
JLAB-PHY-01-17

Jefferson Lab Mass Storage and File Replication Services♣

Authors: Ian Bird (Ian.Bird@jlab.org), Ying Chen, Bryan Hess, Andy Kowalski, Chip Watson

Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue,
Newport News, VA 23606, USA

Abstract
Jefferson Lab has implemented a scalable, distributed, high performance mass storage system -
JASMine. The system is entirely implemented in Java, provides access to robotic tape storage and
includes disk cache and stage manager components. The disk manager subsystem may be used
independently to manage stand-alone disk pools. The system includes a scheduler to provide policy-
based access to the storage systems. Security is provided by pluggable authentication modules and is
implemented at the network socket level. The tape and disk cache systems have well defined
interfaces in order to provide integration with grid-based services. The system is in production and
being used to archive 1 TB per day from the experiments, and currently moves over 2 TB per day
total. This paper will describe the architecture of JASMine; discuss the rationale for building the
system, and present a transparent 3rd party file replication service to move data to collaborating
institutes using JASMine, XML, and servlet technology interfacing to grid-based file transfer
mechanisms.

Introduction
Thomas Jefferson National Accelerator Facility (Jefferson Lab) operates a high intensity continuous-
wave electron accelerator facility (CEBAF) with experimental facilities investigating the quark and
gluon structure of nuclei in the energy regime that overlaps traditional nuclear and high energy
physics. The intense nature of the delivered electron beam and the desire for extremely high precision
in the experiments leads to very high event rates and consequently data rates. Current experiments
acquire data at between 10 - 22 MB/s, with several hundred Terabytes of data per year stored. Future
expected upgrades of the accelerator and the experimental facilities, including the addition of a fourth
experimental area, will mean an order of magnitude increase in data rates. At that time, data
acquisition rates of 100 MB/s and data storage needs of 3 PB/year of raw, processed and simulated
data are expected. These expectations are similar to those of LHC experiments in schedule and
magnitude. The physics collaborations involved in these experiments are international with typically
150-200 scientists from institutions world-wide involved. The scientific, technical, and sociological
requirements to employ computing- and data-grid technology are just as vital for success in this field
as they are in LHC and other large experiments. Jefferson Lab is a member of the Particle Physics
Data Grid (PPDG) project1 in order to provide remote data services to current experiments as well as
to investigate solutions for the future.

In order to support the storage and computational needs of the experiments the laboratory operates a
facility with 2 StorageTek data silos equipped with 28 tape drives (9940, 9840, and RedWood),
supplemented by some 25 TB of managed and unmanaged disk pools. These disk pools are
constructed from systems of IDE or SCSI disks using RAID levels 0 or 5 according to the use of the
system. Computation for reconstruction and analysis is provided on a farm of 350 Linux processors.
In addition the laboratory is also building a Lattice QCD cluster, expected to reach 0.5 Teraflops early

♣ This research was sponsored by the U.S. Department of Energy; contract DE-AC05-84ER40150.
Views and conclusions contained in this paper are the authors’ and should not be interpreted as
representing the official opinion or policies.

JLAB-PHY-01-17

in 2002. This project is in collaboration with MIT and will also use data-grid services to provide
access to remote collaborators. Figure 1 illustrates the data and computational facilities.

The JASMine Storage Manager
The mass storage system described here was built to provide robust, distributed, scaleable and fault-
tolerant data access facilities to the experiments and their collaborators both local and remote. Until
recently,
Jefferson Lab
used OSM as the
basis of its
storage
management
software, but
overlaid by Java
software that not
only provided the
user interface, but
also provided
disk cache
management,
request
scheduling, and
tape staging. As
a replacement for
OSM was sought
it became clear

that other
existing storage
systems lacked
most of this functionality, or were not affordable or manageable by a small staff. Thus the JASMine
system was built upon the existing Java layer to provide the functionality lacking in OSM. The
resulting software is a lightweight, flexible, but scaleable distributed system capable of meeting the
needs of existing and future high data rate experiments.

Architecture and Features
The complete architecture of the JASMine (Jefferson Lab Asynchronous Storage Manager) system
has been described elsewhere2 and is illustrated in Figure 2. A brief overview of the main functions
and features are given here. The system is entirely implemented in Java. The major components are a
MySQL database that controls the system, distributed data movers, distributed cache managers and
administrative and control daemons. Most services are replicated. The data movers, which run on
Linux or Solaris systems, have local disk buffers for staging data to and from tape. Each data mover
contacts the central database for work.

File movement uses an extensible protocol which uses serialized objects as messages passed over
streams. For bulk data transfer the implementation reverts to raw data transfer over tcp for efficiency.
The basic protocol is synchronous, multiple requests and asynchronous behavior is achieved with
multiple threads. Security is provided within the protocol with an Authentication interface that allows
any suitable authentication mechanism to be used. This is applied to all network connections and
communications. It is planned to provide an implementation of the Globus Security Infrastructure
(GSI)3. A further level of security is provided via a pluggable file transfer policy – for example each

Tape storage system
•12000 slot STK silos
•8 Redwood, 10 9940, 10 9840 drives
•7 (Solaris, Linux) Data movers with ~ 300 GB buffer each

•Gigabit Ethernet or Fiberchannel
•Software – JASMine

15 TB Experiment cache pools

2 TB Farm cache

0.5 TB LQCD cache pool

Reconstruction & Analysis Farm
•350 Linux CPU

•~10 K SPECint95
•Batch system:

•LSF +
•local Java layer +
•web interface

Lattice QCD cluster(s)
•40 Alpha Linux
•128 P4 Linux (~Sep 01)
•256 P4 Linux (~Jan 02) – 0.5 Tflop
•Batch system:

•PBS +
•Web portal

clients

clients

10 TB unmanaged disk pools

JASMine managed mass storage sub-systems

Figure 1: Jefferson Lab Mass Storage & Farms

JLAB-PHY-01-17

client request is only authorized to perform the file transfers it requested. The same protocol is used
for all data transfers
within the system, and
CRC32 checksums are
used at each stage to
verify integrity of the
data.

The system provides a
hierarchical scheduling
mechanism to prioritize
access to the system
based on individual or
groups of hosts and
users. This permits the
system to be optimized
so that production farms
and associated users and
groups get high priority
access to tape - thus
keeping the farms busy.
It also prevents certain
users or remote mini-
farms from hogging system resources. Internally, however, the system will always optimize file
access on tape so that any outstanding requests that use mounted tapes will be serviced first no matter
what priority that user has.

A significant feature of the system is the cache manager component. This component is used within
JASMine in a variety of ways – as a stage disk manager within the data movers, as a cache server
managing a disk pool, or deployed as a remote client. A cache server is a pool of disk that is
automatically managed by the system. The protocol above is extended with database hooks, the
database then shared between several cache servers to create a high-throughput disk pool. Any cache
server in the pool can look up a file location. In that sense it is serverless, but data transfer is always
direct between the client and the node holding the file. Thus adding servers (and disk) to the pool
increases the throughput with no overhead and provides tolerance against failure. The policy used to
manage a pool can be one of those existing, or externally defined. Current policies include reference
counting (for stage disks), least recently used (cache pools), or explicit deletion for some long-lived
data. The cache server can be deployed to a remote site to act as a remote client to the JLAB mass
store as the basis for a transparent file replication service. This is useful for collaborators who have a
Linux system with a disk pool who wish to stage data remotely for analysis. Network efficiency is
improved by support within the protocol for multiple simultaneous file transfers and with a Java
stream for parallel file transfer currently under development.

Data Grid and Web Services
In order to provide a useful service to the user community, one of the first requirements is a reliable
end-to-end remote file transfer capability. There are several possible scenarios – using the cache
server as a remote client as described above, or providing a standard interface into the JASMine
system so that it can function as a black box and respond to data-grid requests for files. Both of these
strategies are being followed to achieve the short- and long-term goals of the experiments. The cache
server software is being deployed to Florida State University in conjunction with the CLAS

Dispatcher

Cache
Manager

Drive
Manager

DriveDisk

Library
Manager

Volume
ManagerClient

Request
Manager Scheduler

Data Mover

Log
Manager

Library
Manager

Database

Request
Manager

Database Connection

Service Connection

Log Connection

Figure 2: JASMine architecture

JLAB-PHY-01-17

experiment4, and to MIT as part of the collaboration on Lattice QCD to manage data transfers
between those facilities. As part of the long term strategy, work is proceeding within PPDG to define
and implement standard interfaces to a storage system which will enable Jefferson Lab storage
systems to be integrated as a node on the data grid providing file transfer and replication services in a
standard way.

A natural extension to the basic data grid services is to provide access to those services to web-based
applications. At
Jefferson Lab a data
management portal has
been implemented using
Java servlets in the
Apache web server with
the Tomcat servlet
engine. The servlets
make metadata available
in the form of XML
data structures. Other
servlets are used to
apply style sheets to the
XML to permit web
browsing. The replica
catalog service has been
implemented as a
simple MySQL
database accessed by the servlets via JDBC, and supports a recursive directory structure. A grid node
system acts as the front-end to the disk caches and tape storage. A minimal set of operations includes
staging files to and from tape, adding files to cache, and the ability to pin/unpin files in cache. For
data transfer, this node translates the logical file name to the URL of a server able to provide or
receive the file. Actual transfer mechanisms are independent of this service, but will include gridFTP
as a minimum. Authentication based on X.509 certificates is available now, and will be made to
interoperate with GSI.

The web service layer will provide web-based (browser or application) file selection and queuing of
3rd party file transfers. The data management web service is viewed as one component of an
integrated portal (Figure 3) allowing experimenters web access to batch and data management
services, including experiment-specific layers to permit file and compute operations based on
experiment metadata. It is foreseen that the use of web technologies such as XML, servlets, and
standards-based protocols such as SOAP will aid the rapid development and deployment of these
services using available tools.

1 Particle Physics Data Grid collaboration. http://www.ppdg.net
2 Building the Mass Storage System at Jefferson Lab. Ian Bird, Bryan Hess, Andy Kowalski.
Proceedings of the 18th IEEE Symposium on Mass Storage Systems, April 2001.
3 Globus: http://www.globus.org
4 Cebaf Large Acceptance Spectrometer (CLAS). http://www.jlab.org/Hall-B

Web Browser

XML to HTML servlet

Web Service

Application

Web Service

Web Service

Grid Service

Local Backend
Services

(batch, file, etc.)

Web Server
(Portal)

Authenticated connections

Remote
Web
Server

Web Service

File Daemon
Grid resources,

e.g. Condor

Batch Daemon

Figure 3: Three-tier web services architecture

