (g) and present only the final result here.

Namely, we have

N (x,y) = −8
α2
s

Nc

∫ 1

0
du
∫
dp−
p−

∫
d2z d2z′ uad(z)ube(z′) (64)

×
∫
d2p1

(2π)2

d2p′1
(2π)2

d2p2

(2π)2

d2p′2
(2π)2

e−i(p1−p′1)·z−i(p2−p′2)·z′

(p′1 + p′2)2 (ūp2
1 + up2

2)
(
ūp′1

2 + up′2
2
)

×
{
uūp1 · p2

(
p′1

2 − p′22
)
− 2ūp1 · p′1 p2 · (p′1 + p′2) + 2up2 · p′2 p1 · (p′1 + p′2)

}

×
{
if cde tr

{
tatbu(x)tcu†(y)

}( 1

ūp2
1

ei(p1+p2)·x−i(p′1+p′2)·y − 1

up2
2

ei(p1+p2)·y−i(p′1+p′2)·x
)

+ if cab tr
{
tcu(x)tdteu†(y)

}( 1

ūp2
1

ei(p1+p2)·y−i(p′1+p′2)·x − 1

up2
2

ei(p1+p2)·x−i(p′1+p′2)·y
)}

,
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for 3 (g),

N (x,y) = 8
α2
s

Nc

∫ 1

0
du
∫
dp−
p−

∫
d2z d2z′ uad(z)ube(z′) (65)

×
{
if bcatr

{
u(x)tdteu†(y)tc

}
+ ifdcetr

{
u(x)tcu†(y)tbta

}}

×
∫ d2p1

(2π)2

d2p′1
(2π)2

d2p2

(2π)2

d2p′2
(2π)2

e−i(p1−p′1)·z−i(p2−p′2)·z′

p2
1p

2
2 (p′1 + p′2)

2
(
ūp′1

2 + up′2
2
)

×
(
ei(p1−p′1−p′2)·x+ip2y − ei(p2−p′1−p′2)·y+ip1x

)

× 1

uū

{
uūp1 · p2

(
p′1

2 − p′22
)
− 2ūp1 · p′1 p2 · (p′1 + p′2) + 2up2 · p′2 p1 · (p′1 + p′2)

}
,

for 3 (h), and

N (x,y) = −16
α2
s

Nc

∫ 1

0
du
∫
dp−
p−

∫
d2z d2z′ tr

{
tatbu(x)tctdu†(y)

}
ubd(z)uac(z′) (66)

×
∫
d2p1

(2π)2

d2p′1
(2π)2

d2p2

(2π)2

d2p′2
(2π)2

e−i(p1−p′1)·z−i(p2−p′2)·z′

×
{

ei(p1+p2−p′2)·x−ip′1 ·y 1

u

p1 · p′1 p2 · p′2
p2

2 p
′
1

2 p′2
2 (ūp2

1 + up2
2)

+ ei(p1−p′1−p′2)·x+ip2·y 1

ū

p1 · p′1 p2 · p′2
p2

1 p
2
2 p
′
1

2
(
ūp′1

2 + up′2
2
)

+ eip1 ·x+i(p2−p′1−p′2)·y 1

u

p1 · p′1 p2 · p′2
p2

1 p
2
2 p
′
2

2
(
ūp′1

2 + up′2
2
)

+ e−ip
′
2·x+i(p1+p2−p′1)·y 1

ū

p1 · p′1 p2 · p′2
p2

1 p
′
1
2 p′2

2 (ūp2
1 + up2

2)

}
,

for 3 (i), respectively. Note that the last contribution is nonleading in multicolor limit according

to Eq. (72).

6.4 Box topology.

Finally, the calculation of diagrams having the box topology is straightforward and we get the

result for 3 (j)

N (x,y) = 16
α2
s

Nc

∫ 1

0
du
∫
dp−
p−

∫
d2z d2z′ tr

{
tau(x)tbtcu†(y)td

}
uac(z)udb(z′) (67)

×
∫

d2p1

(2π)2

d2p′1
(2π)2

d2p2

(2π)2

d2p′2
(2π)2

ei(p1+p2)·x−i(p′1+p′2)·y−i(p1−p′1)·z−i(p2−p′2)·z′ 1

uū

p1 · p′1 p2 · p′2
p2

1 p
2
2 p
′
1

2 p′2
2 .

Here we have used the property (32). As seen from the topology of the graph, this diagram is

non-planar as a result it is supressed in Nc as compared to leading ones, see Eq. (72). For the
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diagrams of the type in Fig. 3 (k) we have

N (x,y) = 16
α2
s

Nc

∫ 1

0
du
∫
dp−
p−

∫
d2z d2z′ tr

{
tatbu(x)tctdu†(y)

}

×
∫
d2p1

(2π)2

d2p′1
(2π)2

d2p2

(2π)2

d2p′2
(2π)2

ei(p1+p2)·x−i(p′1+p′2)·y−i(p1−p′1)·z−i(p2−p′2)·z′

(ūp2
1 + up2

2)
(
ūp′1

2 + up′2
2
)

× p1 · p′1 p2 · p′2
{
uac(z)ubd(z′)

(
u

ū

1

p2
1 p
′
1
2 +

ū

u

1

p2
2 p
′
2
2

)
+ uad(z)ubc(z′)

2

p2
1 p
′
2

2

}
. (68)

The color algebra of the first term in the curly brackets is handled according to the Eq. (72) and

is suppressed, while the second one is reduced via Eq. (73). Last but not least, the diagrams 3 (l)

lead to

N (x,y) = −32
α2
s

Nc

∫ 1

0
du
∫
dp−
p−

∫
d2z d2z′ tr

{
tatbu(x)tctdu†(y)

}
uad(z)ubc(z′) (69)

×
∫
d2p1

(2π)2

d2p′1
(2π)2

d2p2

(2π)2

d2p′2
(2π)2

e−i(p1−p′1)·z−i(p2−p′2)·z′

×
{

ei(p1+p2−p′2)·x−ip′1 ·y 1

ū

p1 · p′1 p2 · p′2
p2

1 p
′
1

2 p′2
2 (ūp2

1 + up2
2)

+ ei(p1−p′1−p′2)·y+ip2·x 1

u

p1 · p′1 p2 · p′2
p2

1 p
2
2 p
′
2

2
(
ūp′1

2 + up′2
2
)
}
.

Having computed all contributions we are ready to discuss their color properties.

6.5 Color algebra.

To figure out which contributions are actually suppressed in the large Nc limit we simply use an

obvious equation ta = −i 2
Nc
fabctbtc and the color Fiertz identity (ta) ij (ta) kl = 1

2
δilδ

k
j − 1

2Nc
δijδ

k
l

a number of times until we get rid of all Gell-Mann matrices in between the u-matrices. This

procedure leads to the following reduction formula for the structure of diagrams (a) and (b)

4 tr
{
tau(x)tdu†(y)

}
fabcfdef ube(z)ucf (z′) = tr

{
u(x)u†(z)

}
tr
{
u(z)u†(z′)

}
tr
{
u(z′)u†(y)

}

+ tr
{
u(x)u†(z′)

}
tr
{
u(z′)u†(z)

}
tr
{
u(z)u†(y)

}

−tr
{
u(x)u†(z)u(z′)u†(y)u(z)u†(z′)

}
− tr

{
u(x)u†(z′)u(z)u†(y)u(z′)u†(z)

}
. (70)

Obviously, the last two terms in this equality are 1/N 2
c power suppressed as compared to the first

two.

The reduction of other diagrams is accomplished by means of the results,

4 if cab tr
{
tcu(x)tdteu†(y)

}
uad(z)ube(z′) = tr

{
u(x)u†(z)u(z′)u†(y)u(z)u†(z′)

}
(71)

− tr
{
u(x)u†(z)

}
tr
{
u(z)u†(z′)

}
tr
{
u(z′)u†(y)

}
,
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for diagrams (d), (g) and (h),

4 tr
{
tau(x)tbtcu†(y)td

}
uac(z)udb(z′) = tr

{
u(x)u†(z′)u(z)u†(y)u(z′)u†(z)

}
(72)

− 1

Nc
tr
{
u(x)u†(z)

}
tr
{
u(z)u†(y)

}
− 1

Nc
tr
{
u(x)u†(z′)

}
tr
{
u(z′)u†(y)

}
+

1

N2
c

tr
{
u(x)u†(y)

}
,

for (e), (i), (j) and (k), and finally

4 tr
{
tatbu(x)tctdu†(y)

}
uad(z)ubc(z′) = tr

{
u(x)u†(z′)

}
tr
{
u(z′)u†(z)

}
tr
{
u(z)u†(y)

}
(73)

− 1

Nc
tr
{
u(x)u†(z)

}
tr
{
u(z)u†(y)

}
− 1

Nc
tr
{
u(x)u†(z′)

}
tr
{
u(z′)u†(y)

}
+

1

N2
c

tr
{
u(x)u†(y)

}
,

for (c), (f), (k) and (l).

In our consequent discussion we limit ourselves to the consideration of the multicolor limit.

Therefore, we suppress all 1/Nc effects in the above equations, i.e., we keep the first two terms in

Eq. (70), the second one in Eq. (71), and the first in (73).

6.6 Subtraction of multi-Regge kinematics.

An immediate feature which is transparent in the expressions we have derived for contributions

of particular graphs is the presence of the double-logarithmic situation, (
∫
dp−/p−) (

∫
du/u). Ob-

viously, this is an expected result and it corresponds to the iteration of the non-linear term of the

leading order equation K2N ⊗K2N 2 +K2N 2 ⊗K2N :

N (x,y) = 2
(
αs
2π2

Nc ln
1

xB

)2 ∫
d2z d2z′

(x− y)2

(x− z)2(z − z′)2(z′ − y)2
N (x,z)N (z,z′)N (z′,y) .

(74)

It has to be subtracted. The present case is similar to the one encountered in the computation of

next-to-leading logarithmic corrections to the BFKL kernel [47] and was handled by cutting off

the u-integral ∫
du→

∫ 1−δ

δ
du , (75)

which corresponds to a cutoff in the invariant mass of the produced parton system, and omitting

the term coeff. · ln 1/δ.

The double logarithmic part of the diagrams we have just computed is

N (x,y) = −2
(
αs
2π2

Nc

)2

ln
1

xB

ln
1

δ

∫
d2z d2z′

(∑

α

J(α)

)
N (x,z)N (z,z′)N (z′,y) , (76)

with J(α) given by the expressions on the diagram-by-diagram basis

J(a) =
1

(z − z′)2

{
(x− z′) · (y − z′)
(x− z′)2(y − z′)2

+
(x− z) · (y − z)

(x− z)2(y − z)2

}
, (77)
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J(b) = −1

2

1

(z′ − z)2

{
1

(x− z)2
+

1

(x− z′)2
+

1

(y − z)2
+

1

(y − z′)2

}
,

J(c) = −1

2

1

(x− z)2(x− z′)2
− 1

2

1

(y − z)2(y − z′)2
,

J(d) =
1

(y − z)2

(z′ − y) · (z′ − z)

(z′ − y)2(z′ − z)2
+

1

(z′ − x)2

(z − x) · (z − z′)
(z − x)2(z − z′)2

,

J(f) = − 1

(x− z)2(y − z′)2
,

J(g) = − (x− z) · (z′ − z)

(x− z)2(z′ − z)2

(x− z′) · (y − z′)
(x− z′)2(y − z′)2

− (x− z) · (y − z)

(x− z)2(y − z)2

(z − z′) · (y − z′)
(z − z′)2(y − z′)2

,

J(h) = J(g) +
1

(x− z)2

(z′ − y) · (z′ − z)

(z′ − y)2(z′ − z)2
+

1

(z′ − y)2

(z − x) · (z − z′)
(z − x)2(z − z′)2

,

J(l) =
1

(x− z)2

(z′ − x) · (z′ − y)

(z′ − x)2(z′ − y)2
+

1

(z′ − y)2

(z − x) · (z − y)

(z − x)2(z − y)2
.

In order to compute these Fourier transforms it was enough to use Eq. (47). Summing up these

contributions we obtain the required result

∑

α

J(α) = − (x− y)2

(x− z)2(z − z′)2(z′ − y)2
. (78)

6.7 Evolution kernel K3.

After the multi-Regge kinematics being subtracted, the remainder defines the evolution kernel in

the generalized nonlinear equation of the term trilinear in dipole densities, i.e. K3.

The afore mentioned subtraction of multi-Regge kinematics corresponds to the regularization

of the singularities in u à la +-prescription. Therefore, in order to extract the quasi-multi-Regge

region one has to make the substitution

1

u
→
[

1

u

]

+
≡ 1

u
− δ(u)

∫ 1

0

dv

v
,

1

ū
→
[

1

ū

]

+
≡ 1

ū
− δ(ū)

∫ 1

0

dv

v̄
, (79)

in Eqs. (56-69).

We transform the results into the coordinate representation, see Appendix B for details. Ex-

tracting the factor of coupling constant from the kernel

K3(x,z,z
′,y) =

(
αs
2π2

Nc

)2

{K3(x,z,z′,y) +K3(y,z′,z,x)} , (80)

with

K3 =
∑

α

K3(α) ,
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and where we have on the diagram-by-diagram basis for large-Nc part,

K3(a) =
1

2(z − z′)4

+

{
2(x− z) · (y − z)

(x− z′)2(z − z′)2

(x− z)2
+ 2(x − z′) · (y − z′)(x− z)2(z − z′)2

(x− z′)2

+
(
(x− z) · (x− z′)

(
(x− z)2 + (x− z′)2

)
− (x− z)2(x− z′)2

) (y − z)2 − (y − z′)2

(x− z)2 − (x− z′)2

− (x− z′)2(y − z) · (z′ − z)− (x− z)2(y − z′) · (z − z′) + 2(z − z′)4

− 4(x− z′) · (y − z) (x− z) · (y − z′) + 4(x− z′) · (y − z′) (x− z) · (y − z)

− 2(z − z′)2 ((x− z) · (y − z) + (x− z′) · (y − z′))
}

× `(x)

(z − z′)4((x− z)2(y − z′)2 − (x− z′)2(y − z)2)
,

K3(b) = − 1

(x− z)2(z − z′)4(z′ − x)2

{
(z − x)2(z′ − x)2 + 2 ((z − x) · (z′ − x))

2

+
(
(z − x)2 + (z′ − x)2

) (
(z − z′)2 − (z − x) · (z′ − x)

) }

+

{
3

2
(z − z′)2 + (z − x) · (z′ − x)− (z − z′)2

(z − x)2(z′ − x)2

(
(z − x)4 + (z′ − x)4

)}

× `(x)

(z − z′)4 ((z − x)2 − (z′ − x)2)
,

K3(c) = − 1 + `(x)

(z − x)2(z′ − x)2
,

K3(d) =
(x− z) · (x− z′) + 2 (z − z′)2

(x− z)2(z − z′)2(x− z′)2

+

{
2

(x− z) · (z′ − z)

(x− z′)2
− (x− z) · (x− z′)

(x− z)2 − (x− z′)2

}
`(x)

(x− z)2(z − z′)2
,

K3(g) = −
{

(y − z) · (y − z′)(x− z′)2

(y − z′)2
+ (x− z) · (x− z′) (y − z)2 − (y − z′)2

(x− z)2 − (x− z′)2

+ 2
(x− z) · (y − z)

(x− z)2(y − z′)2

(
(y − z′)2(z − z′) · (x− z′) + (x− z′)2(z − z′) · (y − z′)

)

+ 2
(x− z′) · (y − z′)
(x− z′)2(y − z′)2

(
(y − z′)2(z′ − z) · (x− z) + (x− z′)2(z′ − z) · (y − z)

)}

× `(x)

(z − z′)2((x− z)2(y − z′)2 − (x− z′)2(y − z)2)
,

K3(h) = −
{

(x− z′) · (y − z′) + (z − z′) · (y − z′) + 2
(x− z′) · (y − z′)(x− z) · (z′ − z)

(x− z′)2

}

× `(x)

(z − z′)2(x− z)2(y − z′)2
,
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K3(k) =
2

(z − x)2(z′ − y)2

(z′ − x) · (z′ − y) (z − x) · (z − y)

(x− z)2(y − z′)2 − (x− z′)2(y − z)2
`(x) ,

K3(l) =
2

(x− z)2

(z′ − x) · (z′ − y)

(z′ − x)2(z′ − y)2
`(x) ,

with

`(x) ≡ ln
(z − x)2

(z′ − x)2
. (81)

The sum of these contributions results into the total kernel K3. The log-free piece of which

simplifies considerably and reads − 1
2

(
αs
2π2Nc

)2
(z − z′)−4. On the other we did not observe an

essential simplification for the logarithmic part. At this point it is timely to say that the total

kernel satisfies an important property. It vanishes in the limit y → x,

K3(x,z,z
′,x) = 0 ,

reflecting the unitarity property of the Wilson lines (39). Namely, as y → x: the diagrams (a)

cancels with (b), and (d) with (g), respectively. Next, the log-free term of (c) sums to zero with

(k). Finally, the remaining contributions vanish independently.

7 Conclusions.

In the present paper we have developed a formalism which allows to evaluate successively the

nonlinearities in the generalized evolution equation for the dipole densities. As a demonstration

of our machinery we have calculated the kernel K3 which enters with the cubic nonlinearity in the

above equation. Presently, we have not discussed the question of inclusion of the running of the

coupling constant into our formalism since it runs beyond the scope of this paper and requires a

computation of radiative corrections. This will be done elsewhere.

An obvious continuation of our analysis is to perform a (numerical) study of the evolution

equation keeping the K3 contribution and observe how this affects saturation phenomena.

Other major problems for further research include: (i) A derivation of the above equation from

the Mueller’s dipole model by computing the radiative corrections to the dipole decay kernel. (ii)

A computation of 1/Nc corrections to our result. (iii) A study of the effects due to delocalization

of the color source from the light cone. Recall that the latter has the shock-wave form (14) only

in the asymptotic limit xB → 0.
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A Calculation of diagrams with nonabelian vertices.

Let us note first that the three-gluon vertices will not contain the ‘+’-components of momenta

after contraction with gluon propagators since the latter are orthogonal to n?µ, i.e.,

∂

∂pi+
Γµνρ = 0 .

Since the three-gluon vertices lie on different sides with respect to the shock wave, we have z− > 0,

z′− < 0, for x− > 0 and y− < 0. Then, as can be seen from the explicit form of Eq. (55) the ‘−’-

component of the shock-wave propagators traveling through the external field is positive pi− > 0,

i = 1, 2. As a result of momentum conservation for the ‘−’-components in the vertices, the

momentum of the free external propagator p3− = p1− + p2− > 0. Therefore, one finds that the

n?µn
?
ν -part of the free propagator, see Eq. (54), does not contribute since the poles in p3+ lie on

the same side of the imaginary axis. Namely,
∫ ∞

0
dx−

∫ ∞

0
dz−

∫ ∞

−∞
dp3+

p3+

p2
3 + i0

e−ip3+x−+i(p3+−p2
1/(2p1−)−p2

2/(2p2−))z− (A.1)

=
1

2p3−

∫ ∞

−∞
dp3+

1

(p3+ − p2
1/(2p1−)− p2

2/(2p2−) + i0) (p3+ − p2
3/(2p3−) + i0)

= 0 .

Same result holds for another free propagator connnecting the loop to the Wilson line.

Thus, the only nonvanishing contribution is generated by the d⊥ part of the free propagators

and we have finally

N (x,y) = −2
α2
s

Nc

∫ 1

0
duuū

∫
dp− p−

∫
d2z d2z′ tr

{
tau(x)tdu†(y)

}
fabcfdef ube(z)ucf (z′)

×
∫
d2p1

(2π)2

d2p′1
(2π)2

d2p2

(2π)2

d2p′2
(2π)2

ei(p1+p2)·x−i(p′1+p′2)·y−i(p1−p′1)·z−i(p2−p′2)·z′

× D1(p1, p2, p
′
1, p
′
2)

(p1 + p2)
2 (p′1 + p′2)2 (ūp2

1 + up2
2)
(
ūp′1

2 + up′2
2
) , (A.2)

where we have used the substitution p1− = up− and p2− = (1 − u)p− in order to reduce two

integrals w.r.t. pi− by ∫ ∞

0
dp1−

∫ ∞

0
dp1− =

∫ ∞

0
dp−p−

∫ 1

0
du . (A.3)

Here

D1(p1, p2, p
′
1, p
′
2) = Γµφν(p1,−p1 − p2, p2)Γρχσ(p′1,−p′1 − p′2, p′2)

× d⊥+φ (p1 + p2) d⊥µλ (p1) d⊥λρ (p′1) d⊥νθ (p2) d⊥θσ (p′2) d⊥χ+ (p′1 + p′2) , (A.4)
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where we have introduced the notation for the three-gluon vertex

Γµνρ(p1, p2, p3) ≡ (p1 − p2)ρgµν + (p2 − p3)µgνρ + (p3 − p1)νgρµ . (A.5)

A simple computation leads to the result

p2
− (uū)D1 = u(1 + u)

{ (
p2

1 − p2
2

)
p′2 · p′ +

(
p′1

2 − p′22
)
p2 · p+ 2p2 · p′ p′2 · p

}

+ ū(1 + ū)
{ (
p2

2 − p2
1

)
p′1 · p′ +

(
p′2

2 − p′1
2
)
p1 · p+ 2p1 · p′ p′1 · p

}

− 2(1 + uū)
{
p2 · p′ p′1 · p+ p1 · p′ p′2 · p

}
− 2(1− uū) p · p′ (p1 · p′2 + p2 · p′1)

+
2

uū
p · p′

{
u2(1 + u2)p2 · p′2 + ū2(1 + ū2)p1 · p′1

}
. (A.6)

Here and everywhere ū ≡ 1 − u and

p = p1 + p2 , p′ = p′1 + p′2 . (A.7)

The computation of the diagrams with one nonabelian vertex runs along the same line. E.g.,

for Fig. 3 (g) we have

N (x,y) = −8
α2
s

Nc

∫ 1

0
duu2ū

∫
dp− p

2
−

∫
d2z d2z′ tr

{
tatbu(x)tcu†(y)

}
if cde uad(z)ube(z′)

×
∫

d2p1

(2π)2

d2p′1
(2π)2

d2p2

(2π)2

d2p′2
(2π)2

ei(p1+p2)·x−i(p′1+p′2)·y−i(p1−p′1)·z−i(p2−p′2)·z′

× D2(p1, p2, p
′
1, p
′
2)

p2
1 (p′1 + p′2)2 (ūp2

1 + up2
2)
(
ūp′1

2 + up′2
2
) , (A.8)

with

D2(p1, p2, p
′
1, p
′
2) = Γµνρ(p

′
1,−p′1 − p′2, p′2)d⊥+ν (p′1 + p′2) d⊥+λ (p1) d⊥λµ (p′1) d⊥+θ (p2) d⊥θρ (p′2) . (A.9)

It results into

p3
− (uū)2D2 = uūp1 ·p2

(
p′1

2 − p′22
)
− 2ū p1 ·p′1 p2 · (p′1 + p′2) + 2up2 ·p′2 p1 · (p′1 + p′2) . (A.10)

Other three diagrams of the same topology can be easily obtained by means of symmetry argu-

ments. The final result is given in Eq. (64).

B Fourier transformation.

In this appendix we give technical details on the Fourier transformation. To this end we use two

simple formulae, the Chisholm representation of the propagator and the d-dimensional Euclidean
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momentum integral, respectively,

1

p2m
=

1

Γ (m)

∫ ∞

0
dα αm−1e−αp

2

, (B.1)

∫
ddp

(2π)d
eip·z−Ap

2

=
1

(4π)d/2
1

Ad/2
e−
z2

4A , (B.2)

and the formula (47) as well.

For the sake of definiteness, consider the diagram 3 (g) which exhibits all features.

N (x,y) = −4 (αsNc)
2

ln
1

xB

∫ 1

0
du
∫
d2z d2z′N (x,z)N (z,z′)N (z′,y) (B.3)

×
∫

d2p1

(2π)2

d2p′1
(2π)2

d2p2

(2π)2

d2p′2
(2π)2

p1αp2βfαβ(p′1,p
′
2)

(p′1 + p′2)
2 (ūp2

1 + up2
2)
(
ūp′1

2 + up′2
2
)

×e−i(p1−p′1)·z−i(p2−p′2)·z′
{

1

up2
2

ei(p1+p2)·x−i(p′1+p′2)·y − 1

ūp2
1

ei(p1+p2)·y−i(p′1+p′2)·x
}
.

with

fαβ(p′1,p
′
2) = uū δαβ

(
p′1

2 − p′22
)
− 2ūp′1α (p′1 + p′2)β + 2up′2β (p′1 + p′2)α . (B.4)

The first letters of the Greek alphabet stand for 2D transverse space with metric δαβ = −g⊥αβ =

diag(1, 1), α, β, γ, ... = 1, 2. The tensor structure factorizes and can be evaluated separately.

Consider the first term in curly brackets. The integral over unprimed momenta gives, using Eqs.

(B.1,B.2)

∫
d2p1

(2π)2

d2p2

(2π)2
eip1·(x−z)+ip2 ·(x−z′) p1αp2β

p2
2 (ūp2

1 + up2
2)

(B.5)

=
(
i

2π

)2 (x− z)α(x− z′)β
(x− z)2 (ū(x− z′)2 + u(x− z)2)

.

Note that this formulae is correct only for u < 1. However, this should not bother us since the

boundary is not reached due to limits on the final state mass resulting into the cutoff (75).

The primed momenta are integrated out with the formula

∫
d2p′1
(2π)2

d2p′2
(2π)2

e−ip
′
1·(y−z)−ip′2·(y−z′) fαβ(p′1,p

′
2)

(p′1 + p′2)2
(
ūp′1

2 + up′2
2
) (B.6)

=
1

(4π)2
fαβ

(
−i ∂
∂z
,−i ∂

∂z′

)∫ ∞

0

dρ

ρ

∫ 1

0

dv

v
exp

{
−ρ
v

(
uū(z − z′)2 + vV 2(y)

)}
,

where

V (y) = u(z − y) + ū(z′ − y) . (B.7)

The action of differential operators in fαβ reduces to substitutions

∂2

∂z2
− ∂2

∂z′2
= −4ρ

{
2u− 1 − ρ

v

(
v (2u − 1)V (y) + 2uū (z − z′)

)
· V (y)

}
,

27



∂

∂zα

(
∂

∂zβ
− ∂

∂z′β

)
= −2uρ

{
δαβ − 2

ρ

v

(
vVα(y) + ū (z − z′)α

)
Vβ(y)

}
,

∂

∂z′β

(
∂

∂zα
− ∂

∂z′α

)
= −2ūρ

{
δαβ − 2

ρ

v

(
vVβ(y)− u (z − z′)β

)
Vα(y)

}
. (B.8)

Finally, we get

∫
d2p′1
(2π)2

d2p′2
(2π)2

e−ip
′
1·(y−z)−ip′2·(y−z′) fαβ(p′1,p

′
2)

(p′1 + p′2)
2
(
ūp′1

2 + up′2
2
) (B.9)

=
(
− i

2π

)2 1

(z − z′)2
(u(z − y)2 + ū(z′ − y)2)

×
{
uū(z − z′) ·

(
2V (y) + (1− 2u)(z − z′)

)
δαβ − 2ūVβ(y) (z − z′)α − 2uVα(y) (z − z′)β

}
.

Note that 2V (y) + (1 − 2u)(z − z′) = (z′ − y) + (z − y) is u-independent. The second term in

the curly brackets in (B.3) is analyzed along the same line.

Let us note that the calculation of the diagram 3 (a) does not present a difficulty either since

D1 from Eq. (A.6) is a ‘square’ of the Lorentz structures fαβ (B.4). Namely,

p2
− (uū)D1 =

1

uū
fαβ(p1,p2)fαβ(p′1,p

′
2) . (B.10)

Thus, all the Fourier transforms factorize and are given by Eq. (B.9). In the computation of the

diagram 3 (a) it is instructive to use the identity

V (x) · V (y) =
1

2

{
V 2(x) + V 2(y)− (x− y)2

}
, (B.11)

in order to simplify the algebra.
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