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Abstract. Recent measurements of the deuteron electromagnetic structure functions
A, B, and Ty extracted from high energy elastic ed scattering, and the cross sections
and asymmetries extracted from high energy photodisintegration v +d — n + p,
are reviewed and compared to theory. The theoretical calculations range from
nonrelativistic and relativistic models using the traditional meson and baryon degrees
of freedom, to effective field theories, to models based on the underlying quark and
gluon degrees of freedom of QCD, including nonperturbative quark cluster models
and perturbative QCD. We review what has been learned from these experiments, and
discuss why elastic ed scattering and photodisintegration seem to require very different
theoretical approaches, even though they are closely related experimentally.
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1. Introduction

The deuteron, the only A = 2 nucleus, provides the simplist microscopic test of the
conventional nuclear model, a framework in which nuclei and nuclear interactions are
explained as baryons interacting through the exchange of mesons. With improved
nucleon-nucleon force models from the 1990s [[], and advances in our understanding
of relativistic bound state techniques, more accurate calculations of deuteron structure
are possible.

During the 1990s there have also been revolutionary improvements in our
experimental knowledge of deuteron electromagnetic structure. The start of experiments
at the Thomas Jefferson National Accelerator Facility (JLab) has now made available
continuous high energy beams, with high currents and large polarization, along with new
detector systems. Several experiments have now significantly extended the energy and
momentum transfer range of deuteron electromagnetic studies, including A and t9g for
elastic ed scattering, and photodisintegration cross sections and polarizations. Existing
experimental proposals promise to continue this trend. Other laboratories have also
made several important measurements, generally at lower momentum transfer.

In this context, a review of the deuteron electromagnetic studies, examining the
current status of the agreement between experiments and theory, is appropriate. We
attempt to cover our current knowledge of the deuteron electromagnetic structure,
focussing on the recent JLab results, and prospects for the future. We do not
consider experiments that use the deuteron as a neutron target, for example, or for
studies of the (extended) Gerasimov-Drell-Hearn sum rule, deep inelastic scattering, or
baryon resonance production in nuclei. Our interest is on experiments that probe the
conventional picture of a nucleus as composed of baryons and mesons, and that probe
how far models with these effective degrees of freedom can be extended. Table [[ is
a summary of some of the JLab exeriments that fit this description, and that we will
review in the sections below.

The high precision, large momentum transfer measurements may be sensivitive to
effects not incorporated in the conventional nuclear model. It seems self-evident that
probes of short distances, well below the size of the nucleon, should require explicit
consideration of the quark substructure of the nucleons. Our review suggests that
evidence for the appearance of these effects seems to depend on the nature of the
reaction. In elastic scattering, where only the NN chanel is expicitly excited, a successful
description is obtained using a relativistic description of the NN channel together with
a minor modification of the short-range structure of the nucleon current (see Sec. fj). In
photodisintegration by 4 GeV photons, where hundreds of N*N* channels are explicitly
excited, an efficient explanation seems to require the explicit use of quark degrees of
freedom (see Sec. ).

This review begins with a survey of deuteron wave functions, and then discusses
the deuteron form factors, threshold electrodisintegration, and high energy deuteron
photodisintegration. We also call attention to recent reviews by Gargon and Van Orden
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Table 1. Some JLab deuterium experiments.
Experiment Reaction / Observables Status
elastic scattering
91-026 A paper published [g]
B analysis in progress
94-018 A paper published [f]
t20 paper published [E}
electrodisintegration
89-028 recoil proton polarization analysis in progress
94-004 in-plane response functions analysis in progress
94-102 high momentum structure  awaiting beam time
00-103 threshold d(e, ¢')pn proposal
photodisintegration
89-012 cross sections paper published [f]
89-019 Dy, Car, Cur paper published E}
96-003 cross sections paper published [ﬂ]
93-017 cross sections analysis in progress
99-008 cross sections analysis in progress
00-007 Dy, Cpr, Cy awaiting beam time
00-107 Dy, Cpr, Cy awaiting beam time

B, and by Sick [f]. These reviews contain a discussion of the static properties of the
deuteron and a survey of recent models of the nucleon form factors, two topics we have
decided to omit from this work. Both also have an extensive discussion of the deuteron

form factors.

2. Deuteron Wave Functions

Calculations of deuteron form factors and photo and electrodisintegration to the NN
final state require a deuteron wave function, the final state NNV scattering amplitude (if
the transition is inelastic), and the current operator, all of which should be consistently
determined from the underlying dynamics. Deuteron wave functions used in the

conventional nuclear model will be reviewed in this section.

2.1. Nonrelativistic wave functions

The nonrelativistic NN wave function of the deuteron can be written in terms of two
scalar wave functions. In coordinate space the full wave function is

Uin(r) = 5 20y ) 0 (01 — g my|1m)

{ ms r

u(r N 1m r N 1m
=y e+ M Sy ) i @2 L — mmy[Lm)

w

(1)

T T
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where Yy,,,, are the spherical harmonics normalized to unity on the unit sphere, zp = u
and zo = w are the reduced S and D-state wave functions, and the + distinguishes this
from other (relativistic) components of the wave function to be described below. The
spin part of the wave function is

|+>a|+>b ms:_l_

Ims _ L o o m. =

e — ﬂ{|+>a| )+ | >a|+>b} =0 @)
|_>a|_>b ms = —

Introducing the familar compact notation for matrix operations on each of the two
nucleon subspaces 1 and 2

Aaa’ |+>a’ = Al |+>1 ) (3)
where A is any 2 X 2 operator, we can show that
1 1
Y, 1m — o1 -0 Im __ — 1ms
00 Xab \/ZE 1702 Xy, \/4_ X1

1
Zyzm ma (B) X272 (21m — mymy|1m) =

V32w
These identities permit us to write the wave function ([) in a convenient operator form

0K

(301-1202-%—01-02))(1;”. (4)

1 ’LU(T) 1m

Ut (r) = m [u(r) o109+ W (301 -Tog-F — o0y - 02)] X (5)

In momentum space the deuteron wave function becomes

am - d37’6 Zpl‘ am(r)
b /—27'{‘ / b

_M[U(P)CH 02—%(301?02'13—01'02)] X' (6)

We use the same notation for both coordinate and momentum space wave functions. If
u(p) = zo(p) and w(p) = z2(p), then

\/7/ rdr ze(r) jo(pr)
:\/;/o p*dp z(p) je(pr) - (7)

Note the appearance of the factors 1/2/7, a feature of the symmetric definition ().
The normalization condition

/d3,r, \I]:bTm abm(r) = 6m/m (8)

implies

L= [T ar [0+ 0] = [T dp [u2() + ) (9)
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Figure 1. Reduced coordinate space wave functions for five models discussed in the
text: AV18 (solid), Paris (long dashed), CD Bonn (short dashed), IIB (short dot-
dashed), and W16 (long dot-dashed).

The D-state probability,
Pp :/ dr w?(r) (10)
0

is an interesting measure of the strength of the tensor component of the NN force, even
though it is a model dependent quantity with no unique measurable value [[LT].

The best nonrelativistic wave functions are calculated from the Schrédinger
equation using a potential adjusted to fit the NN scattering data for lab energies from
0 to 350 MeV. The quality of realistic potentials have improved steadily, and now the
best potentials give fits to the NN data with a x?/d.o.f ~ 1. The Paris potential [[J]
was among the first potentials to be determined from such realistic fits, and it has since
been replaced by the Argonne V18 potential (denoted by AV18) [[3], the Nijmegen
potentials [[4], and most recently by the CD Bonn potentials [[F, []. The S and D-
state wave functions determined from three of these models are shown in Figs. [l and
B These figures also show S and D wave functions from two relativistic models to be
discussed shortly. In the right panel of the second figure we plot the dimensionless ratios
u(p) /us(p) and w(p)/ws(p), where the scaling functions, in units of GeV~%/2, are

16me
me + p?) (1 + p?/pj)

16me p*/p} )
me + p*)(1 + p?/p§)?

Here € is the deutreron binding energy and m the nucleon mass (we used me = 940x2.224
MeV?), p2 = 0.15 GeV?, and p? = 0.1 GeV?. We emphasize that these scaling functions
have absolutely no theoretical significance and were introduced merely to remove the

us(p) = (

wy(p) = (
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Figure 2. Momentum space wave functions for five models discussed in the text (see
the caption to Fig. 1). The wave functions in the right panel have been divided by the
scaling functions us(p) and ws(p).

most rapid momentum dependence so that the percentage difference between models
can be more easily read from the ratio graph. We conclude that the five models shown
are almost identical (i.e.variations of less than 10%) for momenta below about 400 MeV,
and that they vary by less than a factor of 2 as the momenta reaches 1 GeV (except
near the zeros).

2.2. Relativistic wave functions

The definition of the relativistic deuteron wave function depends in large part on
the formalism used to treat relativity. In formalisms based on hamiltonian dynamics
(discussed in Sec. B-6.0) the wave function in the deuteron rest frame can be taken to
be identical to the nonrelativistic wave function, and no further discussion is necessary
until the wave function in a moving frame is needed. In formalisms based on the
Bethe-Salpeter equation [[7], the covariant spectator equation [[L§], or on some other
quasi-potential equation [[[9, 0], the wave functions usually have additional components
which do not vanish in the rest frame.

In the relativistic spectator formalism [[§], where one of the two bound nucleons is
off-mass shell, the wave function is a sum of a positive energy component and a negative
energy component [[{]

Voo (P) = 3 {05 (D) ta(—D.b) + Uy (P) (P, D)} (12)

b
where u,(—p,b) and v,(p,b) are nucleon spinors for the off-shell particle (particle 2 in
this case) with Dirac index . The positive energy part has the same structure as the
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nonrelativistic wave function, with an S and D-state component. The new negative
energy wave function has the form

Voom(P) = vi(p) Z Y1 m-m. (P) XiZnS (11m —msmg|1m) — vs(p) Y1m(D) ng

_ \/g% [Uiﬁg) (014 09) - D+ vs(p) (01 — 09) -f)] Xop' (13)

where v;(p) and vs(p) are two additional P-state components of the wave function, and

ST T
0 — ﬂ{|+>a| - >a|+>b} (14

is the nuclear spin 0 wave function. The names of the P-state wave functions follow

from the fact that v; couples to the spin triplet (S = 1) and vs to the spin singlet
(S = 0) wave function. The equivalence of the two forms given in Eq. ([3) follows from
identities like those given in Eq. (J]).

Two model relativistic S and D-state wave functions were shown in Figs. [ and P.
Both models are based on relativistic one boson exchange model developed in Ref. [PT].
Model 1IB is a revised version of the model of the same name originally described in
Ref. [PT] and Model W16 is one of a family of models with varying amounts of off-shell
sigma coupling that were introduced in connection the relativistic calculations of the
triton binding energy described in Ref. [R9]. These models are described further in a
number of conference talks [23. The relativistic P-state components are small, but can
make important contributions to the deuteron magnetic form factor. As Figs. [l and
show, the large S and D-state components of these relativistic wave functions are very
close to their nonrelativistic counterparts.

3. Elastic Electron Deuteron Scattering

3.1. Deuteron Form Factors and Structure Functions

Because of the very small value of the electromagnetic fine structure constant (o =
e?/4nhc ~ 1/137), elastic electron—deuteron scattering is described to high precision
by assuming that the electron exchanges a single virtual photon when scattering from
the deuteron. In this one-photon exchange approximation [4] elastic scattering is fully
described by three deuteron form factors [R5, BG, B4]. In its most general form, the
relativistic deuteron current can be written [R§, B

) = ({6 @) ¢4 - a0

5 } (d* + d'™*)

2m3
£ GO [ - q)— (e q)]) , (15)

where the form factors G;(Q?), i = 1 — 3, are all functions of @2, the square of the
four-momentum transferred by the electron, with ¢ = d' — d and Q? = —¢*. [In most of
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the following discussion we will suppress the explicit Q% dependence of the form factors.]
In practice, G; and G5 are replaced by a more physical choice of form factors

2
GC :G1+§77GQ
Go=G1—Gu + (1+n)Gs, (16)

with n = Q*/4m3. At Q? = 0, the form factors G¢, Gy, and Gg give the charge,
magnetic and quadrupole moments of the deuteron

Ge(0) =1 (in units of e)
Go(0) = Qq (in units of e/m2)
Gr(0) = g (in units of e/2my) . (17)

The form factors can also be related to the helicity amplitudes of the deuteron
current (where helicity is the projection of the spin in the direction of the particle three-
momentum). In the Breit frame (where the energy transfer v is zero) the polarizations
of the incoming (£) and outgoing (¢’) deuteron are

(0,41, —7,0)/v2 N\ =+
(=Q/2,0,0, Dy)/mq A=0

N =

(0,F1,—i,0)/v2 N =+

5”2{ (Q/2,0,0,Do)/ma N =0, 1e)

(where the phases for the incoming deuteron follow the conventions of Jacob and Wick
B9 for particle 2) and the virtual photon polarization is
B { (0,¥1,-4,0)/vV2 M\ ==

€\, = 19
M (1,0,0,0) A =0, (19)

Hence, denoting the helicity amplitudes by G:\\,”/\, the three independent amplitudes are
0 ()2 4
Goo(Q7) = 2Dy ( Ge + gUGQ

G- (Q%) = G, (@) = 2D (G — 21Ga)
GHo(Q) = —Gi (Q%) = G(QY) = —G5,(Q%) = 2Dy \/AGr,  (20)

where 2Dy = \/4m3 + Q2.

The scattering amplitude in the one-photon approximation is

2
M= = [aF X) 7" ulhk V] (1) (21)
where u and @ are electron spinors with &, A (k’, \') the momentum and helicity of the
incoming (outgoing) electron, respectively. Squaring (PT]), summing over the final spins,
and averaging over initial spins give the following result for the unpolarized differential
cross section

do  do

o dQ

do

A@) + B@Q) tan®(8/2)] = -5 | S(Q%6) (22)

NS

NS
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where S(Q?,0) is defined by this relation, and
do a’E' cos?(6/2) E 28 5\ "
iQ|,s  4ESsm'(6/2)  ME M ( T et (23)

is the cross section for scattering from a particle without internal structure (o, is the

Mott cross section), and 0, E, E’, and df2 are the electron scattering angle, the incident
and final electron energies, and the solid angle of the scattered electron, all in the lab
system. The structure functions A and B depend on the three electromagnetic form
factors

8 2
AQY) = GR(QY) + P GA(QY) + 2nG3,(@?)
= Ac(Q%) + A(@*) + Am(Q?)
4
B@) = 301+ )G, (@), (21)
where the definitions of Ac, Ag, and Ay, should be clear from the context.

While cross section measurements can determine A, B, and G}y, separating the
charge G¢ and quadrupole G form factors requires polarization measurements. The
polarization of the outgoing deuteron can be measured in a second, analyzing scattering.
The cross section for the double scattering process can be written [20]

do B do
dQdQs — dQdQs

[1 + %hpmAy sin @9
0

+ %tgoAzz — %tglAmz COS ¢2 + %tgg(/lmm — Ayy) COS 2¢2} s (25)

where h = £1/2 is the polarization of the incoming electron beam, ¢ the angle between
the two scattering planes (defined in the same way as the ¢ shown in Fig. P4)), and A, and
the A;; are the vector and tensor analyzing powers of the second scattering. Although
there is a p, component to the vector polarization, the term is omitted from Eq. (B3) as
there is no longitudinal vector analyzing power; without spin precession, this term can
not be determined. The polarization quantities p; and ta,,, (sometimes denoted Toy,,,
but we will reserve capital letters for target asymmetries) are functions of the form
factors and the electron scattering angle

Spe == [0 +0)] “Gu(Ge + InGa) tan 36

Sp, = %77[(1 +n)(1 + nsin® %9)} 1/2G?\4 tan 36 sec 36

—V2Sty = §1GcGo + 5n°GY + In[1 + 2(1+ ) tan® 30| G,

V3 Sty = 277[77 + 772 sin? %9} 1/2GMGQ sec %9

—V/3Sty =1nGE, (26)

The same combinations of form factors occur in the tensor polarized target asymmetry
as in the recoil deuteron tensor polarization.

Of these quantities, to9 = T59 has been most extensively measured; it does
not require a polarized beam or a measurement of the out of plane angle ¢,. For
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measurements of A and Ty at forward electron scattering angles, the GG, terms are
very small, and one may approximate A and Ty by

. 8
8

- 8
—\/ES T20 = g ﬁGcGQ + 9 772 GzQ (27)
Introducing y = 2nGq /3G¢ gives
2 y(2+y)
Toy = —V2 -~ 28
n=-vEYTY (29)
The minimum of Tyy ~ Ty = —+/2 is reached for y = 1. The node in the charge

form factor, G¢ = 0, occurs when S — 29°G%, and 28Ty — Gy, giving
T = —1/V/2.

This approximation also makes it clear that Thy largely depends on the deuteron
structure, rather than the nucleon electromagnetic form factors. In the nonrelativistic
limit (to be discussed shortly), both G¢ and G¢ are a product of the nucleon isoscalar
electric form factor multiplied by the body form factor, which is an integral over products
of the deuteron wave functions weighted by spherical Bessel functions. Hence, in this
approximation, the nucleon electric form factor cancels in the ratio y < G¢/Ge, and
Tho depends only on the deuteron wave function.

We note that the relations above between the form factors and the observables are
model independent, so it is possible to extract form factors from the data and compare
directly to theoretical calculations. The most complete form factor determination
appeared recently in Ref. [BO] (see also the analysis in Ref. [f]). We will discuss the
data below in Sec. B.§, after we have reviewed the experiments and the theory.

3.2. Ezrperimental overview

The initial measurements of elastic ed scattering were by Mclntyre and Hofstadter in
the mid 1950s [Bl]]. Since then many experiments have run at several laboratories;
the fits of Ref. [B include 269 cross sections from 19 references, dating from 1960 to
the presentf]. Polarization experiments are much more difficult. The first results were

1 An important feature of the recent fits of the world data is that the measured cross sections were refit
rather than using extracted structure functions or form factors. This is necessary since most extractions
of A (B) used corrections for contributions of B (A) to their cross sections from earlier data. In some
cases alternative definitions (or incorrect formulas) have been given. A minor point is the definition of
o in some cases the recoil factor E'/E is included, while in our definition Eq. (BJ) it is not. The
magnetic form factor Gps can be in units of e/2my (our convention), e/2m,, or dimensionless, with
magnitude of 1.714, 0.857, or 1.0, respectively, at Q% = 0, and leading to modified coefficients in Eq. (@)
Buchanan and Yearian [BJ] have an alternate definition of G¢, and G, with A oc (1 —1)?(G% + G3).
Benaksas et al [B3 and Galster et al [B4] include an extra factor 1+ 7 in the magnetic terms in
A and B, which changes the Q? dependence of the magnetic form factor, though not its value at Q2
= 0. Ganichot et al [BF and Grossetéte et al [BG both use a factor of €2, rather than a2, in their
definitions of the Mott cross section. Cramer et al [@] give a dimensionally incorrect formula for their
oo (= do/dQns), with explicitly stated energy factors of E’/(EE') = 1/E, as opposed to our factor
of E'/E3.
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published in 1984 and there are now only 20 published 9 data points, and 19 points for
other polarization observables. The fits of Ref. [f] include a slightly larger data base,
with 340 points for momentum transfers up to ) of about 1.6 GeV; this misses only a
handful of the largest momentum transfer SLAC and JLab data points.

Forward-angle cross section measurements suffice to determine A, both because
B is small and because of the tan? /2 dependence. The magnetic form factor Gy is
determined from large angle measurements of B, since the A contribution vanishes as 6
— 180°. With Q% ~ 4EE'sin*(0/2) and E' = E(1 + (2E/my)sin?(9/2))~!, we obtain
the following relations at # = 180°:

O? = 4E? (1 n 2E/md>_1 (29)

B = (@4 @@+ amy) ) fma (30)

One can see that the beam energies needed for high ? measurements of B are quite
low, with £ = 0.65, 1.02, 1.35, 1.67, and 1.97 GeV corresponding to Q? = 1, 2, 3, 4,
and 5 GeV?, respectively. Note that throughout this review we use Q = /Q? to avoid
confusion with the magnitude of the three momentum transfer q, and we use units of
GeV and GeV?, not fm~! or fm 2.

Accurate measurements require that Q? be known accurately since A and B vary

rapidly with Q2. Energy or angle offsets of a few times 1073 could lead to Q? being off
by up to 0.5%. For both A and B, this leads to offsets that increase with Q2, reaching
about 2% at Q% = 1 GeV? and 4% at Q? = 6 GeV?2.

While cross section measurements can determine A, B, and G}y, separating the
charge G¢ and quadrupole G form factors requires polarization measurements, most
often tyy. Coincidence detection of the scattered electron and deuteron, which suppresses
the background and allows experiments to be performed with moderate resolution, is a
common technique.

3.2.1.  Ezxperimental status of A Several experiments have measured the structure
function A at small Q. Of particular note are the high precision, 1 - 2% measurements
from Monterey [BY], Mainz [BY], and Saclay ALS [J]. The only measurements at
moderately large @) are from SLAC E101 [f], Bonn [B7] and CEA [[i2], plus the two
recent JLab experiments in Halls A [f] and C [f]. Data for several experiments are
shown in Fig. f and summarized in Table J); see Refs. [, or [ for more extensive
listings of data.

Fig. J reveals an unfortunate history of certain measurements not agreeing to within
the stated uncertainties. For example, at low () the Monterey and Mainz data overlap
well, but the overlap of Mainz and Saclay ALS data indicates problems. The four
largest (Q Mainz points used Rosenbluth separations, with A largely determined from
forward angles of 50°, 60°, 80°, and 90° at 298.9 MeV. Saclay A data were extracted from
measured cross sections using previous B data. The closest corresponding Saclay points,
for the same scattering angles at a beam energy of 300 MeV, have cross section about
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Table 2. Some measurements of A. Symbols are given for data shown in the figures.

Experiment Q (GeV) symbol # of  Year and
points  Reference

Stanford Mark IIT  0.48 - 0.88 O 5 1965 [BJ
Orsay 0.34 - 0.48 X 4 1966 B3
CEA 0.76 - 1.15 o 18 1969 [
DESY 0.49 - 0.71 O 10 1971 B4
Monterey 0.04-0.14 A 9 1973 BY
SLAC E101 0.89 - 2.00 = 8 1975 [
Yerevan 0.12-0.19  not shown* 25 1979 [
Mainz 0.04 - 0.39 ® 16 1981 B
Bonn 0.71 - 1.14 8] 5 1985 [B7
Saclay ALS 0.13 - 0.84 \Vi 43 1990 [fiq)
JLab Hall A 0.83 - 2.44 " 16 1999 [f

JLab Hall C 0.81 - 1.34 [ 6 1999 [

*Have larger errors and are consistent with the other data sets.

7% smaller; the difference is beyond the quoted experimental uncertainties. Significant
differences such as this are often obscured by semilog plots or not plotting all data sets.
The body of data, aside from the lowest () Orsay point, suggests the correctness of the
Saclay measurments. Theoretical predictions span the range between the two data sets,
and do not help to determine which is correct. Thus, a new high precision experiment
in this Q% range appears desirable.

The agreement between data from CEA, SLAC E101, and Bonn near 1 GeV was
also unsatisfactory. In discussing these measurements, we will compare to the trend of
the data as determined by the Saclay and JLab measurements. The CEA data have
large uncertainties, and are systematically low by about 1o. This experiment measured
scattered electrons in a shower counter and deuterons in a spectrometer that used a
quadrupole magnet with a stopper blocking out the central weak field region. In such
a case it is difficult to determine the solid angle precisely, and this uncertaintly might
introduce systematic errors into this data. Alternatively, since the spectra were not
significantly wider than the elastic peak, it has been suggested that over-subtraction
of background was a problem. However, the background rates were determined to be
consistent with expected rates from random coincidences and target cell walls. Bonn
measured coincidence cross sections at large electron scattering angles, 6, ~ 80° - 140°.
Using forward angle data from SLAC E101, CEA, and Orsay, Bonn determined A and
B. Slightly inconsistent results from the other experiments led to a small uncertainty
on the Bonn determination of A. Thus, it is only the largest Q? point, for which there
was only the large angle Bonn data, that has very significant disagreement with other
determinations of A. Finally, the lowest Q* SLAC point is high.

The disagreements between the CEA, SLAC E101, and Bonn data were part of
the motivation for two JLab experiments that determined A. Hall A experiment E91-
026 [f] measured A for Q? from 0.7 to 6.0 GeV2 Hall C experiment E94-018 [
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Figure 3. The data for A at low and moderate (), normalized as explained in
Section . The data sets are described in Table E Note that the right and left
panels have different vertical scales. All data referred to in Table E are shown except

the highest @ points from Refs. [f] and[f].

measured A in the same kinematics as its toy points, from 0.7 to 1.8 GeV2. The main

advantages of these experiments over previous work include the continuous beam, large
luminosities, and modern spectrometers. The Hall A measurements [[] used > 100 pA

beams on a 15 cm cryogenic LD, target, to achieve a luminosity of approximately 5

x 1038 /ecm? /s, and two approximately 6 msr spectrometers. The Hall C measurements

used the HMS spectrometer along with the deuteron channel built to measure t99 with
the recoil polarimeter POLDER. A feature of this system is that the solid angles of the

two spectrometers were well matched, to within a few percent.

In the overlap region, the two JLab experiments show better precision than the

earlier data and generally good agreement; comparisons of theory to data should
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Table 3. Some measurements of B. Symbols are given for data shown in the figures.

Experiment Q (GeV) symbol  # of  Year and
points  Reference

Stanford Mark 1T 0.10 - 0.13 * 2 1964 63
Stanford Mark IIT ~ 0.48 - 0.68 0 4 1965 |
Orsay 0.20 - 0.28 * 3 1966 [B4
Orsay 0.34-0.44 * 3 1966 B3
Stanford Mark III 0.4 - 0.63 * 5 1967 64
Orsay 0.14 - 0.48 * 4 1972 B
Naval Research Lab  0.11 * 1 1980 [F
Mainz 0.25 - 0.39 o 4 1981 [Bg
Bonn 0.71 - 1.14 v 5 1985 B
Saclay ALS 0.51 - 1.04 & 13 1985 B9
SLAC NPASNE4  1.10 - 1.66 m 9 1987 [Fd, B
JLab Hall A 0.7-14 ] 6 unpublished

*These data sets are not shown (B must be inferred from the publication).

focus on these results, rather than the older data. However, these measurements also
show a significant disagreement with each other. Uncertainties in each experiment are
dominated by systematics of approximately 5 - 6%, with statistical precisions near 1%.
The Hall C data are systematically larger than the Hall A data by just over 20, slightly
over 10%, and there appears to be a tendency of the data sets to diverge with increasing
momentum transfer. This discrepancy will be decreased by a few percent, but not
eliminated, by a correction [§ to a lower, more accurate, beam energy in Hall C during
the experiment. It is unclear if the discrepancy can be further resolved.

An important experimental point is the use in these experiments, and in many
earlier ones, of ep elastic scattering to calibrate the solid angle acceptance; a fit to the
world ep cross section data is often used [[[f]. However, recent high precision polarimetry
results [0, 7, (g imply that G% /G4, is significantly smaller than previously believed,
with G%/G%, dropping nearly linearly for Q? from about 0.5 to 5.6 GeV?. Refitting
the world cross section data, with the JLab data for the form factor ratio, decreases
G% but enhances G%; by about 2% [[[g]. The new fits imply that the ep cross section
is generally a few percent larger than would have been calculated previously, less than
the systematic uncertainties of most experiments, and too small to affect comparisons
of measurements of the ed cross sections and A. The effects on the theoretical deuteron
form factor predictions will be addressed below.

In summary, the structure function A is reasonably well determined up to Q? = 6
GeV?, if one neglects several poorer data points. There remain regions in which there
are up to about 10% systematic discrepancies between data of different experiments;
the resolution of these problems is at present unclear.

3.2.2.  Experimental status of B The highest Q? measurements of the B structure
function come from SLAC NPAS experiment NE4 [50, p1]], which covered the Q* range
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Table 4. World data for tensor polarization observables.
Experiment Type Q@ (GeV)  Observables Symbol # of  Year and
points  Reference
Bates polarimeter 0.34, 0.40  t9g X 2 1984 4]
Novosibirsk VEPP-2 atomic beam 0.17,0.23 Ty B 2 1985 [b14, bg
Novosibirsk VEPP-3 storage cell 0.49, 0.58 Ty A 2 1990 [BY]
Bonn polarized target 0.71 To O 1 1991 [6q]
Bates polarimeter 0.75-0.91  t90,t21,t22 ® 3 1991 61, B3
Novosibirsk VEPP-3 storage cell 0.71 Ty * 1 1994 [69]
NIKHEF storage cell 0.31 T0,T59 ) 1 1996 64
NIKHEF storage cell 0.40 - 0.55 Ty ad 3 1999 6]
JLab Hall C 94-018 polarimeter 0.81 - 1.31  tog,to1,t22 n 6 2000 [
Novosibirsk VEPP-3 storage cell 0.63 - 0.77 Ty e 5 2001 [64]

* Not shown in the figures.
** Preliminary data.

of 1.20 to 2.77 GeV?. These measurements extended the range of previous data from
Saclay [F9] (which went to 1.1 GeV?), and from Bonn [B7 (which went to 1.3 GeV?,
and gave the results for A discussed above). There is good overlap in all but a few of
the earliest B measurements. Measurements of B were taken as part of E91-026 for Q*
= 0.7 to 1.4 GeV?2, but analysis is not yet final.

world data is shown in Table [l. The first polarization measurements were from

Ezxperimental status of polarization measurements A summary of the
an Argonne/Bates recoil polarimeter experiment [pf] and a Novosibirsk VEPP-2
experiment [B7, using a polarized gas jet target. In the gas jet experiment, a
polarimeter measured the gas polarization after it passed through the interaction region.

There were three second generation experiments. An Argonne/Novosibirsk VEPP-
3 measurement [F9] pioneered the use of storage cells, increased the internal target
density about a factor of 15 over the gas jet alone, and pushed out to 0.58 GeV, near
the minimum in t59. Because the polarization of the gas varies in the cell, due to wall
and beam interactions, it was decided to normalize the gas polarization by setting the
lowest () datum, at 0.39 GeV, to theory where the uncertainties are small. Such internal
targets in storage rings are now common. A Bonn polarized target experiment [p0] had
large uncertainties. At Bates, the AHEAD deuteron polarimeter was used [1], g to
determine toq in the range just past the minimum of ¢59 to just past the node in G¢. A
continuation of the Novosibirsk experiment had large uncertainties [p3], and was never
published. Note that, to facilitate comparison between different experiments, the data
are often “corrected” to an electron scattering angle of 70°, but this adjustment and the
uncertainty it introduces are small.

Over the past several years, internal target experiments at NIKHEF [p4, B3 and
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Novosibirsk [Bd] have improved the precision of the lower Q? data, over a range of Q =~
0.3 - 0.8 GeV. The improvements in Novosibirsk include higher luminosity resulting from
an improved atomic beam source and a modified beam tune that allows use of a higher
impedance storage cell. JLab Hall C E94-018 [[] used the recoil polarimeter POLDER
to measure to the highest Q% 1.72 GeV?2.

The overlap of the data is good, but apparent systematic shifts can be seen, as the
NIKHEF and Bates measurements are more negative than the JLab and Novosibirsk
measurements; note that this is not a difference between polarized targets and recoil
polarimeters. The issue of determing at what Q? G¢ = 0 is affected by this difference.
The Bates data [B1, f2] suggest a larger @* than do the Novosibirsk [f] and JLab [
data. The fits of Ref. [Bd] do not include the unpublished Novosibirsk data [B3, 6], and
average between the Bates and JLab points.

We do not discuss the data for to; and t93. Because of their dependence on Gy,
they have not been as useful in providing new information as has to9. To test time
reversal invariance, one measurement of the induced vector polarization was made [f7].
The observed result was consistent with zero.

3.3. Nonrelativistic calculations without interaction currents

3.8.1. Theory 1t is instructive to see how the deuteron form factors are related to the
free nucleon form factors and the deuteron wave function in the nonrelativistic limit.
Because the deuteron is an isoscalar target, only the isoscalar nucleon form factors

% =GL+ G

=Gl + Gl (31)
will contribute to the form factors. In the nonrelativistic theory, without exchange
currents or (v/c)? corrections, the deuteron form factors are

Ge = G5 De
Go = G3Dg
m S S

P
where the body form factors D¢, Dg, Dy, and Dy are all functions of Q2. If we choose

to evaluate these in the Breit frame, defined by

G@o=v=0, Dy=/m3+ iqz, d" = {Do, —%q} . d" = {Do, %q} , (33)
then the relativistic and nonrelativistic momentum transfers are identical, Q? = q?, and
the relativistic nucleon form factors can be used without corrections. Note that, in this
nonrelativistic limit, only the nucleon electric form factors contribute to the deuteron
charge and quadrupole structure, while both nucleon form factors contribute to the
deuteron magnetic structure.

The nonrelativistic formulae for the body form factors D involve overlaps of the
wave functions, weighted by spherical Bessel functions

De(@?) = [ dr[u?(r) + w'()]io (7)



Electromagnetic structure of the deuteron 18

w(r)

Da(@) = e [~ arutr)[utr) - 22| 20

Dy (Q%) = /0 T [20%(r) = w?(0)]jo(r) + [VZulr)w(r) + w?(r)]ja(r)

De(@) =5 [~ dra?(r) [jlr) + 5a(r)] (34)
where 7 = qr/2 = Qr/2. At Q2 = 0, the body form factors become

De(0) = /0 S dr[u(r) +w?(r)] = 1

2 oo

Dg(0) = —% ; r dr w(r) lu(r) — w\ﬁg)]
D (0) = / dr [23(r) — w(r)] = 2 - 3Pp
0
3 [® 3
Dp(0) =2 / drw?(r) = 2 Pp (35)
2 Jo 2
giving the nonrelativistic predictions
Qa = Dq(0)
fa = pts (2 — 3Pp) + 1.5 Pp = 1.7596 — 1.1394 Pp , (36)

with ps = 0.8798 the isoscalar nucleon magnetic moment. The experimental value of
the deuteron magnetic moment (in these units) is 1.7139, leading to a predicted D-state
probability of Pp = 4.0%. However this estimate cannot be taken too seriously because
the magnetic moment is very sensitive to relativistic corrections and interaction currents
which can easily alter this result significantly. These contributions will be reviewed
qualitatively later in this review.

The study of deuteron form factors is complicated by the fact that they are a
product of the nucleon isoscalar form factors, G*, and the body form factors, D. The
dependence of the deuteron form factors on older models of the nucleon form factors
is well discussed in Ref. [§]. A year ago the model of Mergell, Meissner and Drechsel
[6g (referred to as MMD) gave a good fit, and could have been adopted as a standard.
Figure | shows the MMD isoscalar electric and magnetic form factors divided by the
familiar dipole form factor

Fp(Q*) = (1 + 0%>_ (37)

(with Q% in GeV?). Note that the MMD model does not differ by more than 20% from
the dipole over the entire Q? range, suggesting that the dipole approximation works very
well (on the scale of the experimental errors — see below). However, recent measurements
of the proton charge form factor are producing a surprising result, and at the time this
review was being completed the picture was begining to change.

The recent JLab measurements of both the neutron and proton charge form factors
now suggest that the isoscalar charge form factor may be well approximated by

GsEJLab(Q2) _ {% + (1.0 — 0.1262 Q2)} FD(Q2) . (38)
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Figure 4. Ratios of the nucleon isoscalar form factors: G%(MMD)/Fp (triple-dot-
dashed line), G5,(MMD)/ (1sFp) (dot-dashed line), usG%(MMD)/G5,(MMD) (Solid
line), G%M2P /Fpp (dotted line), /G4 (MMD) (short dashed line), and F¥/G$; (JLab)
(long dashed line).

where Fp is the dipole form factor and 7 = Q?/4m_. This JLab model is a sum of the old
Galster [B4] fit for the nucleon charge form factor (supported by the recent measurements
[9)) and a linear approximation to the new JLab G%/G%, data [[[d] (from which the
charge form factor is obtained by assuming that G, = u,F;). Figure [ shows that this
form factor differs significantly from the dipole (and also the previously favored MMD
model), and may have a significant affect on the theoretical interpretation of the data.
This will be discussed in Sec. B.§ below. [The F}/Gg ratios shown in the figure will be
discussed in Sec. B.6.G below.]

Dividing the individual factors A¢, Ag, and Ay [introduced in Eq. (24)] by (G%;)?
gives reduced quantities that are (except for the weak dependence on the ratio of
Gus/psGrs) independent of the choice of nucleon form factor. The contribution of
these reduced quantities, which we denote by ac, ag, and ay, to the total a = A/(G%;)?
is shown in Fig. . The figure shows that the contribution of the magnetic term, ayy,
to the total a is small for Q? < 4 GeV? (for most of the Q? range it is less than a few
percent, reaching 10% at Q* ~ 0.5 and also near 4 GeV?). Above Q? of 4 GeV? it is
larger, and very model dependent. This justifies the observation that the A structure
function can be well approximated by A, as stated eariler in Eq. (7). [Note that the
new JLab data for G, discussed briefly above, may enhance the magnetic contributions
to A above 4 GeV?, but will not change these conclusions qualitatively].

3.3.2. Comparison to data How well does this simple nonrelativistic theory explain
the data? The high Q2 data for A provide the most stringent test. In Fig. fj we compare
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Figure 5. Plots of a(Q?) and the ratio a,,(Q?)/a(Q?) discussed in the text. Left
panel shows contributions for models AV18 and IIB-nonrelativistic: a (solid lines), a,
(long dashed lines), a. (short dashed lines), a,, (dotted lines). In these plots the ratio
G3,/G% is fixed at ps. In each case IIB decreases more rapidly than AV18 at low Q2.
Right panel: IIB-RIA (solid line), AV18 (long dashed line), IIB-nonrelativistic (short
dashed line), all with G%,/G% = us, and AV18 with the ratio of G3,/G?%; given by
Eq. (BY) (dot-dashed line).
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Figure 6. The structure function A for the five nonrelativistic models discussed in
the text, calculated using the MMD nucleon form factors. The models are labeled as
in Figs. [1] and [2]. The left panel shows data and models divided by a “fit” described
in the text. See Table |l for references to the data.

the data for A with calculations using the five nonrelativistic wave functions shown in
Figs. ] and B. The calculations use Eq. (B) with MMD isoscalar nucleon form factors
and nonrelativistic body form factors given in Eq. (B4). In the right panel the data and
models have been divided by the “fit” described in Eq. (BY) below.
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Figure 7. Deuteron form factors for the five nonrelativistic models compared to data.
The data for Go and G are from analysis of the complete A and to9 data sets [B(]].
The data for G s were extracted from the experimental measurements of B, referenced
in Table . MDMD nucleon form factors have been used with the nonrelativistic models.
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Figure 8. The structure function A for the five nonrelativistic models discussed in
the text. The models are labeled as in Figs. [1] and [2]. See Table [ for references to
the data.

It is easy to see that the nonrelativistic models are a factor 4 to 8 smaller than
the data for Q* > 2 GeV?. Furthermore, since the difference between different deuteron
models is substantially smaller than this discrepancy, it is unlikely that any realistic
nonrelativistic model can be found that will agree with the data. If the nucleon isoscalar
charge form factor were larger than the MMD model by a factor of 2 to 3 it might
explain the data, but this is also unlikely since the variation between nucleon form
factor models is substantially smaller than this. [If we use the fit Eq. (B) to the JLab
Gpp measurements the discrepancy will be even larger.] We are forced to conclude
that these high Q? measurements cannot be explained by nonrelativistic physics and
present very strong evidence for the presence of interaction currents, relativistic effects,
or possibly new physics.

A detailed comparison of the nonrelativistic models with the three deuteron form
factors, G¢, G, and G is given in Fig. []. The functions used to scale the data and
theory in the right-hand panels of the figure are

2\ —1 2\ —2
— Q%35 Q 1 Q
Go c ( +me> ( +0.71

2\ —1 2\ —2
Gy = 1.7487 = @*/25 (1 + Q—) (1 + Q—)
me

0.71

25.8298 ) ) Q2\ " Q2
= Q7 4 0.01e@/100) (1 4 X 1+ = . (39
Q 1.01 (7 +0.01e ) * e o (39)

where Q% is in GeV? and me = 0.936 x 0.0022246/0.197%. While some of the factors in
these expressions are theoretically motivated (note the presence of the dipole form of the
nucleon form factor) we do not attach any theoretical significance to these functional
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forms; they merely provide a reasonably simple way to scale out the rapid exponential
decreases from the form factors. Figure []shows that the nonrelativistic models do a good
job of predicting the form factors to a momentum transfer ) ~ 0.5 GeV, beyond which
departures from the data and variations of the models make the agreement increasingly
unsatisfactory.fj

However, careful comparison reveals that there are still (small) discrepancies
between the data and the nonrelativistic theory, even at low Q2. The data and curves
from the lower panel of Fig. f] are shown on an expanded logarithmic scale in Fig. f In
the lowest Q? range from about 0.15 to 0.4 GeV? the data lie below the nonrelativistic
theory, and are larger than the nonrelativistic theory only for Q% above 1 GeV?. The
very low Q? discrepancy seems to be due in part (but not entirely) to the Columb
distortion corrections that have been used recently to explain the deuteron radius [{4].
We will discuss these corrections in Sec. B.g below.

Before we turn to a detailed discussion of the possible explanations for the failure
of nonrelativistic models to explain the form factors at high Q?, we discuss the low
momentum transfer results from the perspective of effective theories.

3.4. Effective field theory

The recent development of effective field theory provides a powerful method for
theoretical study of low Q? physics. We will briefly review these results here, and
return to the discussion of the high Q? results in the next section.

Effective field theory techniques exploit the fact that the physics at low energies
E < My (or large distances A >> \g = 1/Mj) cannot be sensitive to the details of
the interactions at very high energies £ >> M, (or short distances). For example, a
low energy long wavelength probe may detect the presence of a small scattering center,
but cannot resolve its structure (much as the far-field of a collection of electric charges
depends on only one parameter, the total charge). The parameters that depend on the
short-range physics may be very important, but they cannot be calculated and must be
determined by a fit to the data.

Effective field theory works best if the distance scales of the (unknown) short-
range physics and the (known) long-range physics are clearly separated. Then for
energies well below the scale of the short-range physics (which we take to be M),
the short-range physics is treated systematically by expanding in powers of £/My. In
applications to the NN system, two scales have been discussed. The so-called “pionless
theory” chooses My ~ m,, and therefore requires no theory of the 7V interaction. This
approach can work only at wvery low energies. The chiral theory chooses My ~ m,
§ We are not inclined to take the discrepancy between theory and the first G point seriously;
kinematic factors make it difficult to extract this point accurately and it is only one standard deviation
from the theory. The large G and small G ¢ values for the points at 0.55 GeV and 0.58 GeV result from
the t5¢ data points, from @} and [@] respectively, being about 1 standard deviation more negative than

calculations and overlapping the negative limit for tg9 of —v/2. Note that the tabulated uncertainty of
Gg at Q = 0.55 GeV in Ref. [ should be asymmetric, +0.075/—0.713, (as shown in the Fig. ff).
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and attempts to describe NN scattering up to the p mass scale using the known pion-
nucleon interaction as given by chiral symmetry. (More precisely, if the magnitude of
the center of mass relative momentum |p| < M;/2, the nucleon lab kinetic energy will
B, < Mg /2m, which is Ej,, < 10 MeV for the pionless theory, and Ej,p, < 320 MeV
for chiral perturbation theory.)

The effective range theory introduced by Bethe [[[J is an early version of what
we now call the pionless effective theory. Weinberg [[1]] first applied modern chiral
perturbation theory to NN scattering. He proposed making a chiral expansion of the
NN potential, and then inserting this potential into the Schrodinger equation. Later
Kaplan, Savage, and Wise (KSW) criticized the consistency of this approach, and
introduced an alternative organizational scheme, sometimes referred to as ) counting,
in which the pion interaction is to be included as a perturbative correction (as opposed
to including it as part of the potential, and counting it to all orders, as proposed by
Weinberg). KSW applied this method to calculation of the deuteron form factors [[3]. It
is now known that the tensor part of the one pion exchange interaction is too strong to be
treated perturbatively, and recent work has focused on how to include the singular parts
of one pion exchange in the most effective manner [[/4, [[3]. In the following discussion
we review the recent results from Phillips, Rupak, and Savage (PRS), who give a nice
account of the calculations of the deuteron form factors in a pionless theory [[4].

The effective Lagrangian density for a pionless effective theory of the NN
interaction in any channel (the coupled 3S; —3 D; for example) is

£=—Co (0 0) (v7)
—%Gz@ﬂwf(vwﬁw+wvawaxuﬂ-ﬁw)+ho]
e, (40)

where 1 is a (nonrelativistic) nucleon field operator and Cjy, Cs, and the general
coefficient Cy,, (which fixes the strength of the terms with 2n derivatives) are determined
from data. The coefficients C5,, parameterize the strength and shape of the short range
interaction. The scattering amplitude predicted by ([[0) is a sum of bubble diagrams
which can be regularized using the KSW dimensional regularization scheme with power
law divergence subtraction [[J]. In lowest order (LO) this bubble sum is

_ —Co(p) _ 4_7T ( 1 )
L - Colp)(u+ip) ™ \PCotdo = ip
47 Zd
:_ﬁ<v+W>+R® 4

where p is the magnitude of the nucleon three-momentum in the c.m. system, R(p) is

regular at the pole p = iy, v = /me with € the deuteron binding energy, Z, is related
to the asympotic normalization of the deuteron wave function, and the dependence of
Cy on the (arbitrary) renormalization point p is dictated by the requirement that the
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Figure 9. Predictions of the charge and quadruple deuteron form factors from the

pionless effective theory, as developed by PRS [ The data were extracted in Ref. [B(]
and previously shown in Fig. fl. The “fits” are from Eq. (B9).

overall result be independent of p. The LO result is

47 1
Cu:—<—>, Zi=1, R(p)=0. 42
o = (= ) (42)
In terms of the effective range expansion
1
peot do = ==+ 3pa(p” +7°) + wa(p* + 77 + - (43)

with a the scattering length and p, the effective range, the LO calculation gives

a=1/y,  pa=0. (44)

Contributions from the next to leading order (NLO) term C5 changes the relations
in ({2) and ({4); in particular, the wave function renormalization constant Z; begins
to differ from unity and the effective range py to differ from zero. PRS point out that
the most stable results are obtained by constraining Cy and C5 to give the experimental
values of the deuteron parameters y~! = 4.319 fm and Z; — 1 = 0.690 instead of v and
pa = 1.765 fm. This is because the asympotic deuteron wave function is fixed by v and

Zaq
’}/Zd e "
ai =\ 5 45
() = [ 22 (15)

and it is the wave function and not the scattering that largely determines the deuteron

form factors and other electromagnetic observables.
Using this approach, the LO charge form factor is given entirely by the asymptotic
wave function ([3)

GP(QY) = — tan

q
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where ¢ = |q| is the magnitude of the three momentum transferred by the electron, and
working in the Breit frame (where the differences between relativistic and nonrelativistic
theory is a minimum) is also equal to v/Q%. PRS show that expansion of the charge
form factor up to NNLO terms is

Ge(Q%) = GP(Q%) = (Za—1) [1 - GD(QY)]

G LA AR (47)
and because the wave function is correctly normalized, there are no wave function effects
beyond NLO (the second term). At NNLO effects from the finite nucleon size, ry,
appear. Similarly, the LO quadrupole form factor obtained by PRS is
_3mi N
2293
with 7,4 the asymptotic S/D-state ratio, and the LO quadrupole moment, Q%% equal
to 1sq/v/27% = 0.335 fm?2. The expansion of G to NNLO is then

Go(QY) = GY(QY) +m3AQu+ (Za — 1) [GF(Q%) — m2QE°]

- SR + (49)

Note that the quadrupole moment at NLO includes a contribution AQ, from a four-

Go (@)

lzm — (3¢ + 1692) tan™" fl (48)
v

nucleon-one-photon contact term, not determined by NN scattering, and is used to
fit the experimental value of ();. PRS suggest that the absence of this piece of short
distance physics in conventional calculations may explain their underprediction of the
quadrupole moment. The finite size of the nucleon again comes in at NNLO.

With parameters largely set by other data, the deuteron charge, quadrupole, and
magnetic form factors are well predicted up to about @ = 0.2 GeV, as shown in Fig. .
The approach seems to converge well, but beyond NNLO more parameters enter, and
there is less predictive power. The great strength of the pionless effective theory is that
strips away complexity, revealing the essential physics required to understand the low
@ results, and showing (for example) the central importance of the asympotic S-state
normalization Z;. However, as expected, it clearly does not work for ¢ much beyond
0.4 to 0.5 GeV. The theory with pions (sometimes referred to as a “pionful” theory)
will work to higher Q2 [[[5]. Removal of divergences from these theories is under active
study.

We now return to discussion of the reasons for the failure of nonrelativistic theory
at high Q2.

3.5. Alternative explanations for the failure of nonrelativistic models

In Sec. we showed that the naive nonrelativistic theory cannot explain the deuteron
form factor data for ) > 0.5 GeV. In this section we classify the possible explanations
for this failure, preparing the way for detailed discussions to follow in Secs.B.G and B.1.

The differences between the data and the nonrelativistic theory can only be
explained by a combination of the following effects
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Figure 10. Exchange currents that might play a role in meson theories. (a) Large
I =1m,p, and A currents that do not contribute to the deuteron form factors, and
(b) possible I = 0 currents that are identically zero. The currents that do contribute
to the deuteron form factors are shown in the second row: (c) “pair” currents from
nucleon Z-graphs; (d) “recoil” corrections; (e) two pion exchange (TPE) currents; and
(f) the famous pmy exchange current.

e interaction (or meson exchange) currents;
e relativistic effects; or

e new (quark) physics.

The only possibilities excluded from this list are variations in models of the nucleon form
factors, or model dependence of the deuteron wave functions. In the previous section
we argued that neither the current uncertainty in our knowledge of the nucleon form
factors, nmor the model dependence of the nonrelativistic deuteron wave functions are
sufficient to provide an explanation for the discrepencies.

Possible interaction currents that might account for the discrepency are shown in
Fig. [[0. Because the deuteron is an isoscalar system, the familiar large I = 1 exchange
currents are “filtered” out and only I = 0 exchange currents can contribute to the
form factors. The I = 0 currents tend to be smaller and of a more subtle origin. The
nucleon Z-graphs, Fig. [[c, and the recoil corrections, Fig. [[0d, are both of relativistic
origin. (The recoil graphs will give a large, incorrect answer unless they are renormalized
[7G, [1, []].) The two-meson exchange currents should be omitted unless the force also
contains these forces. The famous pmy exchange current is very sensitive to the choice
of pmvy form factor, which is hard to estimate and could easily be a placeholder for new
physics arising from quark degrees of freedom.

In most calculations based on meson theory, the two pion exchange (TPE) forces
and currents arising from crossed boxes are excluded, and, except for the pmy current
(which we will regard as new physics), the exchange currents are of relativistic origin.
Additional relativistic effects arise from boosts of the wave functions, the currents, and
the potentials, which can be calculated in closed form or expanded in powers of (v/c)?,
depended on the method used. At low Q? calculations may be done using effective field
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theories (discussed in Sec. B.4) in which a small parameter is identified, and the most
general (i.e. exact) theory is expanded in a power series in this small parameter. In
these calculations relativistic effects are automatically included (at least in principle)
through the power series in (v/c)%. Hence any improvement on nonrelativistic theory
using nucleon degrees of freedom leads us to relativistic theory.

Alternatively, one may seek to explain the discrepancy using quark degrees of
freedom (new physics). When two nucleons overlap, their quarks can intermingle,
leading to the creation of new NN channels with different quantum numbers (states with
nucleon isobars, or even, perhaps, so-called “hidden color” states). These models require
that assumptions be made about the behavior of QCD in the nonperturbative domain,
and are difficult to construct, motivate, and constrain. At very high momentum transfers
it may be possible to estimate the interactions using perturbative QCD (pQCD). Very
little has been done using other approaches firmly based in QCD, such as lattice gauge
theory or Skrymions (but see Ref. [[9]).

We are thus led to two different alternatives for explanation of the failure of
nonrelativistic models. In one approach the nucleon (hadron) degrees of freedom are
retained, and relativistic methods are developed that treat boost and interaction current
corrections consistently. In another approach, quark degrees of freedom are used to
describe the short range physics, and techniques for handling a multiquark system in
a nonperturbative (or perturbative) limit are developed. These two approaches will
be reviewed in the next two sections. While the discussion appears to be focused on
the deuteron form factors, it is actually more general, and will be applied later to the
treatment of deuteron photodisintegration.

Are these two approaches really different? Superficially, of course, the answer must
be: Yes! However, QCD tells us that all physical states must be color singlets, and
a basis of states that describes any color singlet state can be constucted from either
quarks (and gluons) or hadrons (this would not be true if colored states were physical).
So at a deeper level it appears that either approach (hadrons or quarks) should work,
and the best choice is the system that can describe the relevant physics more compactly.
Further discussion of this issue is clearly beyond the scope of this review.

3.6. Relativistic calculations using nucleon degrees of freedom

This long section is divided into six parts as follows: (i) Introduction, (ii) Overview of
propagator dynamics, (iii) Choice of propagator and kernel, (iv) Examples of propagator
dynamics, (v) Overview of hamiltonian dynamics, and (vi) Examples of hamiltonian
dynamics.

3.6.1. Introduction The inhomogeneous Lorentz group, or the Poincaré group, is
described by 10 generators: three pure rotations, three pure boosts, and four pure
translations. If we require the interactions to be local and manifestly covariant under
the Poincaré group, we are led to a local relativistic quantum field theory with particle
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production and annihilation [B(]. In this case the Poincaré transformations of all matrix
elements can be shown to depend only on the kinematics (i.e. they depend only on the
masses and spins of the external particles). The disadvantage is that the number of
particles is not conserved. If perturbation theory can be used, this approach is very
successful, but in the nonperturbative regime of strong coupling meson theory it leads
to an infinite set of coupled equations that cannot be solved in closed form. Numerical,
nonperturbative solutions of field theory can be obtained in Euclidean space for a few
special cases [BI]. Methods that limit the intermediate states to a fized number of
particles (two nucleons in this case) are more tractable, and all modern calculations are
based on the choices depicted in the decision tree shown in Fig. []].

In deciding which method to use, if is first necessary to decide whether or not
to allow antiparticle, or negative energy nucleons to propagate as part of the virtual
intermediate state. Since nucleons are heavy and composite, so that their antiparticle
states are very far from the region of interest, some physicists believe that intermediate
states should be built only from positive energy nucleons, and that all negative energy
effects (if any) should be included in the interaction. These methods are referred to
collectively as hamiltonian dynamics and are represented by the left hand branch in the
figure. Unfortunately, it turns out that this choice precludes the possibility of retaining
the properties of locality and manifest covariance enjoyed by field theory. Alternatively,
in order to keep the locality and manifest covariance of the original field theory, other
physicists are willing to allow negative energy states into the propagators. These
methods, represented by the right-hand branch of the figure, are referred to collectively
as propagator dynamics. Including negative energy states tends to make calculations
technically more difficult and harder to interpret physically, and those who advocate the
use of hamiltonian dynamics do not believe the advantages of exact covariance justify
the work it requires.

Unfortunately, these two methods are so fundamentally different that many
physicists do not realize that the limitations of one may not apply to the other. For
example, for some choices of propagator dynamics all 10 of the generators of the Poincaré
group will depend only on the kinematics, and the Poincaré transformations of all
amplitudes can be done exactly. With hamiltonian dynamics this is not the case; some
of the 10 generators must depend on the interaction, and transformation of matrix
elements under these “dynamical” transformations must be calculated. Comparison of
the two methods is therefore very difficult; the language and issues of each are very
different and one can be easily misled by the different appearance of the results. We
cannot discuss these issues in detail in this review, and refer the reader to two recent
references that survey the subject (@, BJ]. Here we will give a short review of some
recent calculations, and explain these differences as we go along.

3.6.2. Overview of propagator dynamics Propagator calculations all start from the field
theory description of two (in this case) interacting particles. While some may prefer to
express the field theory as a path integral, it is also possible to adopt a more intuitive
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Figure 11. The relativistic decision tree discussed in the text.

approach and imagine expanding the path intergral as a sum of Feynman diagrams
(ignoring issues of convergence for the moment). In order to generate the deuteron
bound state, which produces as a pole in the scattering matrix, it is necessary to sum
an infinite class of diagrams, written as

M3 P) = V(o P) + | G0 Vo ks PYG(E PV 1 )
d"k
+/ (2m)m

_I_ e

where V(p,p’; P) is the kernel being iterated, G(k,P) the two body propagator,
M(p, p; P) the scattering amplitude, and the other quantities are defined below. This

/ é;’;n V(p, k; P)G(k, P)V(k,K; P)G(K', P)V(K,p; P)

(50)

sum is obtained in closed form by solving the integral equation
/ / dnk /
M. P)=Vip.p: P+ [ ooV ks PG PIMk 3 P). (1)

If the series (B() is compared to a geometric series 1 + z + z? + - - -, then the solution to
the integral equation (pl]) can be compared to the sum of the geometric series 1/(1 — z).
The geometric series converges only when |z| < 1, but its unique analytic continuation,
1/(1 — z), is valid for all z. Similiarly, it is assumed that the solution to (BI]) is valid
even when the series (B() diverges. And just as the geometric series has a pole at z = 1,
the solution to (FI)) will have a pole at P? = m2, the square of the deuteron mass.

The amplitudes V, G, and M are all matrices in the NN spin-isospin space, and
are functions of the four-momenta P = p; + py and p = (p1 — p2)/2, with p; and po
the momenta of the two particles (labeled in Fig. [J). The dimension of the volume
integration is n, normally either 3+1=4 (3 space + one time dimensions) for the Bethe-
Salpeter method, or 3+0=3 for the quasipotential methods described below.

If Eq. (B1) has a homogenous solution at some external four momentum Pj = m3,
the scattering matrix will have an s channel pole (represented in Fig. [[J), signifying the
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Figure 12. The summation of ladder diagrams leads to the covariant scattering
equation.
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Figure 13. The bound state equation holds near the pole in the scattering amplitude.

existence of a deuteron bound state. The verter function for the deuteron bound state
satisfies the equation

d"k
Do Fo) = [ gy Voo ks PG POT(k: Fy) (52)
with covariant normalization condition
B d"k . 0G(k, Ry) .
d"k A"k . , OV (K k; Ry) .
The covariant bound state wave function is defined by
V(p; Ry) = G(p; o) U(p; o) - (54)

One of the advantages of the propagator approach is that the construction of the
current operator is comparatively straightforward. It follows (at least in principle) from
summing all electromagnetic interactions with all the consituents everywhere in the
ladder sum. For bound states described by the Bethe-Salpeter or Spectator formalisms
(see the discussion below) there are two diagrams, illustrated in Fig. [[4, that can be
written
THP, Py) = e/ é:;zn

\IIT (%Pé — k‘g; Pé) Jﬁ(k