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At high energies the particles move very fast so their trajectories can be approxi-
mated by straight lines collinear to their velocities. The proper degrees of freedom
for the fast gluons moving along the straight lines are the Wilson-line operators
— infinite gauge factors ordered along the straight line. I review the study of the
high-energy scattering in terms of Wilson-line degrees of freedom.
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1 Introduction

Traditionally, high-energy scattering in perturbative QCD (pQCD) is stud-
ied by direct summation of Feynman diagrams. In the leading logarithmic
approximation (LLA)

~1

S
as < 1, o, In - , (1)
m

the amplitudes at high energy are determined by the Balitsky-Fadin-Kuraev-
Lipatov (BFKL) pomeron® (for a review, see Ref. 2),

s )12%1112

Als) ~ ( (2)

Here m is the characteristic mass or virtuality of scattered particles (for ex-
ample, for the small-z deep inelastic scattering m? = Q?). In order for per-
turbative QCD (pQCD) to be applicable, m must be sufficiently large so that
as(m) < 1.

The power behavior of BFKL cross section (:2:) violates the Froissart bound
and, therefore, the BFKL pomeron describes only the pre-asymptotic behavior
at intermediate energies when the cross sections are small in comparison to the
geometric cross section 2rR2. In order to find the true high-energy asymp-
totics by analysis of Feynman diagrams we should sum up not only the leading
logarithms (a4 1n s)™ but also the sub-leading ones a4 (a;In s)™, then the sub-
sub-leading terms a?(aslns)", etc. This is almost equivalent to finding an
exact answer to arbitrary QCD amplitude in all orders in perturbation theory.
A more realistic approach is to unitarize the BFKL pomeron, i.e. to sum up the
subset of sub-leading logarithms which restores the unitarity in s channel. Still,
it is a difficult problem which has been in a need of a solution for more than 20
years. One of the most popular ideas on solving this problem is reducing QCD
at high energies to some sort of low-dimensional effective theory which will be
simpler than original QCD, maybe even to the extent of exact solvability. The
first step on this road is to identify proper degrees of freedom for this effective
theory. One of the possible choices is to formulate high-energy scpttering in
terms of “reggeized gluons.”a An alternative and related approach 3 is based
on so-called Wilson lines — infinite gauge links corresponding to fast gluons
moving along the straight-line classical trajectories.

An important aspect of the Wilson-line approach to high-energy scatter-
ing is the fact that it serves as a bridge between pQCD calculations and the
semiclassical approach to high-energy scattering based on the solution of the
classical equations for the fast-moving sources? The semiclassical QCD (sQCD)
is applicable when the coupling constant is small but the characteristic fields

m2
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produced by colliding particles are large, ~ é. As advocated in Ref. 4, sQCD
may be relevant for the heavy-ion collisions because the coupling constant can
be relatively small due to high density of partons in the center of the collision.
The relevant “saturatjqn, scale” was estimated to be ~ 1 GeV at RHIC and
~2—3 GeV at LHCELS

Let us demonstrate that,the relevant degrees of freedom for the high-energy
scattering are Wilson lines? As a result of the high-energy collision, we have
a shower of produced particles in the range of rapidity between those of the
colliding particles. Consider two clusters of particles with different rapidities:
“A” particles with rapidities close to n4 and “B” particles with rapidities
~ np. From the viewpoint of the “B” particles the “A” gluon moves very
fast, so its trajectory can be approximated by a straight line collinear to the
gluon momentum, see Fig. -'1.' The propagator of such gluon reduces to the free

fast 0 M, ) U(X,, Ny )

“Wilson line" - infinite gauge link
slow (1~ ) Jat9

Figure 1: Propagator of a fast “A” gluon in the slow “B” background.

propagator multiplied by the infinite gauge factor (made from “B” gluons)
ordered along the straight line parallel to n 4, the direction corresponding to
the rapidity na:

U(x,na) = [cona+ x, —ocons + x]. (3)

Hereafter we use the notation
1
[z,y] = Pexp ig/ du(z —y)* Ap(ux + (1 —u)y) (4)
0

for the straight-line gauge link connecting the points # and y. Therefore, the
B particles can interact with A fields only via the Wilson lines (). Similarly,
if we sit in the rest frame of the “A” gluons the “B” particles are moving fast
along the direction collinear to the vector np corresponding to rapidity 7p, see
Fig. :_2 The propagator of these gluons reduces to the Wilson line (made from
“A” gluons) collinear to ng

U(z,np) = [oonp + x, —oconp + x]. (5)

Again, the relevant degree of freedom is the non-local Wilson line (&) rather
than the local field A(x). We see that the particles with different rapidities
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sow (n~n,)

Gl = Yme)
fast (N~ng)

Figure 2: Gluon of “B” type viewed from the rest frame of “A” gluons.

perceive each other as Wilson lines. The formal proof of this statement in
terms of Feynman diagrams is given in the Appendix (see also Ref. 9).

In this review I give a pedagogical introduction to the Wilson-line-based
approach to high energy scattering. After a short overview of the traditional
approach, I shall present the operator expansion for high-energy scattering
which provides the operator language for the BFKL equation in the same way
as the usual light-cone expansion gives the operator description of the DGLAP
equation. Unlike the latter, there is a symmetry between the coefficient func-
tions and matrix elements in the high-energy operator expansion which can
be summarized by the factorization formula for high-energy scattering. This
factorization formula gives us the rigorous definition of the effective action for
a given interval of rapidity. In the last section we discuss the semiclassical
approach to effective action related to the problem of scattering of two shock
waves in QCD.

2 The hard pomeron in pQCD

Since there are many excellent reviews of the traditional, Feynman diagrams-
based, approach to high-energy scattering (see e.g. Refs. 2, 10), I will present
here the short introduction to the subject so as to set up the stage for the
subsequent analysis of the high-energy scattering in terms of Wilson-line op-
erators.

2.1 High-energy v*v* scattering

For simplicity, we consider the classical example of high-energy scattering of
virtual photons with virtualities ~ — m?

Als,t) =~ / d'wdyd* zem PAT T PEVTRA O T {ja (@) 5 (y)74 (2)75(0)}]0). (6)

Here ja(z) is electromagnetic current j#(x) multiplied by the polarization
vector el‘:‘ p). In the Regge limit (s > m?, t) it is convenient to use the Sudakov
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decomposition:
P = oppl + Bpph + P11, (7)
where pf and ph are the light-like vectors close to pa and pp, respectively:

2 2
P P
pa=Dp1+ fpz, pB = D2 + ?Bpl, r=pp — P =amp1 + Brp2+7ri. (8)

The momentum transfer r = p/y — pa = a,p1 + Brp2 + 71 has components
ap ~ Bp ~ % so t ~ —i2. The typical diagram for the high-energy ~*~*
amplitude is shown in Fig. 3 (recall that the diagrams with gluon exchanges

dominate at high energies).

pA\\ . pja\
S

Figure 3: A typical Feynman diagram for the high-energy v*~* scattering.

We will calculate the imaginary part of the amplitude A(s, t)

1
W = —ImA. (9)
T

The real part of A(s,t) can be restored using the dispersion relations. (It
turns out that in the leading logarithmic approximation (LLA) the amplitude
at high energy is purely imaginary, see e.g. the review in Ref. 2).

Let us start with the lowest-order diagrams shown in Fig. 4. The integral
over gluon momentum k = agp; + Bxp2 + k1 has the form

0_24 d'k 1 1 ab Enab

where (‘I’A)gf,(k,r — k) and (@B)gf,(—k,k — r) are the upper and the lower
blocks of the diagram in Fig. 't_l: (stripped of the strong coupling constant g).
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Figure 4: Lowest-order diagrams for the high-energy scattering of virtual photons.

Here a,b and &, 7 are the color and Lorentz mdlceb, respectively. In the Regge
kinematics (= s >> everything else) ap ~ ﬂ and B, ~ x so k2 ~ —k2.
Moreover, alpha’s in the upper block are ~ 1 so one can drop ay in the upper
block. Similarly, beta’s in the lower block are ~ 1 hence one can neglect G in

the lower block. We get (®% = %‘bcc)

24
0 _
w =1 0291) (11)

X / k11 Im &g (k,r — k)| Tm & (—k, k —1)|
6ri g2 (7 -k =0 ’ g

x=0"

where N, = 3 is the number of colors. At high energies, the metric tensor g””

in the numerator of the Feynman-gauge gluon propagator reduces to 2 p2 Py,

so the integral (:11-) for the imaginary part factorizes into a product of two
“impact factors” integrated with two-dimensional propagators

N2 -1 2 ko 1 1
WO =gt - (Zeg) / R Ik, r )P (<o, —r0),

p 4 472 k% (7 — E)i
(12)
where
E.n
A __ vy P 1 -
IB(—ky,—r >:p§—p2(262) /d%I PN, (—k k=) (14)
1y 1 S(NCQ . 1) q 2 Nén ’ Be=0 ’

and (Z e ) is the sum of squared charges of active flavors. The photon impact
factor is given by the two one-loop diagrams shown in Fig. 5
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Figure 5: Photon impact factor.

The standard calculation of these diagrams yieldsd®

IA(k;l,rl):fA(kL,rl)—fA(O,rl), (15)

where
_ _ —1
Pkiry) = / / 20— [Pha’ + (paPalaa)  (16)
X {(1 —2aa)(1 — 20/ & )P} (€a, &) L + daac/ o/ [PE(En, &)1
— 2(P,Ea)L(P, &) 1] + (e, €4) L (% — (Pla)*)aa(l - 20a)

X (1 — 20/) + 40407(1 — 20[)0/(13, gA)L(F, gA)L}

for the transverse polarizations A, A’ =1,2. Here P =k, —r « and (a,b)
denotes the (positive) scalar product of transverse components of vectors a
and b.

2.2 The BFKL kernel

In the next order in perturbation theory there are two types of diagrams for
the v*+* amplitude: diagrams with 5-particle cut describing the emission of
an extra gluon and diagrams with 4-particle cut as in Fig. 4 but with an extra
gluon loop.

Let us at first consider the diagrams with the 5-particle cut shown in Fig. 6.
The contribution of the diagram shown in Fig. 6a has the form

wo / / .k Imq’”m% r— k) In®§™" (<K, K — 1)
(a) 1674 1674 — k)2 (K)2(r — k)2
« f‘"”cfb"cruf k} K )277‘5((/(3 K ) )9( )Fw,g(T —k,r— k/)
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p p-kk p-k+k’
r-k r-k r-k
+ kK + + K
r-k Kk’ r-k Kk
(b) (c) (d)
p
r-k r-k r-k K Ik
+ k + k + Kk , =
r-k' r-k’ r-K K K
D p’-k+k’ p-k+K
(e) ® ) (h)
Figure 6: The effective vertex in LLA.
Enmn /o
Im®3"™"" (=K' k' —r) (17)

(K)2(r — k)2 J
where
Cua(k, B') = (b + K )aguw + (K" = 2k)uga, + (k — 2K) 1901 (18)

is the three-gluon vertex divided by g. (Strictly speaking, in order to obtain
®4 and &P we must add the diagrams with permutations of the quark lines, as
in Fig. 4). As mentioned above, it is convenient to use Sudakov variables (i):
k= agpi+ Prp2+ ki, k' = ajpi + Bp2+ k' . We will see that the logarithmic
contribution comes from the region

, om? o om? / 2 r\2 2
1>>oz>>oz~?, ?~6<<6<<1, k5~ (K')* ~m”. (19)
In this region k2 = apfrs — k2 ~ —k2. In the same way, (k)2 = —(k')2,
(r—k)2=—(F—k)?2, and (r— k')2 = —(F — ¥')2. As we mentioned above, at

high energies we can replace g"” in gluon propagators connecting the clusters

9



with different rapidities by 2222% 2p L. With these approximations, the integral
(i7) reduces to

N 2 6( )4/ dadBy, d?k / dojdp;, d*k') 1 1
= =9\ =

(a) 7 \s 472 4x? dm? Am? 2 (7 - )

X Im®% P (k,r — k) o forer,, 7 (k, k')216 (o By s + (k — k)2 )0(cur)

1 1

X Tewo(r —k,r — k') =——5—Im®y"" (—Kk', k' — 7). (20)

@2 (R

Since « in the upper block is ~ 1, one can neglect ay- dependence in ® 4 which

leads to the replacement of f dﬁk‘b 4 by the impact factor I4 (ki,71), see
Eq. (:16) Likewise, [daj®p — IB(K' ,r1) so we get

) _  29° Ne(NZ—1) 2\
Way = Tf(zeq) (21)
d*ky A’k _, 1 1 B
I ———— — — 15 (K,
< O P e
x / do:fciﬁkr 9k, k") 2m6(arBs + (k — B)2)0(ar)Tasio (r — kv — k).
7I

Let us now turn to the diagram shown in Fig. 6b. Since the gluon with mo-
mentum k — k&’ now connects parts of the dlagramb with different rapidities, we

can replace g"” in this propagator by oPari 2 2PL - After that, the quark propagator
with the momentum p + &’ in the upper block reduces to

a (ap+ap)by + B+ K, . " 1 .
t > =ty ———1°, (22
162 —(ap + ) (Bp + By)s + (0 — k)] —ie & 2 —B3, — ie (22)

(vecall that o, ~ 1, 5, ~ m? 7). We see that in the transverse space this propa-
gator shrinks to a point so the answer for the upper block is again I multiplied
by A i + —. (The eikonal factor 6’ - is the Fourier transform of the first term of

the expansion of Wilson-line propagator ({)") in powers of “external slow field”
represented by gluon with momentum &’). The right part of the diagram in
Fig. 6b is identical to that in Fig. 6a so we obtain

2
ﬁTr{tatctb}/d kl/dakdﬁkd lIA(kl,Tl)fbac (23)
1

W)

(b) 472

1 o
@m%ﬂ(akﬁ;s + (k: —k)2)0(ap)Tene(r — k7 — k)
1

TIB(M,M)-
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The contribution of the diagram in Fig. 6¢ is calculated in a similar way. One
can replace

tcﬁz[(ap —ap+ap)p + P — KL+ k/L]’tha] oty 1 1, (24)
(ap —ar+a))(Bp — Br + B,)s — (B — k;—l—k;’) + i€ 25}2—1'6 ’
and, therefore,
e A’k [ dopdp,, d?K' abe
W((f)) = ﬁTr{tbt t }/ / o= k lIA( 1,71 fe%e (25)
1 1 -
x ————278(cBhs + (k — k)2 )0(c)Tose(r — k, 7 — k'
A (akBes + ( )71)0(k )T e )
1 1
X IB(kl,Tl).

(R (7= F)2

Note that the sum of the results (1), (23), and (23) may be obtained from
the contribution (21) of the diagram in Fig. 6a. by the replacement

7.2
T2 (k K) — T (k) — dpg (26)
k

Now consider now the the diagram in Fig. 6d. The two quark propagators
carrying the momentum k' give

" (1- Oépj‘ )b — P+ KL
(1- ayp + O‘;g)("; — By + Bk)s — (- k/) + i€
x g (p +ap)p + V. + kil ,
(ap + ) (Bp + By)s — (P — k/)i + i€
I—ap)py =¥+ K. et (ap + )P + Po + kl. 27)
(1—ap)B;s apf),s

— P

Since we cannot keep both large terms (1 — a,,)p1 and appq in the numerators

this expression is g} times smaller than the contribution (23) of the diagram
in Fig. 6b so it vanishes in the LLA.

The diagrams in Fig 6e,f are calculated in the same way as the diagrams
in Fig 6b,c. Similarly, the result may be obtained from Eq. (21) by the re-
placement

7\ 2
0,2k, k) — —@pg. (28)

QLS

11



In conclusion, the diagram in Fig. 6g vanishes in the LLA for the same reasons
as the Fig. 6¢ diagram.

Thus, the contribution of the diagrams in Fig. 6a—6e can be represented
by one diagram shown in Fig. 6h:

6 2 2
&) _ sg° Ne(NZ—1) 2
Wk.q) = T 4 (Zeq) (29)
2 21./ 1 1
X /d4]€2L d4k2lIA(kl7TL) o 5 e T2 = T QIB(k/L7TL)
& & k(7 —k)T (K)1 07— k)1
/
x / do;kciﬁ’“L“(k,k’)27r5(akﬁ,;s+(k;—k’)i)e(ak)F.*a(r—k:,r—k:’),
T
where
9 L \2 2
Lk = Zrnoen) -2l g U
s B8 s
= (k+K)] —(a +2EQL 7 — (B +2@)p“ (30)
s k 5}23 1 k RS 2

is the Lipatov effective vertex for the gluon emission shown in Fig. 6h by
a shaded circle. Note that unlike the usual three-gluon vertex, the effective
vertex is gauge-invariant,

(k — K)o L7 (k, k') = 0. (31)

We have demonstrated that if we take the diagram in Fig. 6a and attach
the left end of the kK — k' gluon line in all possible ways, the left three-gluon
vertex in Fig. 6a is replaced by the effective vertex (:_§Q') Likewise, the sum of all
possible attachments of the right end of this k¥ — &’ gluon line converts the right
three-gluon vertex ey (1 — k, 7 — k') into the effective vertex L, (r —k,r —k').
Hence the sum of all the diagrams with 5-particle cut takes the form (see Fig. 7)

2

wE %W(Zg)“ (32)

4 1) 2
/ Pk K, Tk, )P (K ry)
Am?Am B2 (7 k) (k)3 (F - )}

dokdBy 1o 1 1Noms(anBls + (k— K2 )0(an) L kor— k'
SOR 17 1, )2 s + (= )2 )0(w) Lo (r — yr = W),
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- ~
- ~

Figure 7:  Sum of the diagrams with gluon emission in LLA. Shaded circle denotes the

effective vertex.

Since ayf),s = —(E - E’)i due to the d-function, the product of two Lipatov’s
vertices gives

1
5L"(k, KLo(r —k,r — k)= -/ + - . (33)

which_is proportional to the “emission” part of the BFKL kernel, see the
Eq. (3@‘) below. Now one can easily perform the remaining integrations over
ay, and 3, in the LLA

1
L 1
s/dakdﬁ,;a(akﬁ,;s +(F—F)2)0(an) = / daj— = In—, (34)

m2 g m
s

and, therefore, the final result (for the diagrams with 5-particle cut) is

S N02 — 1 2 S
Ww®) - 4 - g_ﬂNcan (35)
&Lk Pk, | o
dr R 50
i dn? (h,m)]gw_E)iKl(m,kl,r) (K',r1)
where
Kay(ko, ki) = - ik + K P i
SRR R (R)LGR - R)? (k’—f)i(k_kl();@

is the first part of the BFKL kernel coming from the diagrams with gluon
emission.
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N
k' k-k’
g —

L7 PP
(a) (b)
JI
+ K r-k = k’ r-k
p'-k+k’ p'-k+k’ p’-k+k’ p’ —
(e) ® )] (h)

Figure 8: Virtual corrections.

Apart from the diagrams with 5-particle cut shown in Fig. 6, there are
also diagrams with four-particle cut (“virtual corrections”) of the type shown
in Fig. 8. Let us consider the diagram shown in Fig. 8a. The integrals over
ay and [ are similar to the same integrals in the first-order diagram in Fig. 4
and therefore ay ~ [ ~ % The logarithmic contribution comes from the
region 1 ~ a; > ), > ay.. In this region we can replace the quark propagator

with momentum p — &’ by the eikonal propagator (see Appendix 7.1),

Po(V+ K) o = o——— (37)

6k;+6

In addition, one can neglect 5}, in comparison to BI’O ~ 1 in the lower block .
The loop integral over k' turns into

/da;dﬁ,; d*K [t“ P tb] 1 1
Am? A [ =P e | ol Bls — k3 o (B, — k) — (k- k)2
[ BB ot B KD) ,,] | (38)
akﬂ’s -+ k;’)
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The integral over 3, is determined by the residue at 3, = 0 so we obtain
1 / 21./
d d°k 1 1
[t [ ) e
me LT, d k5 (k= k)7

2 21./
ey plfay ] O, s [ERLL1
= [t ot [t x L / R (39)

Let us add now the contribution of the diagram in Fig. 8b. Like the Fig. 8a
case, we get the loop integral over k&’ in the form

/da;dﬁ,; A2k [t“ po tb] 1 1
Am? Am? [ =By tie | af s — B3 o (8 — Bk) — (K — K}
l By, Pt ¥+ KL) B b]

akﬁ’s— [ —l—k;’

Yodal, [ d?K) 1 1 o
/m_2 2770(2/ 472 [t pat }E(k_k/)i [t Zélt}

[ta Mb} [taﬁltb} X%m%/ d:f; (K2 (kl k)2 40)

The diagrams shown in Fig. 8c—g do not give the logarithmic contribution for
the same reason as the diagram in Fig. 6d.
We see that the sum of diagrams in Fig. 8a—g reduceb to the first-order

diagram in Fig. A.a with the left gluon propagator T replaced by the factor
—k3
1 2 21./ 1
— - T N.In S/dk i (41)
A e B

shown schematically in Fig. 8h. We get

2 2 2
(4) - s 4NZ—1 N2 g S
Wik = —39' = () ety (42)

/koL IA(]CL,TL)IB(]CL,TL) /koJ/ EQ
Rk Am? (B3 (k- k3 f

The diagrams with the gluon loop to the right of the cut lead to similar re-
placement of the right gluon propagator —1—— by

X

o
2 21./
1
! 2_>9N01n%/d’2l .
R Tl N (AN T
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Thus we obtain the result

2 _ 2 2
@ _ _£4M( 2) 9- S
w = 7Tg 1 Ze 7TNclnm

/ d?ky T2 (ky,r ) Ig(ky,r1)
R

/d?k;{q R At } (a4
i \WRE-FR R —rE - R

for the contribution of the diagrams with 4-particle cut.

X

Adding the sum of the diagrams with real gluon emission W® we obtain
the final result for the v*v* scattering amplitude in the first order in LLA. It
can be represented in the form

P N AR i/dQ_’C@
W= 7rg 4 (Zeq) 27rNcln m?2 | 4n? 472 (45)
1
x 1 (kLaTi) QK(klaklaT)IB(klarl)a

where

1
Kk, K\ r) = Kay(ki, k), r) — 55<2>(k — ) (46)

ko”L EQ ko”L (E _ 7?)2
x 2 (N2 (1 )2 + 2 2 (1L Im\2
4 (k?”)L(k? _ k”)L 4 (k” _F)L(k _ k”)L

is the BFKL kernel® The explicit form of K is

Kk K, 1) = it

1 21 7.2 =2
——5<2>(k—k’)/d k; S S k) . (A7)
2 W (FRE-FE PR

Note that both WG and W® are IR divergent but their sum W' given by
Eq. (45) is IR finite. This is the usual Bloch-Nordsieck cancellation between
th emission of real gluon in diagrams in Fig. 6 and virtual gluon in Fig. 8.
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2.3 Bare pomeron in the LLA
The v*~* amplitude in the first two orders in perturbation theory may be

represented in the operator form as

d*k 1 2 5 -
WO+ — ZrA (115 N B
80/477_2 (kl,rl)]gi(f'_]g)i( +87T3 clanK)I (kjl,TL),

R (48)
where C = a (N2 — 1)(3"€2)? and the operator K, is defined by its kernel
K(k7 k/7 T)7

> 7 ko/ / 7
(Bof)(Fa) = [ DKk kSR, (19)

We can demonstrate (and we will do this using the evolution equations for
the Wilson-line operators) that in the next orders in LLA the operator K
exponentiates:

d2k 1 s \ Sk
LLA A 8w B
w = SC/RI (kjlﬂ”l)m (W) I (kL,Tl). (50)

It is convenient to represent the amplitude as an integral over the complex
momenta:

d+ioco
s s \¥
W(S,t) = 2—7” o dw(m) W(wat)a (51)
d?k T4k, 1
WLLA(wat) = C/m 7o (_al —al2) gz 2, IB(kl7Tl)7
k3 (7= k)T w— g Ne K,

where w = j — 1. The relation between the LLA and the power series for
W(w,t) is

LLA _ = 1 g s \™
W2 (s,t) = sC;n! (g 1nm2) falt) =
x 2n
WAt = ¢ T fult) (52)
n=1

where

d2k 1 Nc . n
fn(t)z/RIA(kbri)m (SWBKT> IB(kLﬂ”L) (53)

are the coefficients of the LLA expansion.
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The asymptotics of the amplitude at s — oo is given_by the rightmost
singularity of the integrand in the right-hand side of Eq. (E)l:) in the w plane.
The position of this singularity is given by the maximal eigenvalue of the
operator K, determined by the eigenfunction equation

) () = wf (R, (4)

This equation is solved at arbitrary momentum transfer r 1% yet it turns out
that the maximal eigenvalue of Eq. (50) does not actually depend on r. For
simplicity, let us consider the case » = 0 corresponding to total cross section of
v*v* scattering. (In the next section we prove that the position of singularity
does not depend on t = —7 ).

At r = 0, the full and orthogonal set of eigenfunctions of the BFKL oper-
ator are simple powers

f(];;) _ (EQ)_%"‘W@MW’ (55)
with the eigenvalues

1
w= 2Nc%x(y, n), x(v,n)= —Rellf(% +w)—C. (56)

The maximal eigenvalue is 2N, %= x(0,0) = 4%= N, In2, so the rightmost singu-
larity (intercept of the “hard pomeron”) is located at

j=1+wy, wo=42N,n2, (57)
™
so the asymptotics at high energies in the LLA is
s \4%=N.In2

It is easy to see that the singularity at w = wq is the branch point \/wl_—wo

As we mentioned in the introduction, the singularity at j > 1 violates the
Froissart bound ¢ < In? s. Recently, the next-to-leading correction (~ ay) to
the BFKL kernel was foundi? but the result still violates the Froissart bound,
so the unitarization of the BFKL pomeron is required. (Consequently, the
BFKL pomeron (5?) is sometimes called “the bare pomeron in pQCD”).

In the case of v*v* scattering, it is possible to find the explicit form of the
cross section in the LLA. Expanding impact factors I(k,0) = I(k) in a set of
eigenfunctions (53), we obtain

1
Co(pasps) = g'5(NE—=1)(>_ ) (59)
S 2Q—GNC v dpl A D \— 2 4iv dp/L B ,2 —%—iu
< Jav( e [P )t [T e,
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Here we neglected the angle-dependent contributions coming from n = 0 since
they decrease with energy. At s — oo the cross section (59‘) is determined by
the rightmost singularity in the v plane located at v = 0 (in terms of j-plane
it corresponds to Eq. (57)) and the result is

Ly (N2 — 1) 22
o ) = 3 < i 60
tot(Pa, PB) 59 \/14C(S)Nc%ha#(ze ) (60)
5 \doan o [dPL 1A 22 dp’ . p 22
< (e [ @)t [ B0

where ((3) ~ 1.202.

2.4 Diffusion in the transverse momentum and the BFKL equation with run-
ning coupling constant

At first, let us demonstrate that the rightmost singularity of the BFKL equa-
tion is located at w = wy at t = 0 as well (although its character changes

from \/wl_—wo to v/w —wp). We shall see that in higher orders in perturbation

theory there is a “diffusion” in k£ such that In ﬁq—ig ~ /n (where n is the or-
der of perturbation theory). To illustrate the diffusion, consider a rung of the
BFKL ladder located in the middle of the rapidity region (see Fig. @). Each of

r-k : :
- k r-k
| N k r-k

(@) (b)

Figure 9: Diffusionin &k .

the upper or lower blocks in this diagram are “non-integrated gluon distribu-
tion”. The s — oo asymptotics is governed by the rightmost singularity of the
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function W (w,t) (see Eq. (51)) which is determined by the asymptotics of the
coefficients f, at n — oco. For even n, these coefficients can be represented as

eEo1
nt: —ﬁnk,r fk,?”, 61
Pl = [ g P b)) )
where
NC R n NC R n
Fit ki, ry) = (@KJ P ko,ry),  fP(kr) = (87T3Kr> I8 (ky,ry).

(62)

Let us demonstrate that the characteristic momenta lgi in the integral in

(BL) are ~ m2eV". At 1arge transverse momenta k; the recursion for-
mula fn+1(k:L, ry)= 871-3K fA(ky,ry1) can be reduced to

W(bn-i-l (63)

2N e(é §)/2 , 1 1
¢n(§ ) - (1 — eE¢ - W) (bn(g)

where £ = In % and ¢, (§) = (%2 ] L| ful k2 Next, we expand the function
$n(§') in the integrand in Eq. (b 3) in Taylor series dn(&) = on(§) + (¢ —
L) + 2(& —£)?¢"n(§) + ... As we shall see below, at large n and k1 one
can neglect_ higher terms in Taylor expansion, and then the recursion integral
equation (B3) can be approximated by the differential equation

5(,6) = (o — )(n,€) + eI 9(n €, (69

where ¢ = 5 ¢%((3), ((3) ~ 1.202. This equation describes the diffusion of the
“particle” where n serves as a time and £ as a coordinate. It is well known that
at large time n the mean position ¢ of the “particle” is proportional to \/n,
and therefore our approximation of Eq. (5?_:) by the diffusion equation (54) is
justified.

Thus, we must find the solution of the diffusion equation (f4) with the
“wall-type” boundary condition

-2
on &g, =0, &=l (65)

which reflects the fact that our approximation is not valid at lgi <™. Itis
easy to check that the solution of the Eq. ('{34_1:) with the boundary condition
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(b5) behaves at large & ~ /n as

(b(n) g) ~ (é. _ gt) e(“:u_o_l)"e_ Inc (g_gt)z (66)

n3/2

where the coefficient of the proportionality may be determined by a more ac-
curate analysis of the transition from the integral equation (523") to the diffusion
equation (b4).

Substituting the estimate (6) in the integral (51), we obtain

o2\ M
@)n
w

2\ " oo w
W (w,t) ~ Z (%) fn= /1 dn#e(%_l)" =Wy — w. (68)

1 w,
~ W6(70—1)", (67)
n

n—00

which gives

We see that the singularity is located at the same point w = wqy as in the

case of forward scgttering, although its character is slightly different: /wo —w
instead of \/1—'.].'
wo—w

At t = 0 there is no “wall” boundary condition (§3) which shows that the
diffusion equation (§4) leads to |¢| ~ y/n. This means that the characteristic
momenta k, are either very large, lgi ~ m2eV™ or very small, lgi ~m2e VT,
The large contribution from the region of small k; region indicates the possi-
bility of the breakdown of perturbative QCD for high-energy scattering.

We can safely apply pQCD to high-energy scattering if the characteristic
transverse momenta of the gluons k; in the ladder are large. For the v*~*
with p% ~ p% ~ m? > AéCD one can check by explicit calculation that the
characteristic k; for the first few diagrams are ~ m. However, due to the
diffusion in k£, , the leading contribution to the loop integrals comes from
the gluon momenta which are either very large, lgi ~ m2eV™, or very small,

lgi ~ m2e~V". Due to the asymptotic freedom, the fact that the k; may
be very large at n — oo only strengthens the applicability of pQCD. On the
contrary, the fact that k; may be small questions the applicability of pQCD
to the high-energy v*~* scattering.

To take into account the asymptotic freedom, one may consider the BFKL
equation with the running coupling constant. Each of the upper or lower blocks
in the diagram in Fig. 'Q:is a “non-integrated gluon distribution”

1 S n
FAO kL i) = 37 o (9P ) At k) (69)
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which satisfies the BFKL equation
wFA(B)(k;L,rl;w)z (70)

2
4% (ki) + #NC / APk K (ko kl,TL)FA(B)(le,TL;w)
where F'(k1,r;w) is a Mellin transform of Eq. (59‘)

1 s \v
F(kyi,ri;s) = %/dw (W) F(kyp,ri;w).
In order to account for the asymptotic freedom, we can replace g% in the right-
hand side of the Eq. (70) by g2 (k2 )8

g*(k1)
873

wF(kp,ri;w) =1k ,r))+ Nc/kolK(kl,kl,rl)F(le,rL;w).

(71)
This equation exceeds the LLA accuracy but it it can be demonstrated that
in the case of large (or small) lgi the replacement g2 — QQ(EQL) agrees with
the renormalization group analysis®3). Another arguments in favor of taking
into account these particylar sub-leading logs follows from the analysis of the
renormalon contributions®4
At large k, one can replace the equation (:_7-1:) by the corresponding dif-
fusion equation. It turns out that at large momentum transfer |t| = 7% the
rightmost singularity of F'(k,,r);w) is located simply at ¢t = 12%]\& In2.
At t = 0 the diffusion goes in both directions leading to the contributions
coming from k; ~ Aqcp. If one removes these contributions “by hand” (im-
posing the “wall” condition at lgi = Aqcp), one obtainsa.discrete set of Regge
poles which condense from the right to the point w = 0¢2 A more satisfactory
solution of the problem of the diffusion to small £, would be to match the
hard pomeron with the soft Landshoff-Donnachie pomeron (responsible for
the high-energy hadron-hadron scattering) which presumably comes from the
high-energy exchanges by soft gluons (see, however, Ref. 15 for an alternative
“hard” soft pomeron). Another possibility is that the diffysion to small k)
disappears if one takes into account the unitarization effects29
The proper way to address the problem of running coupling constant in the
BFKL eguation is to use the NLO BFKL kernel in the renormalization-group
analysis.i7| The NLO correction to the anomalous dimension of the correspond-
ing leading-twist gluon operator consists of two parts: the conformal part and

bWe have seen from the diffusion equation that (kl)2 ~ Ei in the adjacent rungs of the
ladder so g2(k% ) = g*((K')2).

22



the running coupling part. The conformal part (see also Ref. 18) corrects the
intercept of the BFKL pomeron (',_5?‘)7 while the running coupling part, be-
sides replacing 1222 N.In2 by 12%‘12)]\[0 In2 in the leading order, leads to
the non-Regge terms in the energy dependence of the cross section. The nu-
merical value of the correction to the hard pomeron’s intercept introduced by
the conformal part of the NLO BFKL kernel js large and negative. Its exact
contribution is somewhat difficult to estimate242? There are hopes, however,
that collinear singularjties causing this large NLO correction cancel each other

at higher orders in a,2%

2.5 Reggeized gluons and unitarization of the pomeron

As T mentioned above, the bare pomeron violates the Froissart bound so we
need to unitarize the BFKL pomeron. There are several appraaches to the
unitarization: effective reggeon field theory2% the generalized LLA2% equiyalent
to the quantum mechanics of reggeized gluons,f: and the dipole model242% We
postpone the discussion of the dipole model until the next section and turn
the attention to reggeon-based schemes of the unitarization.

The reggeized gluon can be defined as a “hard pomeron” for the quark-

1

quark scattering. We have seen that the gluon propagator T describing the

exchange between two quarks to the left of the cut in Fig. 4 ig replaced in the
next order by the factor ('.fflj) coming from two diagrams in Fig. 8a,b. Thus,
in the first two orders in perturbation theory the propagator describing the
exchange between two quarks with gluon (color octet) quantum numbers in
the ¢ channel has the form

21 1.2
L 1—ozchlni2/d LA, s — (72)
k1 me AT (W)Y (k= BT

It can be demonstrated (either by direct summation of the Feynman diagrams:l'
or by evolution of the Wilson-line operators, see Sec. 3 below), that in the LLA
the logarithmic factor in parenthesis exponentiates, therefore the exchange
between two quarks is described by the “reggeized” gluon propagator

%(%)areg(’;i), (73)

¢In the reggeon quantum mechanics, the unitarity is preserved only in the direct s-channel,
while in a reggeon field theory the unitarity holds true in all the sub-channels corresponding
to different groups of particles in the final state.
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where

21,/ 1.2
Oreg(t = —K3) = —a, N, /d kL k_;.l = (74)
Am? (k)3 (k- k)2

is the trajectory of the reggeized gluon in the plane of complex momenta in
the leading order in ozs.:‘_’: Recently, this trajectory was computed in, the next-
to-leading order in ay by direct summation of Feynman diagrams 29 and by
calculatiop_of the two-loop anomalous dimensions of the relevant Wilson-line
operatorsw

In terms of the reggeized gluons the BFKL ladder can be resummed as
shown in Fig. 9 where the dash-dotted line denotes reggeized gluon (73) and
the reggeon-reggeon-particle interaction is described by Lipatov’s vertex (30)
(The expansion of the reggeon trajectory in powers of g? reproduces the BFKL

- W(p.n,)

Figure 10: BFKL ladder as a propagator of the two-reggeon state. Reggeized gluons are
represented by dash-dot-dot lines.

result (50) after combining the terms with like powers of g2). This diagram can
be interpreted as an evolution with respect to “time” = rapidity of the two-
particle state described by the wave function ¥(p1, p2) in quantum mechanics

dThis trajectory is IR divergent as it should be for the amplitude of the scattering of the
colored objects. For the scattering of white objects (like virtual photons discussed in the
previous section) this divergence will cancel with the IR divergence for real gluon emissions.
To avoid the infinities in the intermediate results, one can use the dimensional regularization
(with d = 2 + € transverse dimensions) or assume a small gluon mass pu.
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with the Hamiltonian %2

N 2N, . .
H, = i67rc{1n |p1|% + In [pa)? (75)

2
1

+
101|2101|2

(5162 0 |pual? (u + c.c.) +4C |

where p; = x(ﬂ + zx(ﬁ%, pj = i% (index j = 1,2 numbers the particles),
and py2 is the coordinate operator (p12 = p1 — p2). The first two “kinetic
terms” correspond to the propagators of the reggeized gluons and the third
term describes the interaction of reggeized gluons by exchange potential coming
from product of two Lipatov’s vertices given by.Eq. (gfj) The Hamiltonian
(:_75) has a property of holomorphic separability2?

Hyp = hys + iﬁg, (76)
where
- 2N, A 1 . 1 .
hio = g_; Inp1ps + —(Inp12)p1 + — (In p12)p2 + 2C ¢, (77)
167 P1 D2

and C=0.557 is Euler’s constant. The generalized LLA is the summation of
the diagrams shown in Fig. 11 (see the discussion in Ref. 29). The number

Figure 11: Generalized LLA as quantum mechanics of the reggeized gluons.

of reggeized gluons in ¢ channel is conserved, so the sum of the diagrams in
Fig. 10a can be described by quantum mechanics of the reggeized gluons with
pairwise interaction (:_75),

H =Y TTHi, (78)
i<k
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where H;j is obtained from Eq. (:_7-5.') by the trivial replacement 1 — i, 2 — k.
The unitarity follows from the representation of the sum of these di-
agrams as a generalized eikonal 8¢ (see Fig. 12). In the multi-color limit

Figure 12: Quantum mechanics of the reggeized gluons as a generalized eikonal.

(N, — o0, g?N,-fixed), the non-planar diagrams vanish hence only the inter-
action between the adjacent reggeons survives (the unitarity still holds true).
The color structure is then unique and the Hamiltonian reduces to 28

1N .
H= 5 ;HMH, (79)

where % comes from the fact that the adjacent gluons are in the octet state.
Using the property of the holomorphic separability (f@‘), it is possible to rgc‘iuce
the quantum mechanics of the reggeons described by the Hamiltonian (79) to
the XXX Heisenberg model with spin s = 08} Unfortunately, the explicit
solution for the number of the magnets k& > 3 (= number of the reggeons)
has not yet been found. For the k = 3 (the so-called Odderon state of three
reggeized gluons) the variational estimates give the intercept at the value of J
slightly below 15%%8% (recently, another Odderon-type solution with intercept
at j = 1 was found in Ref. 34).

In synopsis, we have found the subset of the non-LLA diagrams which
restores unitarity in the s-channel and in the large N, limit this subset reduces

to the one-dimensional quantum mechanical model (XXX magnet with s = 0).

3 Operator expansion for high-energy scattering

The expansion of the amplitudes at high energy in Wilson-line operators is
very useful in a situation like small-z DIS from the nucleon or nucleus. As
the usual light-cone expansion provides the operator language for the DGLAP
evolution, the high-energy OPE gives us the operator form of the BFKL equa-
tion. In the case of deep inelastic scattering there are two different scales of
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transverse momentum k|, and therefore it is natural to factorize the ampli-
tude in the product of contributions of hard and soft parts coming from the
regions of small and large transverse momenta, respectively. Technically we
choose the factorization scale @ > p > my, and the integrals over lgi > p?
give the coefficient functions in front of light-cone operators while the contri-
butions from lgi < p? give matrix elements of these operators normalized at
the normalization point p. In the final result for the structure functions the
dependence on p in the coefficient functions and in the matrix elements cancels
out yielding the Q? behavior of structure functions of DIS.

In the case of the high-energy (Regge ) limit, all the transverse momenta
are of the same order of magnitude, but colliding particles strongly differ in
rapidity, thus it is natural to factorize in the rapidity space. Factorization in
rapidity space means that a high-energy scattering amplitude can be repre-
sented as a convolution of contributions due to “fast” and “slow” fields. To
be precise, we choose a certain rapidity 7y to be a “rapidity divide” and we
call fields with n > ny fast and fields with n < 7y slow where 7y lies in the
region between spectator rapidity n4 and target rapidity np. (The interpre-
tation of these fields as fast and slow is literally true only in the rest frame of
the target but we will use this terminology for any frame). Similarly to the
case of usual OPE, the integrals over fast fields give the coefficient functions
in front of the relevant (Wilson-line) operators while the integrals over slow
fields form matrix elements of the operators. For a 2=-2 particle scattering in
Regge limit s > m? (where m is a common mass scale for all other momenta
in the problem t ~ p% ~ (p/4)? ~ p% ~ (p’z)? ~ m?) this operator expansion
has the form 23

Alpa,pp = P4, D) = Z/d2x1...d2xnC’“““(xl,...xn)
(8| T{Ui, (21)... Ui, (2n) }Plp)- (80)

(As usual, s = (pa+pp)? and t = (pa—p/y)?). Here z; (i = 1,2) are the trans-
verse coordinates (orthogonal to both p4 and pp) and U;(x) = U (x)éa%iU(x)
where the Wilson-line operator U(z) is the gauge link ordered along the infi-
nite straight line corresponding to the “rapidity divide” 1. Both coefficient
functions and matrix elements in Eq. (}g'(j) depend on the 7y but this depen-
dence is canceled in the physical amplitude just as the scale p (separating
coefficient functions and matrix elements) disappears from the final results
for structure functions in case of usual factorization. Typically, we have the
factors ~ (¢g?Ins/m? — ng) coming from the “fast” integral and the factors
~ ¢?np coming from the “slow” integral so they combine in a usual log factor
g*Ins/m?. In the leading log approximation these factors sum up into the

X
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BFKL pomeron.

Unlike usual factorization, the expansion (g(j) does not have the additional
meaning of perturbative versus nonperturbative separation — both the coeffi-
cient functions and the matrix elements have perturbative and non-perturbative
parts. This happens because the coupling constant in a scattering process is
determined by the scale of transverse momenta. When we perform the usual
factorization in hard (k; > p) and soft (ki < p) momenta, we calculate the
coefficient functions perturbatively (because as(k > p) is small) whereas the
matrix elements are non-perturbative. Conversely, when we factorize the am-
plitude in rapidity, both fast and slow parts have contributions coming from
the regions of large and small k. In this sense, coefficient functions and matrix
elements enter the expansion (B(_i) on equal footing.

3.1 High-energy OPE wvs light-cone expansion

Let me remind the idea of the usual light-cone expansion for the deep inelastic
scattering (DIS) at moderate z. First, we take formal limit Q* — oo and
expand near the light cone (=in inverse powers of Q?). The amplitude of DIS
is then reduced to the matrix elements of the light-cone operators which are
known as parton densities in the nucleon. At this step, the support lines for
these operators are exactly light-like, leading to the logarithmical divergence in
transverse momenta. The reason for this divergence is the following: when we
expand T-product of electromagnetic currents near the light cone we assume
that there are no hard quarks and gluons inside the proton. However, the
matrix elements of light-cone operators contain formally unbounded integra-
tions over Ei, consequently there are hard quarks and gluons in these matrix
elements. It is well known how to proceed in this case: define the renormal-
ized light-cone operators with the integrations over the transverse momenta
lgi > u? cut off and expand the T-product of electromagnetic currents in a set
of these renormalized light-cone operators rather than in a set of the original
unrenormalized ones (see e.g. Ref. 36). After that, the matrix elements of

2
these operators (parton densities) contain factors In £ and the corresponding

coefficient functions contain In Q—j When we calculate the amplitude we add
these factors together, the dependence on the factorization scale p cancels,
and we get the usual DIS logarithmical factors In % An advantage of this
method is that the dependence of structure functions on Q? is determined by
the dependence of matrix elements of the light-cone operators on p which is
governed by the renormalization group.

To get the operator expansion for high-energy scattering, we will proceed in
the same way. At first, we take the formal Regge limit s — 0o and demonstrate
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that the amplitude in this limit is reduced to matrix elements of the Wilson-
line operators representing the two quarks moving with the speed of light in
the gluon “cloud.” Formally, we obtain the operators U ordered along light-
like lines. Matrix elements of such operators contain divergent longitudinal
integrations reflecting the fact that light-like gauge factor corresponds to a
quark moving with speed of light (i.e., with infinite energy). The reason for
this divergency is the same as in the case of usual light-cone expansion: the
fast-quark propagator in the gluon “cloud” is replaced by the light-like Wilson
line assuming that there are no fast gluons in the cloud. However, when
we calculate the matrix element of the Wilson-line operators with light-like
support, the integration over the rapidities of the gluon 7, is unbounded so our
divergency comes from the fast part of the cloud which does not really belong
there. Indeed, if the rapidity of the gluon 7, is of the order of the rapidity
of the quark, this gluon is a fast one. As a result, it will contribute to the
coefficient function (in front of the operator constructed from the slow fields)
rather than to the matrix element of the operator. Similarly to the case of DIS,
we need some regularization of the Wilson-line operator which cuts off the fast
gluons. As demonstrated in Ref. 35, it can be done by changing the slope of
the supporting lines. If we wish the longitudinal integration stop at n = o,
we should order our gauge factors U along a line parallel to n = op; + dpo,
then the coefficient functions in front of Wilson-line operators (impact factors)
will contain logarithms ~ ¢?In1/o. Similarly to DIS, when we calculate the
amplitude, we add the terms ~ ¢g%In1/0 coming from the coefficient functions
to the terms ~ ¢%1In - 75 coming from matrix elements so that the dependence

on the “rapidity divide” o cancels and we get the usual high-energy factors

g°In -2 which are responsible for BFKL pomeron. Again, the advantage of

this method is that the energy dependence of the amplitude is determined by
the renorm-group-like evolution equations for the Wilson-line operators with

respect to the slope of the line.

3.2  High-energy asymptotics as a scattering from the shock-wave field.

Consider again for simplicity the high-energy v*~v* scattering ('ﬁ) To put this
amplitude in a form symmetric with respect the top and bottom photons, we
make a shift of the coordinates in the currents by (z,,0,0,) and then reverse
the sign of z,. This gives:

A(s,t) = —ig/dQZle.dZ* /d43:d4ye_w“‘"C_WB'ye_’v(”z"'”ﬂrz*_i(’“’z)L
s

x (O[T (e, + 20,0 + 20)74(0, 20, 21)
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X (U + 2asYesy1)75(20,0,00)}H0). (81)
As we discussed in Sec. 1, o ~ G, ~ % so it can be neglected.

It is convenient to start with the upper part of the diagram, i.e., to study
how fast quarks move in an external gluonic field. After that, functional inte-
gration over the gluon fields will reproduce us the Feynman diagrams of the
type of Fig. 3:

A(s,t) = _ig /dQZle_i(T’Z)L N_l/DAeiS(A)det(iv) (82)
y {%/dz* /d%e‘i“'x <TjA(33.,x*+Z*,$L+2L)jf4(0az*7zi)>z4}
y {%/dz. /d4ye—w8~y (TjB(y.+z.,y*,yi)j59(zno7ol)>z4}’
where

o _ | DYDY ()4, (y)
<T]M(x).7u(y)>z4 = f fijp'D,lEei;(l;j)J -

Here S(A) and S(v, A) are the gluon and quark-gluon parts of the QCD action
respectively, and det(iV) is the determinant of Dirac operator in the external
gluon field.

The Regge limit s — oo with p% and p% fixed corresponds to the following
rescaling of the virtual photon momentum:

(83)

(0) p124
pa=Ap; + (0 P2 (84)
2Apy - p2
with pp fixed. This is equivalent to
pr=x", pa=py’, (85)

where pgo) and pgo) are fixed light-like vectors so that A is a large parameter

associated with the center-of-mass energy (s = 2)\ng) -p§°>). Let us study the
asymptotics of high-energy ~v*~* scattering from the fixed external field

/dx /dzé(z.)(3_1'7”“"”_1'(’“’2)L (T{ju(x+2)ju(2)})a. (86)

Instead of rescaling of the incoming photon’s momentum (54), it is convenient
to boost the external field instead:

/dxdzé(z.)(f’jgmc_i(m)L (T{ju(x + 2)ju(2)})a
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- / dadzd(zo)e” P8 DTG (0 + ) () s, (8T)
where pff) = pgo) + %pg and the boosted field B,, has the form

Lo

Bo(xo,xuyx1) = )\AO(T,x*)\,.L“l),
1 o
B (2o, 1) = XA*(%,x*)\,xl),
Lo
B (o, s, x1) = AL(T,x*A,xL), (88)

where we used the notations z, = x“pg(;), Ty = xtpa,. The field

2 2
A (o, s,z 1) = Au(gxopgo) + g.]?*pg +x) (89)

is the original external field in the coordinates independent of A, therefore we
may assume that the scales of zo, . (and z ) in the function (§9) are O(1).
First, it is easy to see that at large A the field B, (z) does not depend on ..
Moreover, in the limit of very large A the field B, has a form of the shock
wave. It is especially clear if one writes down the field strength tensor G,
for the boosted field. If we assume that the field strength F),,, for the external
field A,, vanishes at the infinity we get

Goi(To,Tuy21) = AFoi(xTO,x*)\,xl)—>5(x*)Gi(3:l),

G ) = 2R wae) -0

i\ Loy Txy T | DN )\7-%« y UL y

Gow(Zo, Xuyxy) = FO*(%,x*)\,xL)HO,

Girlwo,niar) = Fu(2wdas) =0, (90)

so the only component which survives the infinite boost is F,; and it exists
only within the thin “wall” near x, = 0. In the rest of the space the field B,
is a pure gauge. Let us denote by 2 the corresponding gauge matrix and by
B? the rotated gauge field which vanishes everywhere except the thin wall:
Q .9 g > o Q
By = lim =G (0, Az, 21 ) — §(2s)==G;' (1), By =B, =0. (91)

To illustrate the method, consider at first the propagator of the scalar
particle (say, the Faddeev-Popov ghost) in the shock-wave background. In
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Schwinger’s notations we write down formally the propagator in the external
gluon field A, (x) as

6 = (el prz) = Clgrgmrel). @

where ((z|y)) = §®(z —y),

((xlpuly))——z—(S(“( —y), (@lAuly) = Au@)s (@ —y).  (93)

Here |x)) are the eigenstates of the coordinate operator X|x)) = z|x)) (nor—
malized according to the second line in the above equation). From Eq. (93) it
is also easy to see that the eigenstates of the free momentum operator p are
the plane waves |p)) = [ d*z e~ ?*|z)). The path-integral representation of a
Green function of scalar particle in the external field has the form:

(el = = [ o) o

%S z(T)=x T .2 T
= —q TNL T e_ifodtmT expii Qr ()it
[arn= [ oty Peapliy [ d(B(0)i"(1).

0)=y

where 7 is Schwinger’s proper time. It is clear that all the interaction with
the external field BQ occurs at the point of the intersection of the path of
the particle with the shock wave (see Fig. 13) Therefore, it is convenient to

X
2 :

Figure 13: Propagator in the shock-wave field.
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rewrite at first the bare propagator
1 i oo L z(T)=x » detﬁ
x‘—‘y))ziz—z/ drN~ / Dx(t)(r)e Jo ™1 (95)
(( p? A2 (z — y)? o 2(0)=y (6)(7) (

marking the point of the intersection of integration path with the plane z, = 0.
To this end, consider the case x, > 0, y, < 0 and insert

1= /dr’a’:*(r’)é(m(T’)) (96)

in the path integral (95). (Here 7/ has the meaning of the time at which the
intersection with the plane z, = 0 takes place). We get

(elgelo) == [ ar (el o)

00 T z(T)=x i [Tare2
= —i/ dT/ dT/N_l/ Dx(t)a.(7")0(z(7"))e i Jy e
0 0 T

0)=y

00 T z(T)=x —'fT sl
= —i/ dT/ dT’/dzé(z*)N_l Da(te " TN
0 0

z(1")=2

x(7')=2 T a2
x / Da(t)i()e " Jo 4T
z(0)=y

Making the shift of integration variable 7 — 7' — 7, we can rewrite the path
integral (97) in the form:

—i /Ooodr /Ooodr’/dzé(z*) (98)

I(T)=$ LT 2 x(TI)ZZ .o 2
x N_l/ Dx(t)e_zfo dtT./\/'_l/ Dx(t)j:*e_lfo Wi
x

(0)== z(0)=y

Using Eq. (95) and similar formula

) x(T)=x ) i(r —
[ arnt [ patva (e ww ()
0 T

(0)=y 2 (x —y)?

we arrive at the following representation of the bare propagator (in the case of
e >0, y <O0):

((x‘pQ i i€ ‘y)) - /d25(z*)4772(331_ z)2 wQ(Zy*_ y) (100)
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where z is the point of the intersection of the path of the particle with the
shock wave.

Now let us recall that our particle moves in the shock-wave external field
and therefore each path in the functional integral (9-4) is weighted with the

additional gauge factor Pe"? J Budzi Gince the external field exists only within

the infinitely thin wall at ., = 0 we can replace the gauge factor along the
actual path z,(t) by the gauge factor along the straight-line path shown in
Fig. :_1-3 It intersects the plane z, = 0 at the same point (z.,2,) at which
the original path does. Since the shock-wave field outside the wall vanishes
we may formally extend the limits of this segment to infinity and write the
corresponding gauge factor as U (z,) = [oopy + 21, —ocop1 + z1]. The error
brought by replacement of the original path inside the wall by the segment of

straight line parallel to p; is 4/ % Indeed, the time of the transition of the

particle through the wall is proportional to the thickness of the wall which is
2
~ = It indicates that the particle can deviate in the perpendicular directions

inside the wall only to the distances 4/ % Thus, if the particle intersects this

wall at some point (z., z) ) the gauge factor Peigf Bjldzy reduces to US(z)).
One can now repeat for the path integral (94) the steps which lead us from
path-integral representation of bare propagator (95) to the formula (EQQ), the
only difference will be the factor U**(z, ) in the point of the intersection of the
path with the plane z, = 0:

((x‘%‘y)) = /dzé(z*)mUﬂ(mﬁ(;’i*_w (101)

(in the region z. > 0,y. < 0). It is easy to see that the propagator in the
region z, < 0,y, > 0 differs from Eq. (:_igl_:) by the replacement U « U,
Also, the propagator outside the shock-wave wall (at z., ¥« < 0 or x, y. > 0)
coincides with the bare propagator. The final answer for the Green function
of the scalar particle in the B background can be written down as:

((x‘%‘y)) - ime(w*w /dzé(z*)m (102)
x AU (20)0(2.)0(—y.) — U (21)0(y.)0(—2.) } 52—

m(z —y)

We see that the propagator in the shock-wave background is a convolution of
the free propagation up to the plane z, = 0, instantaneous interaction with
the shock wave described by the Wilson-line operator U (U'9), and another
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free propagation from z to the final point (see Fig. 13) One can check that the
Green function (103) is continuous as z, — 0 (or y» — 0).

In order to get the propagator in the original field B, we must perform
back the gauge rotation with the {2 matrix. It is convenient to represent the
result in the following form:

((x‘%‘y)) = m[ax,y]e(my*) —l—/dzé(z*)m (103)
{U (2132, 9)0(2.)0(—y.) — UT (21 x,yw(y*)e(—x*)}ﬁ(ji*_w,
where
Ulzis2,y) = [z, zx][zx,zy][zy,m ,
Zn = (gzopﬁo) gwm,m 2y = 2(Tw < Yi) (104)

is a gauge factor for the contour made from segments of straight lines as shown
in Fig. :_1-4_: Since the field B, outside the shock-wave wall is a pure gauge, the
precise form of the contour does not matter as long as it starts at the point x,
intersects the wall at the point z in the direction collinear to p2, and ends at
the point y. We have chosen this contour in such a way that the gauge factor
(104) is the same for the field B, and for the original field A,, (see Eq. (88)).

The quark propagator in a shock-wave background can be calculated in a
similar way (see Appendix 7.2),

(el 5) = - sttty + i stz

2
% {U(zis 2, 9)0(@)0(—y.) — Ut (2, 9)0(p)0(—.)} ol d

pro E— (105)

For the quark-antiquark amplitude in the shock-wave field (see Fig. :_14) we get

(el ) (o] 1) (109

Ty (= P (Y — 75)9(33*1;*) _ 9(_3;*y*)/dzdz’5(z*)5(zi)

Art(x — y)®
t—7 =Y y—7 Z—# L
X Tr’YM2 ( ) ¢2 277' ( y)4 Tv 277'2( ) ¢2 277' ( x)4U(Zl7 ZL)7

where we can write down the gauge factor U(zy ;2 ) = U(zy; z, y)U' (2 ;y, 7)
as a product of two infinite Wilson-lines operators connected by gauge segments
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Figure 14: Quark-antiquark propagation in the shock wave.

at +oo,

U(z1; 7))
= ulingo {[up1 + 21, —up1 + z1|[—upr + 21, —up1 + 2 ) [—up1 + 2, upy + 2]

x[up1 + 2, upy + ZL]} = U.lz1, 2, ] ULIZ), 2]y (107)
Here we use the notations

[1,y1]4 = [oop1 + 21, 00p1 + 2], [w1,y1]- = [—oop1 + 21, —oop1 + 2 ].

(108)
As we mentioned above, the precise form of the connecting contour at infinity
does not matter as long as it is outside the shock wave. We have chosen this
contour in such a way that the gauge fact9¥ (:-_1(:)?) is the same for the field
By, and for the original field A, (see Eq. (88)). Now, substituting our result
for quark-antiquark propagation (106) in the right-hand side of Eq. (Bf_}l), one
obtains

/ dix / d*2 8(ze)e LT PATIT LG (x4 2) 54 (2)})

472

= Y e / CZQ’”IA(M,M)Tr{zf(lu)m(rl —k1)}, (109)
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where the impact factor I is given by Eq. ('15. For brevity, we omit the end
gauge factors (108).

Formula ('107) describes a quark and antiquark moving fast through an
external gluon field. After integrating over gluon fields in the functional inte-
gral we obtain the virtual photon scattering amplitude (82) It is convenient
to rewrite it in the factorized form:

dk;L

(b, )(Te{U(k)UT(re — k0)})). (110)

-A(pA,pB =iz Z

where T4(p,) = e e ar4 w(pL). The gluon fields in U and U have been pro-
moted to operators, a fact which we signal by replacing U by U, etc. The
reduced matrix elements of the operator Tr{U (k)UT(r, — k1 )} between the

“virtual photon states” are defined as follows:

(Te{U(R)U(r - k1)) = /d%w_“k””<<TY{U(M)UT(0)}>>

—/d‘lzé(z*)ei(’“’z)L /d4ye_ip5'y (111)
(OIT{Tr{U(x 1)U (0)}jn(y + 2)i5(2)}0).

This matrix element describes the propagation of the “color dipole” in the

background of the shock wave created by the second virtual photon.

It is worth noting that for a real photon our definition of the reduced
matrix element can be rewritten as

(Te{U ()0 (0)})

(. psTe{U(x )0 (')} e, ps + Bpp) = 2m8(8) ((Te{U (2 )UT(@')})),
(112)
where € and ¢ represent the polarizations of the photon states. The fac-
tor 2md(3) reflects the fact that the forward matrix element of the operator
Uz )UT(2')) contains an unrestricted integration along p1. Taking the inte-
gral over  one reobtains Eq. (111).

3.8 Regularized Wilson-line operators

In the Regge limit (84) we have formally obtained the operators U ordered
along the light-like lines. Matrix elements of such operators contain divergent
longitudinal integrations which reflect the fact that light-like gauge factor cor-
responds to a quark moving with speed of light (i.e., with infinite energy). This
divergency can be already seen at the one-loop level if one calculates the con-
tribution to the matrix element of the two-Wilson-line operator U (z 1 )UT(y.)
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between the “virtual photon states”. As I mentioned above, the reason for this
divergence is that we have replaced the fast-quark propagators in the “external
field” represented by two gluons coming from the bottom part of the diagram
in Fig. :_1§'a by the light-like Wilson lines in Fig. :_1§'b The integration over

Pu
e p
=
N P
p

Figure 15: A typical Feynman diagram for the y*v* scattering amplitude (a) and the corre-
sponding two-Wilson-line operator (b).

rapidities of the gluon 7, in the matrix element of the light-like Wilson-line
operator U(z,)Ut(y,) is formally unbounded , consequently we need some
regularization of the Wilson-line operator which cuts off the fast gluons. As
demonstrated in Ref. 35, it can be done by changing the slope of the supporting
line. If we wish the longitudinal integration stop at n = 79, we should order
our gauge factors U along a line parallel to p = p1 4+ (p2 where 179 = In( .5
We define

US(z1) = [oop®+x1,—o0op® + 4],

¢The situation here is again quite similar to the usual OPE for DIS. Recall that when
separating the Feynman integrals over loop momenta p into the coefficient functions (with
p? > p?) and matrix elements (p? < p?) we expand hard propagators in powers of soft
external fields. As a result of this expansion we formally obtain the expressions of the type
w(Xer)[Ae1, 0]1(0) with external fields lying exactly on the light cone. In operator language
it corresponds to the matrix element of the same light-cone operator 1(Ae;)[Aer,0]4(0)
normalized at the point u? in order to ensure the restriction that matrix elements of this
operator do not contain virtualities larger than u?. Moreover, in principle we can regularize
these light-cone operators for DIS by changing the slope of the supporting line (say, take

2
e = e1 + £5e3). The only reason why we use the regularization by counterterms is that,

unlike the regularization by the slope, counterterms are governed by renormalization-group
equations.
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US(xy) = [—oop®+xL,00p° + ] (113)
Matrix elements of these operators coincide with matrix elements of the oper-

A~ A~ 2
ators U and U calculated with the restriction o < o = 4/ Z—Z‘ imposed in the

internal loops (and external tails). Let us demonstrate this using the simple
example of the matrix element of the operator US(k )U(r, —ky) coming
from the diagram shown in Fig. I5. It has the form

i /@ 'y _[(ap —204) B — (k+ K)3 ]9 (k')
27 )20 T67 (Cazs 4 B2 — ie)? (odBys — 7 +i6)?
1
[—(ap — &) (apC + By)s — (k k/) + ZG]
where the numerator comes from the product of two three-gluon vertices (18)
4

(114)

Loo? (ky —k)Treo (b, —k') == (o — 204,)Bhs — (k + k)3 (115)

As we shall see below, the logarithmic contribution comes from the region
2 . .

7?9 > ap > ap~ T 1> 80> B, = —(ag ~ % In this region

one can perform the integration over [ by taking the residue at the pole

[—(ozp —a)(opC+ B,)s — (k—k)2 + ze} . The result is /i

5 [ day do Ak’
£ [l dog [ PN o, > 0> 0+ 005> o > ] (16

(Ei +p7 - ai(s/2) P (%pl (axC + (k e )L) + K )

X T =
o — ag| (CaZs + kT —ie)? [Gh(k — k)% +p i

We see that the integral over «,, is logarithmic in the region 7& > oy >
/ m

Qg ~ TQ (cf. Eq. (18)). The lower limit of this logarithmical integration is
provided by the matrix element itself (5; ~ 1 in the lower quark bulb) while
the upper limit, at ozi ~ m?/(s is enforced by the non-zero ¢ and the result
has the form

<<Trf]C(kL)UTC(_kL)>>FIg -:1?‘ i In ( s ) /kol k2 +p' LIB(k/l).

8 m2( 472 E4

(117)

fIn the region we are investigating, we can neglect the ,8]; dependence of the lower quark
loop.
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Similarly to the case of usual light-cone expansion, we expand the ampli-
tude in a set of “regularized” Wilson-line operators U¢ (see Fig. 16):

Alpa,ps = Pa,0p) = Z/d2x1---d2xn0(ax1,---xn :¢) (118)

<pB |T1“{U<(.L“1)UT<($2)---Uc(xn—l)UTC (xn)|p35’>'

The coefficient functions in front of Wilson-line operators (impact factors) will

X

(b)

Figure 16: Decomposition into product of coefficient function and matrix element of the
two-Wilson-line operator for a typical Feynman diagram. (Double Wilson line corresponds
to the fast-moving gluon.)

contain logarithms ~ ¢g?In1/0 and the matrix elements ~ g2 In 2%. Similar to
DIS, when we calculate the amplitude, we add the terms ~ g2 1n 1 / o coming
from the coefficient functions (see Fig. ﬂdb) to the terms ~ g2 In 2 7 coming

from matrix elements (see Fig. :lda) so that the dependence on the ‘rapidity
divide” o cancels resulting in the usual high-energy factors g2 In %5 which are
responsible for the BFKL pomeron, cf. (56)

In the LLA, the light-like operators U and UT in Eq. (110) should be re-
placed by the Wﬂson—hne operators U¢ and UT¢ ordered along n || pa. Indeed,
let us compare the matrix element (ﬂlﬁ_) shown in Fig. 6b to the corresponding
physical amplitude (i7) shown in Fig. 6a. The integral in Eq. (17) is similar
to the one for the matrix element of the operator (117), except that there is
now a factor of the upper quark bulb and the integral over p, . If we calculate
only the contribution of the diagram in Fig. 6a , we would get (cf. Eq. (35))

6 koL ko/ kj2 +p
~ i (m2)/ lIA(/@)IB(/@;) (119)

47r 472 Aq? E4

\I)'|>[\)

which agrees with the with estimate Eq. ('117) if we set ( = This cor-
responds to making the line in the path-ordered exponential collinear to the
momentum of the photon.
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3.4 One-loop evolution of Wilson-line operators.

As we demonstrated in previous section, with the LLA accuracy, the improved

version of the factorization formula Eq. (109) has the operators U and Ut
2

Pa.

“regularized” at ¢ ~ =2

/d% / Az §(ze)e PATTIALT {ja(2 + 2)f4(2)) (120)
o [ ki 4 remm? e m?
= Zei e Ik, r ) Te{UT 5 (K)U™ 5 (r — k) }.

In the next-to-leading order in o, we will have the corrections
~ aSTrU(xL)UT(yL)TrU(yL)UT(zL), see Fig. :_l-f_i

Next we derive the equation for the evolution of these operators with
respect to slope ¢ (in the LLA). In order to find the behavior of the matrix
elements of the operators US(z,)UT¢(y,) on the slope ¢ we must take the
matrix element of this operator “normalized” at (; and integrate over the

momenta with o1 = ,/% >q > 09 = ,/% (similar to the case of ordinary

Wilson OPE where in order to find the dependence of the light-cone operator
on the normalization point p we integrate over the momenta with virtualities
u? > p? > p2). The result will be the operators U and U' “normalized” at the
slope (2 times the coefficient functions determining the kernel of the evolution
equation. The calculation of the kernel is essentially identical to the calculation
of the impact factor with the only difference of having initial gluons instead of
quarks. Here we will present only the outline of the calculations; the details
can be found in Appendix C.

In the first order in «, there are two one-loop diagrams for the matrix
element of operator U(x 1)Ut (y, ) in external field (see Fig. 7). This external

.
““- .
.

.
1“‘

A B C
Figure 17: One-loop diagrams for the evolution of the two-Wilson-line operator.

field is made from slow gluons with o < (5. Like the case of the fast quark
propagator considered above, it is convenient to go to the rest frame of “fast”
gluons, as a consequence the “slow” gluons will form a thin pancake.
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Let us start with the diagram shown in Fig. :_l-T_:a. We will calculate the one-
loop evolution of the operator U(z, )@Ut(y,) = {U(xL)}z{UT (y1)}F with the
non-convoluted color indices. In the LLA, the slope pS of the operators U can
be replaced by p;. Using the expression for the axial-gauge gluon propagator
in the external field (B08) ¥ we obtain:

Uz @UNy))a (121)

= —i92/dU[OOpl,um]xt“[upl,—OOpl]x/dv[—oopl,vpl]ytb[vpl,OOpl]y

_ D2e &n _ D2n
X ((upl +33L‘(p1§ P.p » YO (p1y p—- p2P°)

vp1 + yl)) .
* P2 ab
Hereafter we use the space-saving notation
[un,vnly = [un+x 1, on+2x,]. (122)

We may drop the terms proportional to P, in the parenthesis since they
lead to the terms proportional to the integrals of total derivatives, namely

/du[OOph up1[t*[up1, —oop1|p1, (D" @(up1, ..))ab
= /du%{[oopl,upl]t“[upl, —oop1](P(upi, ...))ap} =0 (123)

and similar for the total derivative with respect to v. Now, we can rewrite
Eq. (121) in the form

U)oU) = —ig? / duloops, upa]t*[upr, —oopils (124)

® /dv[_OOph Upl]ytb[vph oop1]y ((upl + 3&‘@.. vp1 + yL)) )
a

As in the calculation of the quark propagator, it is convenient to go to the
rest frame of “fast” gluons. In this frame the “slow” gluons will form a thin
pancake shown in Fig. :_f@l At first, we consider the case x, > 0, y, < 0. It is
clear from the picture that we can rewrite Eq. (124) as follows:

U@ )U(y)ha = —ig*t*Uz) ® t°UT(yL) (125)

X /Ooodu/_ooodv((upff) + J?L‘Ooo

91t can be demonstrated that further terms in expansion in powers of gluon propagator ("20_6:)
beyond those given in Eq. (','_30_7:) do not contribute in the LLA.

),

42



Figure 18: Path integrals describing one-loop diagrams for Wilson-line operators in the
shock-wave field background.

(we shall calculate only the contribution ~ U which comes from the region
. > 0,7, < 0 - the term ~ U’ coming from z, > 0,9, < 0 is similar).
Technically it is convenient to find at first the derivative of the integral of
gluon propagator in the right-hand side of Eq. (125) with respect to 2 . Using
the thin-wall approximation we obtain

(lowly) = %5 [assta) (126)

1672z,
< {2APFI(en) ~iIDF)0)} =
where
DF(es) [ duloopr,up].D* Fus(ups + ) ups, ~cpi]
PP, / du / 0O (u — v)[oopy, uprla FE(ups + 1)
X [upr,vp1]oFeo(vp1 +21)[vp1, —00p1]a. (127)

It is easy to see that the operators in braces are in fact the total derivatives of
U and UT with respect to translations in the perpendicular directions,

RU(1) = 5p—Ules) = ~iDFl(e1) + 2AFFl(a.),
FUNz) = ajgxuf(m):i[DF](xl)+2[FF](xl), (128)

note that 92 U = —92U).
i
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For the derivative of the gluon propagator (z|p;O|y) we obtain:

—ig /du/dv upA +x
167r4/dzl/0 gdv/dz.

(r1 —21); [3 U(zi)lab
[u(uCs — 220) = (7 - 7 — iel[v(vCs + 220) — (G~ 2 — i’

The integration over z, can be performed by taking the residue; the result is

_ii z du v (w1 —z1)i [82 U(z1)]ab
167 /dl/o ud [(Z—2)3v+ (T —2)3v—uv(u+v)Cs + ie] (130)

piooo

op + 1) N (129)

This integral diverges logarithmically when ©w — 0 — in other words when the
emission of quantum gluon occurs in the vicinity of the shock wave. (Note
that if we had done integration by parts, the divergence would be at v — 0,
therefore there is no asymmetry between u and v). The size of the shock wave
ze ~ m~ 12 (where 1/m is the characteristic transverse size) serves as the
lower cutoff 'for this integration and we obtain

n_ s da (21 —21)i[03U(z0)]ab
S = i =

= 1§W31 Z;((ﬂ«“ Z(fﬁ l‘m))ab, (131)

(recall that @ = 1 — ). Thus, the contribution of the diagram in Fig. :f&éa in
the LLA takes the form

(0@ )0 (1)) = (gwl "){tmm@tbvau((u%(azm
x%‘m)) Y U@ @ U (y1) tb((xl‘ﬂ @2 Ut U‘“))ab}' (132)

where we have added the term coming from z. < 0,y. > 0. A corresponding
result for the diagram shown in Fig. d8b can be obtained by comparing the
space-time picture Fig. :_1§:b for this process with Fig. | 8a,

<U:<(.L“l) ®Usf<(yL)>A = (g In Z—;) U(JJL) ®t“UT(yl)tb

Clggh), o
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Likewise, the diagram in Fig. :_f@lc yields

Giaovkul = (£nl) et oo
X ((xl‘%(f?m%‘h))ab. (134)

The total result for_t“_hgz one-loop _evolution of two-Wilson-line operator is
the sum of Eqs. (133), (133), and (134),

<{U<1<xL>};‘-{UT<1<yL>}f>A=$mj—; dz (135)
x {= {01 )T @OVHT )0 ()}
+ {0 ()01 (20 HH{UT2 (y1) 0 (21)}F

= OO @)U ()Y — ST ) U (@0) )]

+ {09 )BT ()07 (1)} = NAT @) | {01 )

G+ O @O) [0 IO ()0 )

B NC{UTCQ(yL)}ﬂ ﬁ}

X

The evolution of a general n-Wilson-line operator is presented in Appendix
7.3.0

3.5 BFKL pomeron from the evolution of the Wilson-line operators

As we demonstrated in Sec. 3.2, with the LLA accuracy the improved version of
the factorization formula Eq. (109) has the operators U and UT “regularized”
at ¢ ~ —:

[ e [atzsze e )5 :) (136)
= X4 e T A b )T {US= S (BT = )} + O().

h° A more careful analysis performed in Appendix shows that the Wilson lines U and U are
connected by gauge links at infinity, see Eq. (29_!1)
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In the next-to-leading order in a; we will have the corrections

~ a,TrU (z 1)U (y L )TrU (y)UT(21), see Fig. 6. The matrix element of this
operator (US(z)U™(y.)) (see Eq. (111) for the definition) describes the
gluon-photon scattering at large energies ~ s. (Hereafter we will wipe the
label () from the notation of the operators). The behavior of this matrix
element with energy is determined by the dependence on the “normalization
point” ¢. From the one-loop results for the evolution of the opgrators U and

UT (135) it is easy to obtain the following evolution equation8%&%

CpUtern) = =55 [ e {ttor o) + U0 UL )
@3
4 u<x,z>u<z,y>}(f_ e (137)
where
UGwss) = 3 (UGl Ul on)lyse)s} - N (139

(cf. Eq. (107)). Note that right-hand side of this equation is both infrared
(IR) and ultraviolet (UV) finitesi We see that as a result of the evolution,
the two-line operator Tr{UUT} is the same operator (times the kernel) plus
the four-line operator Tr{UU}Tr{UU'}. The result of the evolution of the
four-line operator will be the same operator times some kernel plus the six-line
operator of the type Tr{UUT}Tr{UU}Tr{UU '} + To{UUTUU T} Tr{UU '} and
so on. Therefore it is instructive to consider at first the linearization of the
Eq. @37_.) with the number of operators U conserved during the evolution.

The linear evolution of the two-line operator U (z 1 ,y, ) is governed by the

“The similar non-linear equation describing the multiplication of pomerons was suggested in
Ref. 38 and proved in Ref. 39 in the double-log approximation

JThe IR finiteness is due to the fact that TrUUT corresponds to the colorless state in_t-
channel, as_a consequence the IR divergent parts coming from the diagrams in Figs. [18a,
'18b and 'l8c cancel out. If we had the exchange by color state in t-channel, the result W111
be IR dlvergent (cf. Eq. ('73))
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BFKL equation ﬁ

C%U(ﬂ«l, Y1) (140)

:—&Nc/dzl{l/{(xl ZL)—FU(ZL yL)—U(xl yl)} (f-:lj)i .
4m2 ’ ’ ’ @-21(EF -3

Let us start from the simplest case of forward matrix elements (which describes,
for example, the small-x DIS from the virtual photon). Then the equation (140)
takes the form

el ) = 25N [des (o = 21) + (1) ~ Ul Dl =S

(141)
where (U(z1)) = (U(z1,0)) (see Eq. (111)). The eigenfunctions of this
equation are powers (xi)_%‘”” and the eigenvalues are —%=N.x(v), where
x(v) = —Rey(3 +iv) — C. Therefore, the evolution of the operator U takes
the form:

(U (zr)) = / %(fﬁ)%m (g)“ X()

x famE) ) (142)

We may proceed with this evolution as long as the upper limit of our

2 2
logarithmic integrals over a, 4/ 12—;‘, is much larger than the lower limit pTB de-

termined by the lower quark bulb, see the discussion in Sec. 3.3. It is convenient
to stop evolution at a certain point (y such as

S
=0"—, o<1, g¢ho<l, (143)

m
then the relative energy between the Wilson-line operator {/<° and lower vir-

tual photon will be sy = m?c? which is big enough to apply our usual high-
energy approximations (such as pure gluon exchange and substitution g,, —

kIf F(ky,r)) satisfies the BFKL Eq. @é) then

U,yl) = /dkldrlei(g’fﬂ*‘i(’*—gﬂh (139)
Pk, 1 FK, ,r
KL= k)Y ()2 (F—F)2
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%pmpm) but small in a sense that one doeb not need take into account the

difference between g2 In 5 and g° In —2—. Finally, the evolution ('140) takes
the form:
— m? dv 1, S | 2as y —3 4
W @) = [ S ) [, ()4 e ),

(144)
Now let us rewrite this evolution in terms of original operators UUT in the
momentum representation. One obtains:

(THU=F GOV o0l = [ ) d (149)
()T [t e v el ot )

where we omit the gauge links at infinity @QSZ) for brevity. Since we neglect the
logarithmic corrections ~ g2 Ino the matrix element of our operator US UT¢
coincides with impact factor IZ up to O(g?) corrections:

<<Tr{U<° (m)UTCO (=p)}) (146)
_ —1 o2 da ‘I)B Oéppl Coapp2 +p1)
= Z 1 / COO‘;% + ﬁQL)Q

-1 1 1
- Zef (p;IB (pr)— 5(pL)/dpljfB(pl)> :
iR

2

Combining Egs. (110), (145), and (iéi(i) we reproduce the leading logarithmic
result for virtual vy scattering (59).

In the case of small-x DIS from the nucleon the matrix element of the
operator UUT describes the propagation of the “color dipole’m in the nucleon.
The evolution of the matrix element (N || N) is the same as Eq. (145) with the
only difference that the lower impact factor I? should be substituted by the
nucleon impact factor IN determined by the matrix element of the operator

48



UUT between the nucleon states:ﬁ

1
gl Np1)

(147)
where 276(3) reflects the fact that matrix element of the operator UUT con-
tains unrestricted integration along p<, (cf. Eq. (111)). The nucleon impact
factor I2(p, ) defined in (147) is a phenomenological low-energy characteristic
of the nucleon. In the BFKL evolution it plays a role similar to that of a
nucleon structure function at low normalization point for DGLAP evolution.
In principle, it can be estimated using QCD sum rules or phenomenological
models of nucleon.

d ,
(N. Pl TH{U (2. )U )}V, + ) = 216(9) [ Popeie)s

In conclusion, let us present the results for the linear evolution for the
non-forward case. Due to the C(_)rlformal invarignce of the tree-level QCD the
eigenfunctions of the equation (140) are powers 3

SR L+iv
- 93 2
@91 ) (148)

where x( is arbitrary. The eigenvalues are the same as for the forward case,
—2Ncx(v). The corresponding formula for the result of the evolution of the
two-Wilson-line operator has the form:

2 = 2 F—w
U (z1,y1) = /dud%ol/—4( -9 )
™ \(

T —30)3 (7 — o)1
Cl _% CX(”))
X (5) U (z9,v) (149)
where
1 (@' —y')? .

Ut = [do [ dy U,y
e = [or [0 () Wb
(150)

!This is called “hard pomeron” contribution to the structure functions of DIS since the
transverse momenta in our loop integrals are large (~ Q?), at least in the lowest orders in
perturbation theory. However, due to the diffusion in transverse momenta the characteristic
size of the §% in the middle of gluon ladder is Q%e~V 9%Ins (see the discussion in Sec. 2.4),
so at very small z the region p;, ~ Agcp may become important. It corresponds to the
contribution of the “soft” pomeron which is constructed from non-perturbative gluons in our
language and must be added to the hard-pomeron result.

49



It is worth noting that at large momentum transfers —t = 7 > m3%; the
nucleon impact factor is determined by the well-studied electric and magnetic
form factors of the nucleon

Ei>>m2

n 1 — n
In(ki,ry) “=" S FPT (t)+%U(p’,X) P ¥iulp, NFYT(t),  (151)

which gives an opportunity to calculate the amplitude of deeply virtual Comp-

ton scattering from the nucleon at small z without any model assumptions®d

3.6 Non-linear evolution of Wilson lines

Unlike the linear evolution, the general picture is very complicated: not only
the number of operators U and UT increase after each evolution but they form
increasingly complicated structures like those displayed in Eq. (153) below. In
the leading log approximation the evolution of the 2n-line operators such as
Tr{UUT}Tr{UUT}...Tr{UU'} comes from either self-interaction diagrams or
from the pair-interactions ones (see Fig. 19) The one-loop evolution equations

. .
-“‘ -“‘

.t
(34 g
ey

Figure 19: Typical diagrams for the one-loop evolution of the n-line operator.

for these operators can be constructed using the pair-wise kernels calculated in
the Appendix C. For instance, the evolution equation for the four-line operator
appearing in the right-hand side of Eq. (13%) has the form:

AR R ARG I (152)

_ 1ng3 /dti{ [Tr{Ux [z, t]_UtJr [t, ] YTe{U[t, 2] _UJ[2,t] +}
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(£ - 2)7

NTu{Urle, 2 -Ulles ol o} | TH{U-Le -Vl A1 e e

7- 22
(y -7 (Z-1)7
| Te{U (2] -UJ £, 2] Y Te{ et 0] - U 1)+
NeTe{U. (=, )-Uly, 211}

| Te{U[o, 2)-U [z, Ut 9)-US [y, 21 U [z, 9] -Uf 1, 2]}

Te{Us[z, 2] -Ul[z, 2]+ }

Te(Usle, ) -U/[t, 2]+ U. [z, 9] -Ujly, 114 Uslt, 2]-Ul [z, 24 }

2T {Us oy -UJ} [y, o]

(
@-tHi-01 (F-11

where we have displayed the end gauge links @Qg) explicitly. Note that each
of the separate contributions (800) and (301) corresponding to the diagrams in
Fig. gga and :_3-9'b diverges at large t while the total result (252_) is convergent.

This is the usual cancellation of the IR divergent contributions between the

emission of the real (Fig. 39a) and virtual (Fig. 39b) gluons from the colorless
object (corresponding to the Lh.s. of Eq. (152)) (cf Eq. (137)).

Thus, the result of the evolution of the operator in the right-hand side of

Eq. (120) has a generic form:

X X 4+ X X

_l_

Tr{Ugf[x,y]_UyTC[y,x]+} = i(as In CC—O)"/dzleQ...dz"

n=0

[An(x, 222 ) Te{US 2, 1) U1, 2], )

UL 1,2 US 2,11, ... Tr{U [, 5] Ui [y, ]}

By (x, 2, 2%, ..2"y)

Te{US 2, 1)U} 1,21 UL 2, 3)_UJ (3, 11, UL [1,2]_UJ [2, 2]}
Tr{U5°[3,4] U [4, 3] }.. Te{U [, y) U} [y, n] 4.} + ...
NC"C'n(x,zl,ZQ,...z",y;)Tr{Ung[x,y]_UyTCO[y,x]+} , (153)
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where U = U(T)( "), 14, 7] = [zi, x;] and
Ap(w, 24,22, 2 ,y), By (w24, 2%, 0 2"y), ..., Colx, 24, 2%, .., 2", y) are

times which give us a sort of Feynman rules for calculation of these coeflicient

functions. If we now evolve our operators from ( ~ =2 to (y given by Eq. C143-3
we shall obtain a series (153) of matrix elements of the operators (U)*(UT)"
normalized at (5. These matrix elements correspond to small energy ~ m? and
they can be calculated either perturbatively (in the case the “virtual photon”
matrix element ) or using some model calculations such as QCD sum rules in
the case of nucleon matrix element corresponding to small-z v*p DIS . It should
be mentioned that in the case of virtual photon scattering considered above
we can calculate the matrix elements of operators UUT...UUT perturbatively.
Because U = 1+ig [A,dz,+ ..., in the leading order in o, we can replace by 1
all but two U(UT)’s, so we return to the BFKL picture describing the evolution
of the two operators UU'. The non-linear equation @3?) enters the game in
the situation like small-x DIS from a nucleon or nucleus when the matrix
elements of the operators UUT...UU' are non-perturbative, consequently there
is no reason to expect that extra U and UT will lead to extra smallness. In
this case, at the low “normalization point” (y one must take into account the
whole series of the operators in the right-hand side of Eq. (153), indicating
the need for all the coefficients an,by,...c,. Recently, these coefficients were
calculated by Y. Kovchegov 87 for the case of DIS from the large nuclei in
the McLerran-Venugopalan model, and the results indicate that the non-linear
equation (137) leads to unitarization of the pomeron in this case®?

The zoo of dlﬂerent Wilson-line operators ('153) may be reduceded by usmg
the dipole picture2423 Technically, it arises when in each order in o 1n( ) we

keep only the term Tr{US° UTCO}Tr{UCO Uj©}.. Tr{UP UTCO} subtractions :’”' in
right-hand side of Eq. ('153-) for example, in Eq. ('152) we keep the two Tirst
terms and disregard the third one. In other words, we take into account only
those dlagrams in Fig. 39. which connect the Wilson lines belonging to the
same Tr{UkUk 1) (Thlb corresponds to the virtual photon wave function
in the large-N, approximation). The diagrams of the corresponding effective
theory are obtained by multiple iteration of Eq. (:_12_')7_:) and give a picture where
each “dipole” Tr{UkUg 41) can create two dipoles according to Eq. (137). The
motivation of this approximation is given in Refs. 24, 25, and the discussion
of unitarization of the BFKL pomeron in the dipole picture is presented in
Ref. 41.

mBy “subtractions” we mean this operator with some of the Tr{UkU +1} substituted by
Ne.

52



3.7 Operator expansion for diffractive high-energy scattering

The nonlinear term in the equation (13%) describes the triple vertex of hard
pomerons in QCD. In order to see that, it is convenient to consider some
process which is dominated by the three-pomeron vertex — the best example
is the diffractive dissociation of the virtual photon.

The relevant operator expansion for diffractive scattering is,abtained by
direct generalization of our approach to the diffractive processes® The total
cross section for diffractive scattering has the form:

otif = [ doe / gzpm W+ X0+ X)), (154)

p and p’ are the nucleon momenta and ), means the summation over all
the intermediate states. We can formally write down this cross section as a
“diffractive matrix element” (cf. Ref. 43):

1 1 d
Ayt / daes® (p|T{j ()77 (0)}|p), (155)
where 1}
(T et | = E @=Ly (156)

def d3p L2
- / 3Zp|T{.m et [ 4L 4 x)

< 0+ X|T{ju<o>e1f L ),

The superscript “—” marks the fields to the left of the cut and + to the right.
The definition of the T-product of the fields with £ labels is as follows: the
+ fields are time-ordered, the — fields stand in inverse time order (since they
correspond to the complex conjugate amplitude), and — fields stand always
to the left of the 4+ ones. Therefore, the diagram technique with the double
set of fields is the following: contraction of two + fields is the usual Feynman
propagator (for the quark field), contraction of two — fields is the com-

2+ze
plex conjugated propagator ﬁ, and the contraction of the — field with the
+ one is the “cut propagator” 2wd(p?)8(po) 155 This diagram technique for
calculating T-products of double set of fields exactly reproduces the Cutkosky

"The difference between Eq. (:LS _and the last line in Eq. (156: ) is that j’s are Heisenberg
operators in (154l ) while in Eq. ( 5q ) the operators stand in the interaction representation
°We will use the —4 perturbative propagator only for hard momenta, hence the additional
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rules for calculation of cross sections. The light-cone expansion of the diffrac-
tive matrix ¢lement (155) gives operator definition of the diffractive parton
distributions®*4

Let us discuss the high-energy operator expansion for the diffractive am-
plitude Wf};ﬁ. Similarly to the case of usual amplitude (:_I-IQ:), we get in the
lowest order in «y

diff 2 kol A
UG e I7(k.1,0)

472

flavors

(N|Te{W=m"/s(j YWT=m*/s(_k ) }N), (158)

X

where W (k) is a Fourier transform of
W(z) =V )U(xy), Wiz)=U(z)V(zy). (159)

Here U(x, ) denotes the Wilson-line operator constructed from + fields and
V(z1) denotes the same operator constructed from — fields:

US(zy) = [oopr+xy, —oopi+x1]", V(ry)=[occetay, —ocetz ] (160)
After integration over fast quarks, the slope of the Wilson linesis { = zp = %2,
see the discussion in Sec. 3.3.

The evolution equation (with respect to the slope of the supporting line)
turns out to have the same form as Eq. (137) for non-diffractive amplitudes:

4 _ ol (7973
CdCW(u,yL) = /dZL GG (161)

X {W(xL,zl) Wz, 21) —W(x1,y1) —l—W(xl,zl)W(zl,yl)},

where )
def
Wi, yl) = FTT{W(@“L)WT(:UL)} -1 (162)

emitted nucleon with momentum p’ (constructed from soft quarks) can be factorized

D OR@)Ip +X) (' + X[$(0)]0) (157)
X
4
= 3 0@ X)X BO0)10) @ ) 0] = | B pemsp?)0(p0) © ') (0]

= (2m)%8
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(cf. Eq. (138). Similarly, the linear evolution is:

dv 1. —%w(u)
N Lol = [ (L) (163

) /dzi(fi)_%_i”<N|WC2(ZL,0)|N>,

where w(v) = 2% N.x(v), see Eq. ('.5-6I Let us now describe the diffractive
amplitude in LLA and in leading order in N.. In this approximation we must
take into account the non-linearity in the Eq. (161) only once, the rest of the
evolution is linear. The result is (roughly speakmg) the three two-gluon BFKL
ladders which couple in a certain point, see Fig. 20 For the case of diffractive

P p
Figure 20: Amplitude of diffractive scattering in the LLA-N. approximation.
DIS, this evolution has the form (cf. Ref. 45):

(V] / dy W= (2 4y 1)) (164)

N. . —Li(vitve—v
— 0;730 /duduldxlduzdm(fi)%ﬂ” ((531 —fz)i) gilate—)
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Vi3 dM2 s w(u) M2\ W)
L 2@ (v;v1, 12) —
e 4772 2 M2 (35) Q?

< (plU (1, 1) P ) (P U (22, v2) D),

where M? is the invariant mass of the produced particles, and

O(v;vi, 1) = F(%—i(u—l—l/l—l/g))l“(%—i(y_y1_|_y2))
V1, V2 D3 +i(v+uv1— )3 +i(v — 1 +12))
FQ(%—!—Z'V) 1 1 1
oL oy gt g —iv, 5 — 165
< e la gy 06)

is a certain numerical function of three conformal weights (the explicit form
was found in Ref. 46 ) which has a maximum ©6(0,0,0) = 2774 F5(3)6F5(3) ~
7766. 679 The value of M? determines the rapidity gap: from 1 = In 52 to

n= 1n we have a production of particles described by the cut part of the

ladder in Flg. :_2(_) which brings in the factor (s/MQ)w(y) while from 7 = In 4 m
to n = Inxp we have a rapidity gap so there are two independent BFKL
ladders which bring in the factors (MQ/QQ)W(W) and (MQ/QQ)W(VQ). Since the
intercept of the BFKL pomeron wy > 0, this cross section increases with the
growth of the rapidity gap.

The coupling of BFKL ladder with non-zero momentum transfer to a nu-
cleon is described by the matrix element (p’|U(z, v)|p). As we discussed in the
previous section, at large momentum transfer it can be approximated by the
electromagnetic form factor of the nucleon,

o, iy
/ / (x/_:‘j,)i 2 1
166
[ ((f/— e -92) @-yr U9

dky dry z(k &) L +i(F—K,7) L p+n 2
472 47r2 (6)‘ (=)

bl X) e VL)),

U(z,v)

If one interpolates the form factors by the dipole formulas, the diffractive
amplitude in the LLA-N, approximation (164) can be calculated numerically.

The non-linar equation (161) can be applied to the diffractive DIS from
the nuclei. In this case there is an additional large parameter, the atomic
number A, and therefore one should take into account the multitude of the
non-linear vertices rather than one vertex as in Fig. 2-(_)' These “fan” diagrams
were summed up in Ref. 47 resulting in a cross section which has a maximum
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at a certain rapidity gap (unlike the LLA-N, model for the nucleon where the
cross section increases with the rapidity).

4 Factorization and effective action for high-energy scattering
4.1 Factorization formula for high-energy scattering

Unlike usual factorization, the coefficient functions and matrix elements enter
the expansion @(_):) on equal footing. We could have integrated first over slow
fields (having the rapidities close to that of pp) and the expansion would have
the form:

A(s,t) = Z/del...denD““'“ (@1, o) (pa|Te{U;, (21)...Us, (T0) }P's)-

(167)
In this case, the coeflicient functions D are the results of integration over
slow fields ant the matrix elements of the U operators contain only the large
rapidities > 9. The symmetry between Eqgs. (1) and (2) calls for a factor-
ization formula which would have this symmetry between slow and fast fields
in explicit form.
I will demonstrate that one can combine the operator expansions (5_‘) and
(167) in the following way*"d

A(s,t) = Z%/d%l...d%n (168)
X ApalUM (1) U () [04) (B USH (1) UL (0) D),

where U = Tr(A*U;) (A* are the Gell-Mann matrices). It is possible to rewrite
this factorization formula in a more visual form if we agree that operators U act
only on states B and B’ and introduce the notation V; for the same operator
as U; only acting on the A and A’ states:

A(s, ) = (pal(pplexp (i [ d*zV " (2)Uf (x)) [ply) Pp)- (169)

The supporting lines of both U and V operators are collinear to the vector
n corresponding to the “rapidity divide” 7g. The explicit form of this vector
is n = op1 + Gpa, where ¢ = I and Ino /6 = 7n._In a sense, formula (169)
amounts to writing the coefficient functions in Eq. (80) (or Eq. (g(j?_-)) as matrix
elements of Wilson-line operators. Eq. (169) illustrated in Fig. 21 is our main
tool for factorizing in rapidity space.

In order to understand how this expansion can be generated by the factor-

ization formula of Eq. @69) type we have to rederive the operator expansion in
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Figure 21: Structure of the factorization formula. The vector n gives the direction of the
“rapidity divide” between fast and slow fields.

axial gauge A, = 0 with an additional condition A.|, ___ = 0 (the existence
of such a gauge was illustrated in Ref. 49 by an explicit construction). It is
important to note that with with power accuracy (up to corrections ~ o) our
gauge condition may be replaced by n*A, = 0. In this gauge the coefficient
functions are given by Feynman diagrams in the external field

By(z) = Ui(z.)0(z.), B. =B, =0, (170)

which is a gauge rotation of our shock wave (it is easy to see that the only
nonzero component of the field strength tensor Fy;(x) = Ui(w1)d(z,) corre-
sponds to shock wave). The Green functions in external field (170) can be
obtained from a generating functional with a source responsible for this exter-
nal field. Normally, the source for given external field A, is just J, = D F,,,
so in our case the only non-vanishing contribution is J,(B) = D'F;.. However,
we have a problem because the field which we try to create by this source does
not decrease at infinity. To illustrate the problem, suppose that we use another
light-like gauge A. = 0 for a calculation of the propagators in the external field
(170). In this case, the only would-be nonzero contribution to the source term
in the functional integral D'F;, A, vanishes, and it looks like we do not need
a source at all to generate the field B,,! (This is of course wrong since B, is
not a classical solution). What it really means is that the source in this case
lies entirely at the infinity. Indeed, when we are trying to make an external
field A in the functional integral by the source J, we need to make a shift
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A, — A, + A, in the functional integral
JDAexp {iS(A) —ifd*xJi(x) A ()}, (171)

after which the linear term DHF AV cancels out with our source term J, A*
and the quadratic terms lead to the Green functions in the external field A.
(Note that the classical action S(A) for our external field A = B (170) van-
ishes). However, in order to reduce the linear term [ d*zF*” D, A, in the
functional integral to the form [ d*zD"F,,.A”(x) we need to perform an in-
tegration by parts, and if the external field does not decrease there will be
additional surface terms at infinity. In our case we are trying to make the
external field A = B, consequently the linear term which need to be canceled
by the source is

2 [drydr.d*v | FieDoA = [dod?z) Fie AT . (172)

T g=—00

This contribution comes entirely from the boundaries of integration. If we
recall that in our case Fo;(x) = U;(x1)0(x) we can finally rewrite the linear
term as

Jd?x, Ui(z 1 ){ A (—oopz + 1) — A’ (cop2 + z1)}. (173)

The source term which we must add to the exponent in the functional integral
to cancel the linear term after the shift is given by Eq. (173) with the minus
sign. Thus, Feynman diagrams in the external field (if@) in the light-like gauge
A, = 0 are generated by the functional integral

/D.Aexp {iS(.A) + i/delU“i(xl)[.Af(oopg +z1)— A% (—ocop2 + xL)]}

. (174)
In an arbitrary gauge the source term in the exponent in Eq. (174) can be
rewritten in the form

2i/d2xlTr{Ui(xL)/ dv[—oopa, vp2]e, Fii(vp2 + 21 )[vp2, —0copa)s, }-

(175)
Therefore, we have found the generating functional for our Feynman diagrams
in the external field (170).
It is instructive to see how the source (175) creates the field (170) in
perturbation theory. To this end, we must calculate the field

A (@) = / DAA, () exp {iS(4) +2i / 2 Te{U (1)

X / d’U[—OOpQ, UpQ]Z'LF*i(’UpQ + xl)[vp% _OOPQ]HCL}} (176)

—0o0
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by expansion of both S (A) and gauge links in the source term (175) in powers
of g (see Fig. 22). In the first order one gets

(©

Figure 22: Perturbative diagrams for the classical field (:i?:(l)

A&O)(ay) = i/_oo dv/dlem(zLXAu(x)Ffi(vpg +z1)), (177)

where (O) = [ DAe*°O. Now we must choose a proper gauge for our cal-
culation. We are trying to create a field (ﬂfQ) perturbatively and therefore
the gauge for our perturbative calculation must be compatible with the form
(170), otherwise, we will end up with the gauge rotation of the field B(z). (For
example, in Feynman gauge we will get the field A, of the form of the shock
wave A; = A, = 0, Ay ~ d(x.)). It is convenient to choose the temporal
gauge Agp =0 :f: with the boundary condition A[,____ = 0 where

t
A, (t, @) = / dt' Fou(t', @). (178)

—0o0

PThe gauge A« = 0 which we used above is too singular_for the perturbative calculation.
In this gauge one must first regulate the external field (E?_Q) by the replacement U,;0(z+) —
U;0(z«)e”“* and let € — 0 only in the final results.
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In this gauge we obtain

T dp Pu(p1 +p2)y + (1= v) Apupy
(0) —_ e -9 M H.
@ = [ (g“” Sa+f+ie) St f+ieP
1 o s
d —iare—ifBT«+ipL (T—2) 1 Lo(a=), U7 179
T ] e pad(@R)O,U7 (1) (179)
where §(a§) comes from the [ dve’=. (Note that the form of the singularity

m which follows from Eq. (178) differs from the conventional prescription

V.p.p—lo). Recalling that in terms of Sudakov variables dp = Sdadfdp, one
easily gets fl&o) = flﬁo) =0 and

10 () — dp_1 iBL(T-2)1 g, g (e
A; (x)—e(x*)/(zw)Qﬁi/dzle 0;0;U7%(z1), (180)
or more formally,
_ 1 .
Ay = —e(x*)%aiajw(m
1 .
= Ui(z1)0(z.) - 9(3«“*)8—»—2(53% +0:0;)U7 (z1),  (181)
1
(in our notations 92 = —8;8"). Now, since U;(z) is a pure gauge field (with

respect to transverse coordinates) we have 0;U; — 9;U; = i[U;, Uj], so

AP (@) = Ui )8(e.) = Oa.Yig 5 U U o). (182)
i

Consequently, we have reproduced the field (170) up to the correction of of g.
We will demonstrate now that this O(g) correction is canceled by the next-to-
leading term in the expansion of the exponent of the source term in Eq. (176).
In the next-to-leading order one gets (see Fig. 22b)

AV@) = g / dy / dzydz U9 (2, ) UM (<)) (183)
x <Au<x>2Tr{aaAﬁ<y>[Aa<y>,Amyn}
X /dvaj(vpg +2z1) /dv’F*bk(vpg + zi)>
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It is easy to see that AW = AN =0 and

dp , 1
—aq | d _ b —ip(z—y) — 184
y/ y/ Gn)ii o (184)

(A7), AV W) + Ak @), 040 (w) — (i = B))

AN ()

X

Since .Ag)) is given by Eq. (183), this reduces to

dp, e PL(@=y)L

AWy
A @) = —g0(e.) [, g

7z 0" ([Ui(y), Ur(y)]) + O(g*)- (185)

The right-hand side of this expressions cancels the second term in Eq. (:_1-5_5-%‘)
and we obtain B
Ai(z) = Ui(z1)0(x.) + O(g?). (186)

Likewise, one can check that the contributions ~ g coming the diagrams in
Fig. 29c cancel the g2 term in the Eq. (186). Taking into account arbitrary
number of the tree-gluon vertex iterations, one gets the expression U, (x 1 )0(x)
without any corrections.

We have found the generating functional for the diagrams in the external
field (170) which give the coefficient functions in front of our Wilson-line oper-
ators U;. Note that formally we obtained the source term with the gauge link
ordered along the light-like line, a potentially dangerous situation. Indeed, it
it is easy to see that already the first loop diagram shown in Fig. 2-?_; is diver-
gent. The reason is that the longitudinal integrals over a,, are unrestricted
from below (if the Wilson line is light-like). However, this is not what we want
for the coefficient functions because they should include only the integration
over the region «, > ¢ (the region «, < o belongs to matrix elements, see
the discussion in Sec. 3). Therefore, we must impose somehow this condition
ap > o in our Feynman diagrams created by the source (ﬂfB:) Fortunately
we already faced similar problem — how to impose a condition «;, < o on the
matrix elements of operators U (see Fig. :f@l) — and we solved that problem
by changing the slope of the supporting line. We demonstrated that in order
to cut the integration over large @ > ¢ from matrix elements of Wilson-line
operators U; we need to change the slope of these Wilson-line operators to
n = opy + 0p. Similarly, if we want to cut the integration over small o, < o
from the coefficient functions we need to order the gauge factors in Eq. (175)
along (the same) vector n = op; + 6p2..’1:

9Notg that the diagram in Fig. ’23 is the diagram in Fig. iLSb turned upside down. In the
Fig. g5b diagram we have a restriction a < o. It is easy to See that this implies a restriction
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Figure 23: A typical loop diagram in the external field created by the Wilson-line source

W74).

Therefore, the final form of the generating functional for the Feynman
diagrams (with o > o cutoff) in the external field (170) is

/ DADexp {z’S(A, )+ / P U (2, )V (xl)} , (187)
where
Vi(zy) = / dv[—oon, vn];n* F,;(vn + x 1 )[vn, —oon],, (188)

and V;* = Tr(A*V;) as usual. For completeness, we have added integration
over quark fields so S(A, ¥) is the full QCD action.

Now we can assemble the different parts of the factorization formula (169).
We have written down the generating functional integral for the diagrams
with @ > o in the external fields with a < o; what remains now is to write
down the integral over these “external” fields. Since this integral is completely
independent of @EE?E) we will use a different notation B and x for the o < o
fields. We have

/mmmewmv“j(m)j(p;>j<p3>j<psg> (189)

B > & if one chooses to write down the rapidity integrals in terms of 3’s rather than a’s.
Turning the diagram upside down amounts to interchange of ps and pp, leading to (i)
replacement of the slope of the Wilson line by &p1 + op2 and (ii) replacement o <+ 3 in the
integrals. Thus, the restriction 8 > & imposed by the line collinear to op; + 6pg_ in diagram
in Fig. 15b means the restriction & > & by the line || &p1 + op2 in the Fig. 23 diagram.
After renaming o by & we obtain the desired result.
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_ /DAD@DweiS“’%(pA)j(pm /DBDXDX
X j(pB)j(pjg)eiS(B’X) exp {i/delU“i(xl)Vi“(xl)}.

The operator U; in an arbitrary gauge is given by the same formula (:1538:) as op-
erator V; with the only difference that the gauge links and F,; are constructed
from the fields B,,. This is our factorization formula @6@ in the functional
integral representation.

The functional integrals over A fields give logarithms of the type ¢>In1/c
while the integrals over slow B fields give powers of g2 In(os/m?). With loga-
rithmic accuracy, they add up to g% Ins/m?. However, there will be additional
terms ~ g2 due to mismatch coming from the region of integration near the
dividing point o ~ o, where the details of the cutoff in the matrix elements of
the operators U and V become important. Therefore, one should expect the
corrections of order of g2 to the effective action [ dx LU of the type

exp {i/deLUi(xL)Vi(xL)—l—i/dxldyldzl (190)
X Ui(e )V V(=) Vit ) K (@ —tuys — 1,20 — 1)}

where K is a calculable kernel. In general, the fact that the fast quark moves
along the straight line has nothing to do with perturbation theory (cf. Ref. 50),
therefore it is natural to expect the non-perturbative generalization of the
factorization formula constructed from the same Wilson-line operators U; and
V.

4.2 Effective action for given interval of rapidities

The factorization formula gives us a starting point for a new approach to the
analysis of the high-energy effective action. Consider another rapidity nj in
the region between 79 and np = Inm?/s. If we use the factorization formula
(EE_EQ) once more, this time dividing between the rapidities greater and smaller
than 7(), we get the expression for the amplitude (8) in the form (see Fig. 24):i

iA(s,1) = /DAeiS%(pA>j<pi4>j<p3>j<psg> (191)

- /DAeiSMU(pA)j(p’A) /DBeiS“U@B)j(psg)

"Strictly speaking, the Lh.s. olfl Eq. (:19_1:) contains an extra 16745(pa + p’y — pp — plg) in
comparison to the amplitude ().
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o /Dceis(c)eifd%wm(mmﬂ (@1)+i [ d*2s W (2.1)Uf (1)

(For brevity, we do not display the quark fields.) In this formula the operators

Figure 24: The effective action for the interval of rapidities ng > n > 776. The two vectors n
and n/ correspond to “rapidity divides” ng and 776 bordering our chosen region of rapidities.

V; (made from A fields) are given by Eq. (:_ig@, the operators Y; are also given
by Eq. @58:) but constructed from the C fields instead, and the operators W;
(made from C fields) and U; (made from B fields) are aligned along the direction
n' = o'p1 +'ps2 corresponding to the rapidity ' (as usual, Ino’ /&’ = 1’ where

&' =m?/sa’),

Vi(A)z, = /Oo dv[—oon, vn|nt F;(vn + 1 )[vn, —oon],,
Yi(C)s, = /Oo dv[—oon, vn|;n" Fi(vn + x 1 )[vn, —oon),,

Wi (C). = /Oo dv[—oon’, vn']yn " Fi(on' + 21 )[on', —ocon’],
Ui(B)z, = /Oo dv[—oon’, vn']yn " F(on’ + 1) [on’, —oon'],.

In conclusion, we have factorized the functional integral over “old” B fields
into the product of two integrals over C and “new” B fields.

65



Now, let us integrate over the C fields and write down the result in terms
of an effective action. Formally, one obtains:

iA(s, 1) = / DASA j(p)j(ps) /7336“"”.7'@3>j<p39>e“eff<vvff%>, (192)

where the effective action for the rapidity interval between 7 and 7’ is defined
as

eiSeff(V,U;%) _ /'Dceis(c)eifdngVw(xL)Ya‘,a(xL)—HfdzxLWM(xL)Uf(xL) (193)

U; = UTéaiU and V; = V%&V as usually). This formula gives a rigorous
definition for the effective action for a given interval in rapidity.

Next step would be to perform explicitly the integrations over the longi-
tudinal momenta in the right-hand side of Eq. (193) and obtain the answer
for the integration over our rapidity region (from 79 to n{) in terms of two-
dimensional theory in the transverse coordinate space,E: hopefully resulting in
the unitarization of the BFKL pomeron. At present, the known how to do this.
One can obtain, however, a first few terms in the expansion of effective action
in powers of V; and U;. The easiest way to do this is to expand gauge factors
Y; and W; in right-hand side of Eq. (193) in powers of C fields and calculate
the relevant perturbative diagrams (see Fig. 25). The first few terms in the

@ (b) (©) (d)
Figure 25: Lowest order terms in the perturbative expansion of the effective action.

effective action at the one-log level ﬁ have the form222

SHistorically, the idea how to reduce QCD at high energies to the two-dimensional effective
theory was first suggested in Ref. 51 where the leading term in Eq. (:194.) was obtained.
However, careful analysis of the assumptions made in this paper shows that the authors
considered the fixed-angle limit of the theory (s,t — oo) rather than the Regge limit (where
— oo but ¢ is fixed). It turns out that the first term in Eq. (:19_4:) is the same for both limits,
but the subsequent terms differ.

tThis “one-log” level corresponds to one-loop level for usual Feynman diagrams. Superfi-
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. »°

@ (b) © (d

Figure 26: Counting of loops for Feynman diagrams (a),(c) and the corresponding Wilson-
line operators (b),(d).

Se = /deV“i(x)Ui“(x) (194)
g’ g 2,12, 174 2 2770
T 643 In o Ne [ dzd"yVi’(x) In"(z — y)"Uj ;(y)

s dobelne [yt V)V UL )

NCEE VRS @ 2
Y P o (a> @) "y )

where we we use the notation V% (z) = %Vﬂ(m) etc. The first term (see

Fig. :2-5'a) looks like the corresponding term in the factorization formula (:._IgQ)
only the directions of the supportlng lines are now strongly different. ?‘ The
second term shown in Fig. 25-(: is the first-order expression for the regge1zat10n

cially, the diagram in Fig. 23d looks like tree diagram in comparison to diagram in Fig. 25c
which has one loop. However, both of the diagrams in Fig. 25c and d contain integration over
longitudinal momenta (and thus the factor In -%) so in the longituduinal space the diagram
in Fig. 23d is also a loop diagram. This happens because for diagrams with Wilson-line
operatofs the counting of number of loops literally corresponds to the counting of the num-
ber of loop integrals only for the transverse momenta. For the longitudinal variables, the
diagrams which look like trees may contain logarithmical loop integrations. This property
is illustrated in Fig. 26 the Wilson-line diagram shown in Fig. 26b has two loops and the
diagram shown in Fig. Qﬂd is a tree but both of them originated ‘from Feynman diagrams
shown in Fig. '26a and ¢ w1th equal number of loops. To avoid confusion, we will use the
term “one-log fevel” instead of “one- loop level.”

“Strictly speaking, the contribution coming from the diagram shown in Fig. 25‘a has the form

f d?xV ¥ (z )a—LU‘” (z) which differs from the first term in the right-hand side of Eq. (:194:)
by f d2zVe(2) 2 52 (8%gij — 0;0;)U% (x). Yet, it may be demonstrated that this discrepancy
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of the gluon (74) and the third term (see Fig. 25d) is the gluon emission term
in the BFKL kernel (36) in the impact parameter representation.

Let us discuss subsequent terms in the perturbative expansion (:_194) There
can be two types of the logarithmical contributions. First is the “true” loop
contribution coming from the diagrams of the Fig. ,'2-7a type. This diagram is
an iteration of the Lipatov’s Hamiltonian. In addition, in the same (In Z)? or-
der there is another contribution coming from the diagram shown in Fig. 27b

In perturbation theory, these two contributions are of the same order of mag-

2
Figure 27: Typical perturbative diagrams in the next (ln %) order.

nitude.

The situation is different for the case of scattering of two heavy nuclei.
Assummg that the effective coupling constant is still small due to the high
denblty,. we see that g < 1, yet the sources are strong (~ —) so gU; ~ g¥; ~ 1.

In this case, the diagram in Fig. }27& has the order g*U?V;? (1n —) (1n 7)2
while the “tree” Fig. :‘25b diagram is

d7737 3 o\2 1 o\?2
~ g UBY, (m;) Ng—Q(lng) . (195)

In this approximation, first we shall sum up the tree diagrams. As usual, the
best way do this is to use the semiclassical method which will be discussed in
Sec. 5. In the next paragraph we will consider the intermediate situation with
one weak source and one strong source.

(which is actually ~ O(g) for a a pure gauge field U;)_is canceled by the contribution from
the diagram with the three-gluon vertex shown in Fig. 25b just as in the case of perturbative
calculation of A; discussed in Sec. 3.
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4.8  Effective action for one weak and one strong source

Consider again the DIS from a nucleon or nucleus where the high-energy be-
havior is governed by the non-linear evolution equation (E?EZ') In this section
we will translate the evolution results @5:?!) into the effective action language
(see also Refs. 52, 53). In the case DIS one of the sources (corresponding to
quark-antiquark pair) is weak while the other (describing the nucleon or nuclei)
is strong.

For example, if the source V; is weak (and hence ¢V; is a valid small
parameter) but the source U; is not weak (so that gV; ~ 1 is not a small
parameter), one must take into account the diagrams shown in Fig. 2&a and
b. The multiple rescatterings in Fig. 28& b describe the motion of the gluon

@ (b)

Figure 28: Perturbative diagrams for the effective action in the case of one weak source and
one strong one.

emitted by the weak source V; in the strong external field A; = U;0(x.,) created
by the source U;. The result of the calculation of the diagram in Fig. Z-Q:a
presented in a form of the evolution of the Wilson-line operators U; can be
easily obtained using the evolution equations (301)

Ui(xy) — Uf(zy) (196)

— —ha—/dyL (fabC(UTaU) +N0Uf(xl)) +...,
where dots stand for the terms with higher powers of g2 In = . This evolution
equation means that if we integrate over the rapidities 7o > n > 74 in the ma-
trix elements of the operator Y; we will get the expression (196) constructed
from the operators U; with rapidities up to n{ times factors proportional to

g*(no — ) = g° In Z. Therefore, the corresponding contribution to the effec-
tive action at the one-log level takes the form

/ de VM (x ) U (zy) — / dx V2 (x ) U (x)) (197)
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2

g o) 1
“—Iln— [dr dy, ——5
* 3 no’/ oL yL(f—gj’)i

(i(Vi ) UIOU,)"™ ~ NVei(a ) e
where the first term is the lowest-order effective action (= the first term in
Eq. (194)) and the second term contains new information. To check the second
term, we may expand it in powers of the source U;, then it is easy to see that
the first nontrivial term in this expansion coincides with the gluon-reggeization
term in Eq. (:-_15:)4)

Apart from the C_fg?_b term, there is another contribution to the one-loop
evolution equations coming from the diagrams in Fig. :_2-§'b It can be easily
obtained using formulas @(:)Q) from the Appendix,

o
U U (y1) — — %m; (198)
@F—Z§—Z)1 ot gt SV
X (vi [/dzL G2 (o7 Uil +1- Ul UZUy)} v, ) :
where
- 0
Vio(xy) = %(’)(Ju) iU (x1)O(z),
—Y 8
Oy v, = oy O(yr) —iO(y)Ui(yL), (199)

are the “covariant derivatives” (in the adjoint representation). The correspond-
ing term in effective action is

ig® o a (T-Zy§—2)1
87T31n /dxldyl(VV)(xl)/dzL( )i(:lj 5
x (UlU, +1-UlU. - UIU,)™ (VIVP) (yo). (200)

The final form of the one-log effective action for this case is the sum of the
expressions (19%) and (200),

2
(1) at a g o
Set Vi, Uj) = /deV (2)UM(z) + ) In p /dedyL

X (i(vi(m)U;ain)““ - NCV“(M)Uf(M))

1
(@ -9

zg o , T
+ 877'3 In — /dxldyLVfVm(l"L)/dzl
x (UIU, +1-UlU. —UIU,) " VIV (y), (201)
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where V; is a weak source and Uj; is a strong one. It is clear that if the source
V; is strong and U; is weak diagrams the effective action ng” (V;, U;) will have
the similar form with the replacement V' < U coming from the diagram shown
in Fig. 2.

Figure 29: Effective action for the strong source V and the weak source U.

As we mentioned above, in the case of two strong sources the (1n Z 2
terms start from the diagram shown in Fig. 27b (see Eq. (193)), hence Fig. 27
and Fig. :_2-9‘ complete the list of diagrams which contribute to the effective
action at the one-log level. Higher-order diagrams start from higher powers
of In Z. The analog of LLA here is a cluster expansion with the parameter

(U —1)(V —1)In % shown in Fig. g(_i Of course, the diagrams of Fig. :_3-@ give

Figure 30: Cluster expansion of the effective action.

the terms ~ In % too, but in the leading order the kernel of the corresponding
evolution equation is determined by Fig. 2% and Fig. 28. Thus, the one-log
answer for two strong sources can be guessed by comparison of the answers
for Ses(Vi,U;) with V; ~ 1, U; ~ é and with U; ~ 1, V; ~ é. Instead of
doing that, we will obtain the one-log result for two strong sources using the
semiclassical method and check that it agrees with (201).

It means that the one-log answer in the general case can be guessed by
comparison of the answers for Seg(V;,U;) with V; ~ 1, U; ~ é and with
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Ui~1,V,~ é Instead of doing that, we will obtain the one-log result for two
strong sources using the semiclassical method and check that it agrees with

(201).

5 High-energy effective action in sQCD

5.1 Effective action and collision of two shock waves

The functional integral (193) which defines the effective action is the usual
QCD functional integral, with two sources corresponding to the two colliding
shock waves, see Fig. 3124 Instead of calculation of perturbative diagrams we

E>>m
— A
ANANANS
) ANANNS
/ ANNAND
9 N /
shock waves

Figure 31: Scattering of two shock waves.

can use the semiclassical approach which is relevant when the coupling constant
is relatively small but the characteristic fields are large — in other words, when
g®> < 1 but gV; ~ gU; ~ 1. As was discussed in Ref. 4, this situation is
realized in the heavy-ion collisions where the coupling constant is defined by
the parton saturation s¢ale (), which is estimated to be ~ 1 GeV at RHIC and
~ 2 —3 GeV at LHCE# Even if we consider the ~v*~* scattering, the number
of gluons in the middle of the rapidity region may become very large leading
to the saturation at high energies so in the middle of the rapidity region we
will se the scattering of two strong shock waves.

If both sources are strong, one can calculate the functional integral (193)
by expansion around the new stationary point corresponding to the classical
wave created by the collision of the shock waves. With leading log accuracy,
we can replace the vector n by p; and the vector n’ by po. Then the functional
integral (193) takes the form

eiseff(V7U;%) — /fDAeiSQCD(A)eifdngV“i(xL)na(xL)_i_ifdeLWm‘,U;z(xL) (202)
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where now

Yiz,) = / dvFyi(vp1 + 1), Wi = / dvF.i(vps +x1).  (203)

— 0 —00

Hereafter we use the notations

(?(x) = [—oop1 + z,z]O(z)[x, —oop1 + ],
O(xz) = [—oop2+ z,z]O(x)[x, —cops + x]. (204)

Note that we changed the name for the gluon fields in the integrand from C
back to A.

As usual, the classical equation for the saddle point A in the functional
integral (202) is

= 0. (205)

6 3 .
5A (SQCD + / dz VO (2 )Y (2 0) + / delW‘”Ui“(xl>
A=A

0A

To write them down explicitly we need the first variational derivatives of the
source terms with respect to gauge field. We have:

0Y; = ML(oopl +xy)—0Ai(—ocopr +x1)— / du@iéfli(upl +x1),
OW; = 6A;(copy + 21 ) — 6A;(—cops +x1) — / duV;0A; (up2 + 1), (206)
where

ViO(x) = 0;0(z) —ilYi(z)+ Ai(—oopr + 1), O(x)],

ViO(z) = 8;0(x) —i[Wi(z)+ Ai(—oops +x1),0(x)].  (207)

Therefore the explicit form of the classical equations (205) for the wave created
by the collision is

D'F, = 0, (208)
o 2 2 ~ 2
DMF,, = 5(;x.)[;x*p1,—00p1]mvi‘/ (xl)[—mpl,gx*pl]m,
_ 2 2 ~ ) 2
D!F,, = 5(;3:*)[;3:.192, —oopa)z, ViU (z1)[—oopa, ;x.pz]m-

These equations define the classical field created by the collision of two
shock Waves.:i}. Unfortunately, it is not clear how to solve these equations,” One

YThey are essentially equivalent to the classical equations describing the collision of two
heavy nuclei in Ref. 55. However, we do not impose the additional boundary conditions at
2
zi = 0.
I

“In Ref. 56, the numerical solution was suggested.
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can start with the trial field which is a superposition of the two shock waves
(170), and improve it by taking into account the interaction between the shock
waves order by order® The parameter of this expansion is the commutator
G*[U;, Vi]. Actually, there are two independent commutators,

Ly =L{t*, LY =if*usv?®,
Ly = L3t L2 = i€ farc UV, (209)

where €;; is the totally antisymmetric tensor in two transverse dimensions
(€12 = 1). In these notations [U;, V'] = Ly and [U;, Vi] — (i < k) = €jxLa. Tt
can be demonstrated that each extra commutator brings a factor In % (each
commutator means higher term in the cluster expansion in Fig. g(_i), thus this
approach is a kind of LLA. It is convenient to choose the trial field in the
form &

A = AD =0, A" =6(@a)V; + 0(x.)U; + 0(za)0(z) A (210)

where A;(z1) =U;(z1) + Vi(x1) + Ai(zL) is a pure gauge field satisfying the
gauge condition 0;A; — i[A;, A;] = 0. The explicit form of A; is

Ok Ok Ok

Alz1) = ige"(UT U+ VIV — =) Lo + O(L?) (211)
8L 8L 8L
k(.
= —z‘g/dﬂ%(UxUj F VoV = 1)Lo(21)dzs + O(L?).
2n(Z — 2)%

In the first nontrivial order one gets:

_ ) 1
AV — [y ;
! on2 | —xff + (T — 2)] +ie iz1)
g ein(r — 2)k (#—2)%
= ——= [dzy———5—In|1l—-——=|L

472 / - (Z—2)% . ( xﬁ + i€ 2(21),
w9 1 2, (= 2 .
Ay = 6.2 /dzlx*+ie In(—zj + (' — 2)1 +ie) L1 (1),
i _ gs 1 2 S 2
AT = — = /dzl T e In(—zj + (T — 2)1 +ie)L1(z1), (212)

Tn the paper of Ref. 3, I used a slightly different trial configuration A = A = o, AZ(.O) =
0(xe)Vi + 0(2+)U;. The difference A; is corrected by the AM term, so the results for the
total field A(®) + A are the same.
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where xﬁ = %x*x. is a longitudinal part of 22. These fields are obtained in the
background-Feynman gauge. The corresponding expressions for field strength
have the form

= (1) gs 1
Y = 95 [y iz 213
472 / o —xif + (T — 2)3 +ie 1(21) (213)
(1) g 1
F. = ¢ d L
1k 277.261k/ 21 _J?ﬁ n (f_z)i +Z€ Q(Zl)7
FO — 95 [ (z — 2)* girL1(z1) n €irLa(z1)
* 82 + —xﬁ +(F—2)2 +ie \ z. —ie Ty +ic€
_ i[A(l) A(O)]
o A, T,
PO _95 a4 (z—2)F girli(z1)  ewlo(z1)
* 872 + —xf + (T — 2)7 +ie \ o —ic Te + i€

iAW, A9,

In terms of usual Feynman diagrams (when we expand in powers of source

just like in Sec. 4.2) these expressions come from the diagrams shown in Fig._:_%-Q_:.
When we sum up the three contributions from the diagrams in Figs. '§2ja, 82b,

@ (b) (0 (d)

Figure 32: Perturbative Feynman diagrams for the field strength (21_3)

and :_’;2_:(: the three-gluon vertex in Fig. gg:a is replaced by the effective Lipatov’s
vertex (g(_i) and we get @i@) up to the terms éaﬁk U* and %@-ak‘/k standing
in place of U; and V;. However, as we have discussed in Sec. 3, the difference
U, — éaiakUk = g%[Ui, Ui] (which has an additional power of g) will be
canceled by the next-order perturbative diagrams of the Fig. ggd type.

Let us now find the effective action

Seff = SQCD(A) —l—/dQ.ﬁlvai(.ﬁl)za(J}l) _'_/delWaiUia(xL) (214)
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in the semiclassical approximation. In the trivial order the only non-zero
field strength components are F.(?) =6(22,)Ui(z.) and F*(?) =6(2z4)Vi(z L),
hence we get the familiar expression S0) — f A%z LV‘”Uf. In the next order
one has

S _ / it (_EFWF%’“ _ L pepaa 3F£}>“F£}>“)
S ° 470 52
+ 2/d2xL /du(TrVi ([—oopl,upﬂxFoz‘(upl =+ JJL)[UPL —oopl]x)(l)

+ TrU" ([—ocop2, upa] s Fui(ups + 1) [ups, 0opa) s ) (215)

Above, we have seen that the effective action contains In Z (see Eq. (194)).
With logarithmic accuracy, the right-hand side of Eq. (215) reduces to

2 _ . _
S(l) _ /d4$F,S1)az($)F.(3)a($). (216)
s
+ /del2TrL1(xl) ([xl, —oops + xl](l) — [z, —oop1 + xl](l)) .

The first term contains the integral over d*z = —dx.dx d?z,. In order to
separate the longitudinal divergencies from the mfrared divergencies in the
transverse space we will work in the d = 2 + 2¢ transverse dimensions. It is
convenient first to perform the integral over z, determined by a residue in
the point z, = 0. The integration over remaining light-cone variable xo then
factorizes in the form fooo dxe/xe OF f_ooo dxe/xe. This integral reflects our
usual longitudinal logarithmic divergencies, which arise from the replacement
of vectors n and n’ in (193) by the light-like vectors p; and ps. In the mo-
mentum space this logarithmical divergency has the form [ da/a. It is clear
that when « is close to ¢ (or ¢’) we can no longer approximate n by p; (or n’
by p2). Therefore, in the leading log approximation this divergency should be
replaced by In 2,

| | < 1
/ dx.—z/ da——>/ do— = 1n£/. (217)
0 Lo 0 «a o «a o

he (first-order) gauge links in the second term in the right-hand side of
q. (216) have the logarithmic divergence of the same origin,

. 0
_ o o dx*/d2 o,
(1, —oop1 + =] sz | o Z1 = 5)2f 1(z1),
. 0
N W _ [ dwe /d2 ERACI 218
[, —oops + =] 82 ) o Z1 G-z Qf 1(z1), (218)
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which should also be replaced by In Z !% Performing the remaining integration
over x| in the first term in right- hand side of Eq. (216 we obtain the the
first-order classical action in the form

- 2
1) _ tg o
O (220)
2 2 a a a a F(G)
X d*z,d yl(Ll(xl)Ll (y1) +L2(33L)L2(?JL)) 7@_@26
iR
or
- 2
W_i, 0 (o (rald ja 7al .
s _27T1n0//d o (ngiLlJrL %LQ : (221)

Note that in the trivial order the three terms in Eq. (éiég) are equal up to the
different sign of the S(A) term. It can be demonstrated that this is true in the
first order, too:

/ d?z, 2Te VYO = / d?z  2TeW OV, = —5(A)O0+D), (222)

A more accurate version of Eq. (221) has the form (see Appendix 7.5)

SO = 19 —n / d?x | (223)
1 ab
« (et st tosviLy - Ly
(183 i+ L 52 52 82) g
+ L%(@Ufa’“U U o V)Lse*
2
8L L
a ik Ta 2 3
— LU LUSE U < V)LL) +o(u V).
al al

YThe fields Ae and A, in Eq. (21_2{) look like they satisfy the condition z.Ae + zeAx = 0
implying the fact that Pexp igfdue“AH (un + z 1) = 0 for any vector e = sp1 + Sp2. One
may suspect that the proper limit at e — 0 is to set [z, —oop1 +x, ] and [z, —ocopa +x |
to 0. However, careful analysis with the slope of the Y operators n = op; + Gp2 instead of
p1 and the slope of W operators n’ = o/p1 + &'p2 instead of po shows that

[x1,—occe+z,] = #/dgz (F(_).)QeLl(ZL) (219)

o (a//5/+§/§ln_~a_/_ g/f—f—o’/O’l Sf)
o'/5' =</ so s/S—0o/F <&

leading to (g-l_é) if¢—ocor¢—o.
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It is easy to see that in the case of one weak and one strong source this
expressions coincides with (200) (up to the terms of higher order in weak source
which we neglect anyway).

At d = 2 we have an infrared pole in S which must be canceled by the
corresponding divergency in the trajectory of the reggeized gluon. The gluon
reggeization is not a classical effect in our approach, rather it is a quantum cor-
rection coming from the loop corresponding to the determinant of the operator
of second derivative of the action

0 0
5A, 04,

A=A
(224)

The lowest-order diagrams are shown in Fig. :_3-?3: and the explicit form of the

(SQCD + / Az VO (@)Y (xL) + / deLW“iUi“(xl>

o
3

Vil U
a w

..
. .
.
.

@ (b)

Figure 33: Lowest-order diagrams for gluon reggeization.

second derivative of the Wilson-line operator is

oY;

i / du / dol6As (upy + 1), Vi As(opy + 1 )],

oW

z/ du/ dv[A;(upy + 1), VidAi(ups +21)].  (225)

Now one easily gets the contribution of the Fig. 33 diagrams in the form

o
S, = 1n; /deLdel (226)

I'2(1+e)

X (Via(l“L)Um(yL) - Via(l“L)Uai(ll)) (CEODIERN
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A more accurate form of this equation reads:

2
g°N, o)
S, = 871_36 In ; / d2xld2yl

I'2(1+e)
(& —g)3)0+2)
1

(Vi(xL){U(JJL)UT(yL)

(227)

X { — ‘/;a(J?L)Uai(JJL) + ~

+ VOV () - )+ O V)),

where 0% =TrO in the gluonic representation. In the case of one strong
and one weak source it coincides with (197) (up to the higher powers of weak
source).

The complete first-order (= one-log) expression for the effective action is
the sum of S, S and S,,

- 2
_ 2 1rai a g o 2, 72 I'(e)
Seﬂ' = /d J?V (J?)[]z (J?) =+ @1n ;/d J?d y{ — m (228)

% (L@)LE ) + L@ L) (ULU, + VIV, = 1))
)

(@ —2)31(F-9)1

% (Li@)(U1U, = U = V)" Ly(y) = Ls(@) (UJU. = U = V)" Li(y)) }

2Nc g 2 2 F2(1 + 6) a ai
+ g8773 1n;/d r,d ylW{—% (JJ"L)U (JJL)
+ - (VeDUEDU W) + VeV i) - 1}Ui<yu)“”}-

In the case of one weak and one strong source this expression coincides with
(201)) up to the higher powers of weak source. (As we discussed in Sec. 4.3, the
new nontrivial terms in the case of two strong sources start from [Y, V]? In* Z).

As usual, in the case of scattering of white objects the logarithmic infrared
divergence ~ % cancels. For example, for the case of one-pomeron exchange
the relevant term in the expansion of e*% has the form

2
— 1gﬂ-2 In % / deLdQQLfdam(‘/jaUmjgik 4 V;aUlzn _ VkaUZn)(xL)
F(G) dbn (ysbrrnl ik birrmk _ ysbkyrmi
(f_g.)Qef (VU™ g™ + VU™ = VU™ (Y1)
1
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2Nc
b 85D [ e venueien) [ oy () - )

< “; e (U a1) ~ U (L) (220)

It is easy to see that the terms ~ l cancel if we project Eq. @29:) onto colorless

state in t-channel (that is, replace V‘”Vb by Nz“” V“VC) It is worth noting

that in the two-gluon approximation the right- hand side of the Eq. (:229 ) gives
the BFKL kernel (47).

As an illustration, let us present the next-to-leading contrlbutlon to the
effective action ~ [U, V]3 In % coming from the diagrams of Fig. 34 type.

Figure 34: Typical next-to-leading order contribution to Seg .

St = o fuseln 5y [ dwsdyrdus[Ka(orpn, 20) L) (0 ) L5 22
+ Ko(xy,yr,z0) L3z ) LS (y)Ly(z1)], (230)

where

d?p1 dp ip1 - (2—2) i (Y—
Ki(z,y, z) Z/ 47721 47722Ki(p17p2,—p1—p2)61p1 (e=2)+ip2-y Z)7

, i 2 2
1 €ikP] p p p 2
Ki(p1,p2,p3) = 33 2 (hﬂp%—p2 L Inp] — 52 21np2>,

P1D2DP3 1~ p2 Pz —p7

{ Gikp1p2 1 1 p%
K , D2, = —— sIn—= +—5——=mh=]. 231
2p1p2ps) =~ 212 (p% -3 p% P3—p3 13 (21)

5.2 Effective action as integral over Wilson lines

In this section we will rewrite the functional integral for the effective action
(193) in terms of Wilson-line variables. To this end, let us use the factorization
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Figure 35: Effective action factorized in n functional integrals.

formula (189) n times as shown in Fig. 85. The effective action factorizes
then into a product of n independent functional integrals over the gluon fields
labeled by index k:

i (UVin) / DA DAy expi{ ViYiiss + S(Anpn) (232)
T Wasri¥i 4 S(An) + .+ WaiY] + S(A) + WiT; |,

where the integrals over x| and summation over the color indices are implied.

As usual, Y} = éYlj 9'Yy, and W} = éW,j O'W), where

o0
Yi(z,) = P expig/ du nff Ag, p(un® + 21,
—o0
o0
Wi(z,) = P expig/ du nﬁ_lAkW(unk_l—l—xL), (233)
o0
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and the vectors ny are ordered in rapidity: 19 > 1, > Nn_1...72 > M > 7).
To disentangle integrations over different A* we use the formula

o N L e

The determinant gives the perturbative non-logarithmic corrections of the same
order as the corrections to the factorization formula (190). In the LLA they
can be ignored, consequently, we obtain

¢iSert(U,V) - — / DA, ...DA, DU, DV; ...DU,DV,

X

eXpi{V;ny_H + S(An—i-l) + W;H.lUn,i - ‘/n,iyyf +...
+ WaiUs = Va3Usi + VoY + S(Ag) + W, Uf — Vi Uy
+ Vi YY + S(Ar) + WfUz'}- (235)

Now we can integrate over the gluon fields Ay,

i rri o vk prk—1,
/DAkevk,,,Yk+s<Ak>+Wk,,,Uk_1 — eiSer(VE .U i) (236)

at sufficiently small An
Se (VP U1 An) = Vi Uiy — iAnK (Vi,, Ug—1) + O(An?), (237)

where K is the kernel calculated in the previous section,

—ozs/deL

1 1 1 1
X {L‘L—QL% + L;(UTTQU +VI—V - T)“bLg

K(V,U)

01 o1 o1 01
a0 Tak b ik
+ LY (SUTZEU —U o V) Lhe
>
1 1
= ot gy vyt
o1 01

(VU B+ VISV - (ma*i))w)w}_ 38)
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Performing the integrations over A* we get
GiSer(U) / DViDUy ... DV, DUy exp {iViUi + K (V,Un) Ay (239)
ﬂ/n,iUfL + ﬂ/n,inil_l + K(‘/ny Un—l)An +...— Z‘/QzUé
— ViU + K (Va, Up) Ay — iViUy; +iViU; + K(V, U)An}.

In the limit n — oo we obtain the following functional integral for the effective
action

(iSert (UV) / DV (n)DU (n)

exp {iVIUS () (240)
U(ng)=U

un
b [ (= v + K0 @.Um)}
Mo

where we displayed the color indices explicitly. This looks like the functional
integral over the canonical coordinates U and canonical momenta V with the
(non-local) Hamiltonian K (V, U). The rapidity n serves as the time variable for
this system. Let us demonstrate that perturbative expansion for the functional
integral (24(}) determines the effective field theory for reggeized gluons. To get
the perturbative series for the functional integral (240), we write down U (1)
and V(n) as

U(£L7 77) = e_igd)(xL’n% V(xl7 77) = e_igﬂ—(me% (241)

(¢%(x1,m) and 7%(x,n) are scalar fields) and expand in powers of g. In the
leading order in g we obtain

iSert (M) _ / D7T(77)D¢(77)‘ {—iamaamﬁ“(no)

exp
é(nh)=¢

7o ) 0 Qg =
+ 2Tr/n dn(zaﬂr(n) (8_77 + ENC 1n8l> dip(n)

’
0

— aFr(n), Bon)] = [Fm(n), Do) } (242)

&
where d = 81 + is, & = 81 — i0>. The bare propagator for these fields is (cf.
Ref. 2)

(@L,m) $lyrn)) =0, (w(ws,m) m(yr,n) =0,
(@) s ) = 000 = 1) (2] o). (243)
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The 6 function in this formula satisfies_the condition #(0) = 0 as can be
casily seen from the limiting formula (239). It is convenient to include the
g2778_3 In 53(;5 in the kinetic term rather than in the interaction Hamiltonian.
Since this expression is IR divergent one should at first consider the regularized

Seﬂ
d {187 —I— Z\/ hl 8(b
n % 9 I ()

0
tSert(9m) - — /D¢D7rexp{2Tr/
n/
— (06, 0r] ——[09, 87?]} im0 (o) (244)
5% + 2

0]

and then take the limit u? — 0. (Alternatively, one can use the regularization
d = 2 + € for the number of transverse dimensions as it was done in Sec. 5.1.)
The propagator takes the form

(d(zr,m) é(yr,n)) =0, (m(zL,m) (yl7 ) = (245)
/ipé e yn@(ﬂ«“bn)w(yl,n’))_e(n 77)? = Ne(n— n)ln—,

which coincides with the propagator of the reggeized gluon ('_7_)
Since the only non-vanishing Green functions are

(p(x1,n) - O(@m, M7y, 1) - . 7 (Yn, ')

with m = n, the number of reggeized gluons is conserved. It is easy to see that
the Feynman rules for the Green function

(P(x1,m) . d(xn, Mm(yr, 1) - 7 (Yn, 1))

reproduce the diagrams for the quantum mechanics of n particles with Lipa-
tov’s Hamiltonian (75) (see Fig. 10).
In the next order in the expansion (241) we get

giSert (6,m) / Dﬂ(n)p(p(n)‘ {—iaiw“(’)iqb“(no) (246)

exp
#(ny)=¢
7o ) 8 Qg =
+ 2Tr /né {181'77'(77) (8_77 + ENC In 8L> 8z¢(77)

3 4
[8¢787T] [8¢787T]} +ZZ_7TK(3)(¢77T) + Z_FKM)((b,ﬂ-)}’

L
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where

1

K(B) (¢7 7T) = { [[81¢7 (b]? aiﬂ-] 5%[8J¢7 8j7r] (247)

+ ([[3@7 ], 05m] + 2[¢, [0i0, 3j77]) ([0i¢, 057] — (i < j))

K| =

0i 40 .
- 2[8]¢7 8j7r]5_2¢a5_§([ta7 [8i¢7 akﬂ-]] - (Z = k))} + {7‘(’ A (b}
1 1

and

Ka(om) = [[0:69], [am,wngi?[w,éﬂ (248)

1L
+  [[0¢,¢], 0] 5% [[0:i6, 9], O] + ...
L

The number of reggeized gluons is no longer conserved, hence we get the field
theory of reggeized gluons with Feynman diagrams shown in Fig. 'éf_; In higher

i i i i ' i ’
i i i i ;
y— /3 — N
o ot i i, i i !
s S Yy : )
] KA H 1 “a 1 ] N
O - R R
g i & i i H i H i i =
LN T S B L
J s - B - SR B i
A 1e [ : [ i [ 'f\ i
s s i 1 i ; R S
d — {
i A R T - i i
; O A S - i i
- | ] - L ] - - -

Figure 36: Feynman diagrams for the field theory of reggeized gluons.

orders we will get more complicated 7™ @™ vertices.

It jsintersting to compare (235) with Lipatov’s effective action for reggeized
gluons2%2 In these papers the reggeon is defined as a scalar field depending
on both transverse and longitudinal coordinates. The integration of Lipatov’s
effective action over longitudinal coordinates of the reggeons in the LLA repro-
duces the first two (BFKL and three-pomeron) terms in the expansion (235).
Hopefully, the integration of the Lipatov’s action in the NLO LLA, NNLO
LLA etc. will reproduce the expansion (:_2-2;5_:) order by order in perturbation
theory.
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5.8  Semiclassical approach to Wilson-line functional integral for the effective
action

Perturbation expansion (241_1) is relevant when the characteristic U; and V;
inside the functional integral (240) are ~ O(1). However, we shall see below
that at high energies the characteristic fields in this functional integral seem
to be large, consequently the expansion (241-) may be useless. In this case, we
can try to calculate the functional integral (Q40) semiclassically. The classical
equations for the functional integral (240) are

. 0
. Nprio 0
(i10; + g[Vi)U" = VT(SVK(U’ V),
. )
. N 0
with the initial conditions
Un) =U at n =, Vi(n) =V at n=no. (250)

Let us denote the solution of these equation by U(z1,7n) and V(z 1, 7). In the
LLA the semiclassical calculation of the Wilson-line integral (240) is equivalent
to the semiclassical calculation of the original functional integral (193). T will
make a conjecture that the saddle point of the original functional integral (2(_32_),
satlsfylng the classical equations (208) corresponds to the classical solution
(189) of the Wilson-line integral (240) even beyond the LLA:

exp {iViV (o) + Wi () U +iS(A)} (251)

=em%mwm+ﬂ%dwwwmw+MWWWM}

0]

where A is the classical solution of the equations (208). (As in previous section,
we do not display the integrals over the transverse coordinates). Being a
quantum correction, the gluon reggeization (22:7_1) exceeds the accuracy of the
semiclassical approximation, hence we can drop the last (reggeization) term in
the kernel (238).
Talking the variational derivative of both sides of Eq. (25:1_1) with respect
to V, we obtain
Yi(n) = Us(n). (252)
If we now take the derivative of both sides with respect to 19, we get the
equation . .
iViYi(no) = iViUi(no) = K(V,U(no)), (253)
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which may be used for the calculation of K. Correspondingly, one can differ-
entiate with respect to 7, resulting in

—iVi(np)Us = K (V (1), U). (254)

Since V' in Eq. (253) and U in Eq. (254) are arbitrary, we may substitute V ()
and U(n) instead :

WVimUi(n) = —iVi(n)Ui(n) = K(V(n),U(n)). (255)

The exponential of the Wilson-line functional integral vanishes except for the
non-integral term V;U"(n9) = V;Y"*(no), so

exp {iV;Y (ny) + iW;(no)U" +iS(A)} = exp {iViUi(no)}
= exp {iVi(mp)Ui}.  (256)

Thus, in a semiclassical approximation (and with the assumption mentioned
above) we obtain

Sest = ViUi(mo) = Vi(1p)Us = —S(A), (257)

so that all the three terms in left-hand side of Eq. (:_2-51_:) contribute equally up
to a different sign for S(A). We have checked it in LLA and it is crucial to
check it in the next-to-leading order. From Eqs. (255) and (25%) we see that
the effective action in the semiclassical approximation can be written down
also as

Seer = Vi(n)Ui(n) (258)

for arbitrary 7.
Instead of taking variational derivatives of the kernel K (V,U), it is possible
to calculate U = Y directly. One obtains (cf. Eq. (218))

[xL,—oopl—l—xL](l) = %m%/d%l (259)
X ((m‘%‘z»(Ll(n)+2[U¢(2L),N(2L)]),

. o
[oopl—l—xl,xl](l) = —Zzilng/t“/d%l
T o

X

1 1 1 ab
T T (52 _‘ b
((x ‘U U+ U5 (01U)—= z)) Li(z1),
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and, therefore,

. 9
[oopl—l—xL,—oopl—l—xL](l) Y d’z,
s o’

el sor-etelo gy )
= Zi % 1n Z’/d%l{(( ‘ UTp_lz(a’“U)p?‘ ))abL’{(zl)
+ ((xl‘%UT%U‘z)) abeikLg(zl)}. (260)

The derivative UT[j is half of the coefficient in front of In % in this formula so
we obtain

ab ab
519 (gt a0y Liv_ 100 (gideg) kg
= (U % (8kU)> 7 =L} - 5 OTT | %18, (261)

Q I

and, similarly,
0 (10" * o (e "
Viv =L (vt (9, V)| =I'- 19" 0y ey FFIL (262)
2r 32 0%
where U = U(n), V = V(n).

For illustration, let us present a first few terms in the semiclassical expan-
sion of the effective action,

St = / d*x  V;U' (263)

1 |
L, —/d%;l L§—L§ — AQA‘”+2L% (U; — Vi) Ab
2m 9% 9 %

% (g 1n§>2{ (82 (8kUT)§i U) AakUabaIQ }

x ((ai—igUi)(ai—iQW)) {( 22

_l_

cd .
(V)= 5 ) Lé+ 5—2\/;%@ }
1

__ Once we know the solution of the Wilson-line classical equations (261)-
(262), it is possible to restore A. Suppose we want to find A(7n,, 7,z 1) where
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T = xH and 7, = In7=. Let us insert two factorization formulas at 7, + dén
and 1, — én and mtegrate over the fields in the regions 1y > 7, + én and

— on > n > n{ semiclassically. The final integration over the region of
rapidities n+dn >n > n, — on takes the form

/DA exp {iV (1 + An)Yi(ne + An) + iW* (. — An)Ui(n. — An) +iS(A)} .

(264)
(Here 7, + An denotes the argument for the classical solution V¢ and the
direction of the Wilson line for ;). Comparing this to Eq. (203), we find that
the field A(n,, 7,z ) is given by expressions (212) with U — U(n), V — V(n).
Unfortunately, the accuracy is again up to [U(n), V(n)]?. Still, we see that the
fields contain logarithms of 7, coming from and U(n) V (n) so our assumption
about large characteristic fields in the functional integral ('igfi) is justified.
Note that for the infinite Wilson line in 7, direction we can get an (almost)
explicit expression in terms of U — U(n) and V — V(n) without the restriction
[U(n),V(n)] < 1. Tt is easy to see that

[ —oon,, x 1 4+00n,](i0;+ A; (x 1L +o00on,))[x 1 +00on,, z ) —oon,| = Ai(x1,n),

~ - - (265)

where A;j(z1,n) =U(zL,n)+V(xL,n)+A(zL,n) is pure gauge field satisfying
the equation

(i&i + [Uz + ‘71', ) A; =0, (266)

(see Eq. (211). Indeed, let us try to calculate the Lh.s. of the Eq. (265). At
small d7 all the contributions coming from [z, + con,, x| — con,| contain o7
(see Eq. (219)), hence they are small. The only non-vanishing contribution
comes from A;(x, + oon,) which coincide with A;(z1,7) in the background-

Feynman gauge (266).

6 Conclusions and outlook

First I would like to discuss the relation of this method to other approaches to
the high-energy QCD discussed in the literature.

By far, the most popular approach to high-energy pQCD is the direct
summation of Feynman diagrams (and related methods based on unitarity
relations in s and ¢ channels). Although the majority of the results in pQCD,
including the NLO BFKL kernel, were obtained by this method, I think that
even in pQCD, the Wilson-line language, combined with the calculation of
the propagators in the shock-wave background, is technically more powerful.
(Perhaps the comparison of the diagrammatic calculation of the three-pomeron
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vertex in Ref. 45 to the computation of the gluon propagator in the shock-wave
background in Sec. 7.3_demonstrates this most clearly).

The dipole picture2? has an advantage of visual interpretation of the high-
energy scattering, especially in the case of DIS at small 22423 The dipole
language is a light-cone version of the Wilson-line approach combined with
large- N, approximation for the wave functions at small z. However, it is hard
to think about the effective action in terms of the dipoles, since in order to
study the energy evolution of the effective action we must take into account
not only the creation of the new dipoles, but their multiple creation and re-
combination, which is difficult to define in the framework of the dipole model.

The most close in spirit to our semiclassical method is the renormalization-
group approach to the high-energy scattering from the large nuclei advocated
in the papers of L. McLerran and collaborators (see e.g. Refs. 4, 52, 58).
In this approach, the small-x evolution of one strong shock wave (created
by a source p(x)) is studied in the light-like gauge. With such a choice of
gauge, the second shock wave can be treated perturbatively at the very end of
the evolution process. In our terms, this amounts to the solution of classical
Eqs. (208) using the trial configuration A; = U;6(z.) (instead of starting point
A; = Ub(zs) + Vif(xe) + A; taken in this paper). Unfortunately, due to
different gauges adopted in our paper and Refs. 52, 58, the treatment of the
boundary terms in the functional integral is different, leading to the different
sources for the shock waves and making hard to compare the intermediate
formulas. However, since the first-order (BFKL) results coincide I think these
effective actions are essentially the same.

In conclusion I would like to outline possible uses of this approach. The
ultimate goal is to obtain the explicit expression for the effective action in all
orders in In ;%;. One possible prospect is that due to the conformal invariance
of QCD at the tree level our future result for the effective action can be formal-
ized in terms of conformal two-dimensional theory in external two-dimensional
“gauge fields” V; and U;. So far, I was not able to use the conformal invariance
because it is not obvious how to implement it in terms of Wilson-line opera-
tors. We can, however, expand Wilson lines back to gluons. The conformal
properties of (reggeized) gluon amplitudes are now well studied. In the coordi-
nate space the BFKL kernel is invariant under Mobius group and therefore the
eigenfunctions of BFKL kernel are simply powers of coordinates. It is not clear
which part of the conformal symmetry survives for the full effective action, yet
there is every reason to believe that it will simplify the structure of the answer
even after reassembling of Wilson lines.

The semiclassical approach developed above for the small-x processes in
perturbative QCD can be applied for studying the heavy-ion collisions. As
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advocated in Ref. 4, the coupling constant for the heavy-ion collisions may
be relatively small due to high density. An estimation of the corresponding
“parton saturation scale” @, gives ~ 1 GeV for RHIC and ~ 2 — 3 GeV for
LHC;!? so g(Qs) is a valid perturbative parameter. On the other hand, the
fields produced by colliding ions are large, so that the product gA is not small,
showing that the Wilson-line gauge factors V and U are of order of 1. Thus,
we have a perfect situation to try sQCD methods.

It should however be mentioned that in this paper we considered the special
case of the collision of the two shock waves, namely without any particles in
the final state. It follows from the usual boundary conditions for Feynman
amplitude (gl_:) which we calculate: no outgoing waves at ¢ — oo and no
incoming fields at t — —oo (the latter condition is satisfied automatically by
the Af,_,__ = 0 choice of gauge). However, people are usually interested
in the process of particle production during the collision (see e.g. Ref. 59)
since it gives the experimental probe of quark-gluon plasma. In this case,
our approach must be modified for the new boundary conditions — we must
solve the classical equations @QS:) with Feynman boundary conditions only at
t — —oo. The boundary condition at t — co depends on the problem under
investigation: in the case if we are interested in the the total cross section (cut
diagrams) we must calculate the double functional integral corresponding to
the integration over the “4” fields to the right and the “—” fields to the left
of the cut (see Ref. 43). (This is actually a functional-integral formalization
of Cutkosky rules). In this case we may use the usual (Feynman and c.c.
Feynman) propagators for each type of the fields. The boundary condition
requires that two types of the field — the left-side “—” fields and the right-side
“+” ones — coincide at t — co. (This boundary condition is responsible for
the d(p?)6(po) propagators on the cut). Finally, to find the total cross section
of the shock-wave collision in the semiclassical approximation, we must solve
the double set of classical equations for “+” and “~” fields with the boundary
condition that these fields coincide at infinity (cf. Ref. 60). The study is in
progress.
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7 Appendix
7.1  Wilson lines from Feynman diagrams

Let us demonstrate that the relevant operators are Wilson lines (8). The typical
contribution to the Green function of the fast-moving quark (with ax < o)
is shown in Fig. 3% where the gluons have v < ¢. Consider the loop integral

k k-p k-p’

ol

Figure 37: Typical diagram for the propagator of fast-moving quark.

over p. Since we can neglect o, as compared to oy, the quark propagator with
the momentum k& — p reduces to

= A # |
(k—p)? +ie gk_gp_m+ieak

LS

P2 (267)

Here we have used the fact that g,, in the numerator of the gluon propagator
connecting the lines with very different rapidities (= a’s) can be replaced by

%plup%/- e
I will prove now that if I replace the propagator (267%) by
12
. 268
—Bp + i€y, (268)

the value of the loop integral over p remains unchanged. Indeed, the integral
over p is the sum of the residue in the pole corresponding to the fast-quark
propagator @67}) and/or the residues in the slow-gluon propagators. Let us
consider both residues in turn and verify that the replacement (268) does not
affect the residues.
First, if I take the residue in the pole
I 2
gy =p - LD (269)

QLS
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corresponding tho the quark propagator, the typical slow-gluon denominator
takes the form

(ap +ap) (B + Bp)s —(p+p)7 (270)
- - 5 o, +a, -
= (ap+ap)Bps — 0+ )1 + (ap + @) Brs — ———"(k — p)1.
The first two terms are or order of m? while the second two ones are ~ —m2

and hence they can be neglected, which corresponds to taking the rebldue at
the pole 3, = 0 in the propagator (268). (Here we have used the fact that

2
Br ~ o, see below).

Second possibility corresponds to the residue taken at

5 (+p)i
Bp = —Bp + ——F— 271)
A CREAT (
in one of the slow-gluon propagators. The quark propagator (:Q(:S?:) then takes
the form

(p+p)? - p)’ ' (272)
610_'_ ((xi-':xL)s +6 - oui[}sL + deay,
Again, the first two terms in the denominator are ~ & , while the second two

ones are ~ ;L < % and can be neglected Wthh is exactly equivalent to
replacing the Eq. (267) by Eq. (268).

Hence, we have proved that the propagator of the fast quark can be re-
duced to @(58:) which is nothing but the eikonal gauge-factor in the momentum

representation.

7.2 Quark propagator in a shock-wave background.

Let us now find the quark propagator in the shock-wave background. We start
the path-integral representation of a quark Green function in the external field
B9,

(5l = =i [ ar(elpe])

Y e 1 o(r)=2 1 —i [Tdri2
= =i et [ Deyg e eyt

0)=y

x P expig /O "B (1) (1) + %U“”Gﬂy(x(t))}, (273)
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where O = %(’yu'yy — Y Yu)- First, it is easy to see that since in our external
field (D0) the only nonzero components of the field tensor is G*?oi only the first
two first term of the expansion of the exponent exp{ [dtZ(cG®)} in powers of
(0G) survive. Indeed, 0" G}, = %ﬁg'yi(}g and therefore (60G?)? ~ (py7')? =
0 since P, commutes with +% . Consequently, the phase factor for the motion
of the particle in the external field (90) has the form

Pe%g JdtBS ()2, (1) (274)
+ %ﬂ&/ﬁw%WUMﬁmm%@wﬁmw»ﬂ@ﬂﬁﬁwwmm,
s 0

Let us consider the case z. > 0,y, < 0 as shown in Fig. :_1-2_’;' Similarly to the
case of scalar propagator, we can replace the gauge factor along the actual path
x,(t) by the gauge factor along the straight-line path shown in Fig. 4 which
intersects the plane x, = 0 at the same point (z., 2, ) at which the original
path does. The gauge factor (275) reduces to

v'p

i (7")

where the last term was obtained using the identity

UQ(ZL) +

10U (1) (275)

9 2% o 2 2
oz, Ulxzy) = “ dx*[oopg ), gx*pg )]xGoi(gx*pg ) 4 1)
2
X [gx*pﬁo), —0op\]a, (276)

and the factor . (7’) in Eq. (274) comes from changing of variable of integration
from ¢ to _x*(t) Similarly, the phase factor for the term in the right-hand side
of Eq. (223:)_\1vhich contains B (x(7)) = %]@Bf} (z(7)) in front of the gauge
factor Eq. (273) can be reduced to

sl al” 4o —so ] = —po@) V@) -1 (1)

2

(The factor ~ (0G) is absent since it contains extra_p, and #5 = 0). If we now
insert the expression for the phase factors (274), (277) into the path integral
(373), we obtain (cf. Eq. (J3))

) z(T)=x L0 a2
— () U L) — 1 / drN! / Da(t)e S (278)

0 z(0)=y
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. o T z(T)=x T a2
! / dr / dr’ / dz5(z )N / Da(t) f(r)e St
2 0 0 z(1')=2

z(t)=2 o
ﬁUQ(Zl)ZéQ}N_l/ Dx(t)i“*(T/)e_sz'dtT.

z(0)=y

i
U —
x {U*(zp1) + w7
Make a shift of time variable 7/ and using Egs. (:_9-5) and (9-@) to perform path
integrals in the right-hand side of Eq. (278), it is easy to reduce the path-
integral expression for the quark propagator in the shock-wave field (Ql‘-) to

(«l5l) - U - 1)) (279)

Am?(x — y)?
/dzé(z*)i(é(x ’M)? (U2,

. 23
- ZﬁLUQ(ZL)m}

- i/dz(;(z*)MUﬂ(ﬂ)zzi

2 (z - 2)! 2z gt

(in the region x, > 0, y» < 0). The propagator in the region z. < 0, y. >
0 differs from Eq. (279) by the replacement U? « U®f. In addition, the
propagator outside the shock-wave wall (at ., y. < 0 or x,, y. > 0) coincides
with bare propagator, so the final answer for the quark Green function in the
B*? background can be written down as:

2m%(z — y)*

_l_

1 £—y
((x‘? ‘y)) - 22 (x — y)?
40 [0 g 5B (0% - ()08 e)
U =100 )5 (250)
where we have used the formula
| -7 IR BN
Z/dZ(S(Z*)ZWQ(x i 152277 T P T o P (0(z«) — O0(y.)) (281)

to separate the bare propagator.

Now, one easily obtains the quark propagator ('105) in the orlgmal field B,
Eq. (BS ) by making back the gauge rotation of the answer (280) with matrix
-1
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7.8  One-loop evolution: Wilson lines in a shock-wave background.

The convenient way to get the kernel of the evolution equation is to calculate
the derivative of the two-Wilson-line operator with respect to the slope of the
supporting line. Formally one obtains:

e U0 ) (252)
= ig( /udu(Tr{[oo, u]ch*.(upC + 2 )[u, —oo]xfﬂ(yl)}

— Te{U(xy)ig¢ /udu[—oo, )y Fre(up® +y.)[u, oo]y})

The kernel is the result of the calculation of the right-hand side of Eq. (282)
in the shock-wave background. .
Consider the operators US and UT¢ in the external field formed by slow

gluons with o < 4/ "le Making the rescaling ('.§-§:) we obtain:

([oopa, —oopalz[—oopa, copaly) a
= ([oop}), —0opla[~00pT, 0cpyl,) 5, (283)

where the shock-wave field is given by Eqs. (88) — (90). Equation (282) reduces
to

15)
00N ) (284)
= ig” [uulfoop? P Funtupy + ), ~oop ()

2
—ig' 2 fudu(@e ) =oop upd Ny Fua(wpd” + 1) lupl oond]) s
Since the (F.,) component of the field strength tensor (J0) vanishes for the
shock-wave field, the only nonzero contribution comes from the diagrams with
quantum gluons. In the lowest nontrivial order in « there are three diagrams

shown in Fig. E‘;E_;

Consider at first the diagram shown in Fig. ‘g;E_ga (which corresponds to the
case xx > 0, y» < 0). The relevant contribution to the right-hand side of
Eq. (284) is

— 92/dU[oop(£),up(f)] t*Tupy, Oop(f)]xéé/dv[ oop ), vp P11
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Figure 38: Path integrals describing one-loop diagrams for Wilson-line operators in the
shock-wave field background.

p
< [p, ool ((Upff) +x1 ‘up*{(pffg - Pop '2;2)
1 1 D2 Dax

X : — : DG P4 222 po@

[7’29&; +2iGey  P2gex + 2iGen ( pp2 | pep “r

Dax B o D2p 1

— PPDG - +...

P D2 - pQ)PQQpn + 2iF,, ]

(0) P2qy (0) ))
— —LPH—vd{...}ps . 285

X (Pay p— )} = ol dpejopa” Ty ) (285)

As we discussed in Sec. 4, terms in parentheses proportional to P, vanish after
integration by parts (see. Eq. (123)). Further, it is easy to check that since the
only nonzero component of field strength tensor for the shock wave is G, the
expression in braces in Eq. (285) can be reduced to O, where the operator O
is given by Eq. (308). Starting from this point, it is convenient to perform the
calculation in the background of the rotated field B (1) which is 0 everywhere
except the shock-wave wall. (We shall make the rotation back to field B in
the final answer). The gauge factors [0, u]t%[u, —oo] and [oo, v]t’[v, —o0] in
Eq. (285) reduce to t%[o0, —00] @ t*[—o00, 00] (at . > 0,y. < 0) and we obtain:

— 2t U @ tPUT /du /dv(u — ) ((upff) + 2z |p. O

ol L)) | (286)

where we have used the fact that the operator p, commutes with O®. Let
us now derive the formula for the (o0) component of the gluon propagator

((x‘(’)”‘y)) in the shock-wave background. The path-integral representation

97



of ((x ‘ 0

y)) has the form

(( ‘4_(;59%(;50732 - %(DQG&% (287)

= Z/ dT/ dr’ ei(T_TI)’Pz{GgéQ /T dT//ei(T'—T")’/’2
0

« Ggo(i””PQ ;80 DoeGQ zT"PZ}‘y))
P+

oo z(T)=x
zi/ dT/\/_l/ _zf deig {4/ dT/ dr”
0 x(0)=y

o« pei9 [ AtBI ()b, (t) e )Pezgf,,dtBQ(x(t))x,,(t)/ g
0

% Pelgf 7 dtBQ(x(t))xu (t)gGg (J?(T//))Peig fOT dtB,S}(x(t))jfu(t)
L / dr' pe'd [ atBL e(®)en(t) _ S(o 90" G2 (w(z)) Pt Sy AP0y
0 T\T
As we discussed above, the transition through the shock wave occurs in a short
time ~ % so the gluon has no time to deviate in the transverse directions and

therefore the gauge factors in Eq. (25_2?) can be approximated by segments of
Wilson lines. One obtains then (cf. Eq. (273)):

(=0t ]») .
= —so/ dT/ dr’ /dzé 2 )NT! j(j—))_:x'Dl“(t)e_if:'dt%

X —{ [GG] ( ) [DG] (ZL)}N Dx(t)e—if:,dt%,

JJ*(T/) z(0)=y

where [GG]? and [DG]* are the notations for the gauge factors (128) calculated
for the background field B}

[DG)Y(x,) = /du[oophupl]xDaGgo(upl+xL)[up17—OOp1]x7

[GG]Q(.L“L) = /du /dv@(u — v)[ocop1, upl]xGEQ(upl +x)
X [up1, vp1].Ges(vpr + x1)[vp1, —0opi]e- (289)
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As we noted in Sec. 4, the gauge factor —i| DG]+2[GG] in braces in Eq. (287) is
in fact the total derivative of U with respect to translations in the perpendicular

directions so we get
—50/ dT/ dr’ /dzé Zs) (290)

(Eleam)
x N1 /xg::)szx(t)e—i [Las j;*(lq—/) R U z1)

z(1')=2 T a2
X J\/'_l/ Dx(t)e_sz'dtT.
x

Using now the path-integral representation for bare propagator (9-5) and the
following formula

0o z(T)=x B T hl(l“— )2
d /\/—1/ Da(t) - ifjas _ @ oY) 291
IR 0y "5 Tomt@ g, Y

we finally obtain the (o) component of the gluon propagator in the shock-wave
background in the form:

(eloefy) = 2 [azse 2" (292)

X [FRU(20)0(2.)0(—y.) — a“iU“’(zu@(—w@(y*”w%w

where we have added the similar term corresponding to the case z. <0, y. > 0.
We need also the 8%0 derivative of this propagator (see Eq. (286)) which is

((3: oo y)) - 629724 /dz (gf(_z*y)y (293)

X [OLUR(210)0(2)0(~y.) — FLUT (21)0(~2.)O(u)]

p+O

Substituting now the Eq. (293) into Eq. (28G) one obtains

2

Zﬂ ((M ‘ plL o u? % ‘yl)) 19Uz, ) @ LUy, )

2
9 TQL‘ Q. Vo g 710 994
+ ((Ju‘ Xl yo)) US@Oe@ U@Lt (299)
which agrees with Eq. (:12;2_)
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Let us consider now the diagram shown in Fig. B&c The calculation is
very similar to the case of Fig. 38& diagram considered above so we shall only
briefly outline the calculation. One starts with the corresponding contribution
to the right-hand side of Eq. (284) which has the form (cf. (285):

- C/du/dvgu_v oopy) +ar,upl) + w1t [up + 21, 0p}) + 1)

(0)

X [va + ), —oopy +2,]®@U(y,)
(0) (0) Dag 1 1
X ((up +xl‘up* p - P . - .
A {( A€ p-p2 [732%"_‘_216;5" 7)2%)\_‘_216;?)\
% [DQGSA D2p + D2x D‘*Ggp— D2x PBD‘*GW b2p }
D -Dp2 D D2 D D2 D D2

1 () _ P2y
— . e~ + e - —Po —v *
Py, i, (P p— )} —v{..}p

va + xl)) X (295)

As we demonstrated in Sec. 4, the terms in parentheses proportional to P, van-
ish and after that the operator in braces reduce to Oo,. Agam it is convenient
to make a gauge transformation to the rotated field (.'91-) which is 0 every-
where except the shock wave. Then the gauge factor [oo, u]t®[u, v]t’[v, —oc] in
Eq. (295) simplifies to t*[co, —0o]t® (at . > 0, y. < 0) and we obtain

— gAteUsb @ UT /du /dv(u —v) ((upi‘) +x

Using the expression (2-9-?5) for the gluon propagator in the shock-wave back-
ground we can reduce Eq. (296) to

Dx OQ

vpi‘) + xl)) R (296)

2
9 a0 b 10 ‘ L =01 ‘
_47Tt U (.L“l)t QU (yl)((xl p?(alU )p? xl))ab. (297)

The contribution of the diagram in Fig. g&b differs from Eq. (297) only in
change U « UT, z < y. Combining these expressions, one obtains the answer
in the rotated field (91) in the form

L [ {[{U“’(mv”(xu};?{U“(mU*“(yu}f (208)
U @)U () U™ () U2 (2}
U U ()} - U ) U Y| A =
CEE O

p L
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, 1
— Uz )Y U™ (2 ) Te{UR (2 ) U™ (y )} — Nc{UTQ(yL)}f)} @._72)2}
1
Now we must perform the gauge rotation back to the “original” field B,,. The
answer is especially simple if we consider the evolution of the gauge-invariant
operator such as Tr{U(z 1 )[x1,y.]-U'(y1)[yL,z1]+} where the Wilson lines
are connected by gauge segments at the infinity. We have then

<%<Tr{ﬁ<<mm,yL1_UT<<yL>[yL,m+}>A -

U (f - Zj)QL

- e

X (TT{U(M)[M,ZL]—UT(ZL)[ZLMM}
x Tr{U(z)[z0, 1] -UT(y)[y1, z1)+}

— NT{U(z )z, yi]-Ul(yo)ly, M]+}>7 (299)

where we have replaced the end gauge factors like Q(cop; 4 2, )Q (cop1+y1)
and Q(—oop; + 1 )Qf (—ocop1 + y.1) by segments of gauge line [z, y, ]+ and
[z1,y1]—, respectively. Since the background field B,, is a pure gauge outside
the shock wave the specific form of the contour in Eq. (299) does not matter
as long as it has the same initial and final points. Finally, note that the gauge
factors in the right-hand side of Eq. (299) preserve their form after rescaling
back to the field A, so we reproduce the Eq. (137).

In the general case, the evolution of the 2n-line operators such as
Tr{UUT}Tr{UUT}... Tr{UU'} come from either self-interaction diagrams or
from the pair-interactions ones (see Fig. ',}-g) These pair-wise kernels have the
form (U, = U(z), etc.)

9 i _ g9’ (@—-2y
CGRAUNN = 1 [ do i

(300)

» ({U;Ux};?wzvg}f LU0 - S O - az{U;Ux}f),

9 i kE _ 92 (f—:g—gh
Cac VI = 167r3/d“(f—zi(zj‘—z“>i

X ({Uz}%{Uin U + {0, U0, YU Y — {U}iH{U, Y — {Uy}%{Uxﬁ),
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D i ’ —5y-7)
Ca_C{U;}]{UyT}f = — 1g7r3/dzl(§j _.Z gz_a Z)1

» ({Uz}f{vgvzm}?+{U;UZU;};'{UJ}§ iy —{UJ}%{UJ}?>

for the pair-interaction diagrams in Fig. E;Eja and

2

ga%{Ux};l = /dzl[U T {U, U} — N.U,] !

163 (Z—2)%7
r

b ,
ga—C{U;}; = 1 B/dzL[UTTr{U Ul}y — N.UJJ (301)

o
(#—=2)1

for the self-interaction diagrams of Fig. i_’;g.'b type.

7.4 Gluon propagator in the azial gauge.

Our aim here is to derive the expression for the gluon propagator in the external
field in the axial gauge. The propagator of the “quantum” gauge field A? in the
external “classical” field A° in the axial gauge e, A, = 0 can be represented
as the following functional integral:

ab a b
GW(x,y) lim N~ DAAY () AP (y) (302)

w—0

K J dzTe{AL(2)(D?¢*" — D" Df’_zipgf’_ui,e%f’)A;(z)},
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where D, =0, —z'gAlcf. Hereafter we shall omit the label “cl” from the external
field. This propagator can be formally written down as

1
-
7 H,/(-r7y) z Ouv — prprv %6“@”

W)" (303)

where O# = P2g# +2iFH Tt is easy to check that the operator in right-hand
side of Eq. (303) satisfies the recursion formula

1 et 1 e’ w
— = (65— Pu=)=—(6] — —P, 53 Fv
Duv — Prpv 4 2 O PHPe)Din( v PeP )+ P (PG)QP
1 et 1
— Dy\F — — p*_—_ D, F*
DW—PHPMF%( e ~ P DAl
1 57 enp 304
x Dgn( v~ Do v) (304)

which gives the propagator as an expansion in powers of the operator Dy Fy, =
—gt®v,1. We shall see below that in the leading logarithmic approximation
we need the terms not higher than the first nontrivial order in this operator.
With this accuracy

1 e 1 e’
= € _ = (gn _ £
Owe — Pupr 4+ Lener 0 =P, (0 Pe

Po) + PpeP,

" Hﬁ)ggn (pe)Q v

1 p n
— (0§ =P =) (DAFM’6—+6—DAFA9

B Hpe’nén Pe  Pe
e e’ 1 e’
S pbp FB L) (57— Eop).
5P DaF ) S (6 — 5-Py). (305)

We take now w — 0, obtaining the propagator in external field in axial gauge
in the form

1 1 n 1 1
- ~ab _ £ Nt e € —_(5€ _ N
ZGHIJ (337 y) - (5u PH Pe) 0én (61/ Pe PV) (6u PH Pe) Oén
p en en eP
Dy 4+ £ pyph - SpBp pes
x ( A Pe + Pe PGP ' Pe)
1, ., €
X ﬁ(”—ﬁPy)+... (306)

where the dots stand for the terms of second (and higher) order in D Fy,. Tt

can be demonstrated that for our purposes a first few terms of the expansion
1

of operators 7 in powers of Fg, are enough, namely

SN 1 1 n
. ~ab _ & ¢ . e
ZGHIJ (337 y) - (55 I 'Pe) P;’ - 2Z PQ an 7)2 + Oin (62 - Pe ’/)+ . (307)
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where the operator O stands for

1 1 1

_ o tpe Lo b

O = A3 F 5 Fevs (308)
1 Dav D2 D2 paw | 1
— (D*F,, + £ DoF,, — L PSDOF, —.
7’2( Y pepy pope Y 2ppo a62p'p2)772

7.5 First-order effective action.

As we discussed in Sec. 5, in order to calculate the effective action semi-
classically we can start with the trial configuration (210). Making the shift
A — A+ A in the functional integral (203), we obtain

eidert = /DA expi{/dxl‘/;a(l"L)Uai(l"L)+2/d$LAg(J3L)AM(OaxL)
1. 1,
+ 2Tr/d3:l[— SIS AW+ (Lo + 5[0, AW
1. . 1, .
— 5[VZ,Ai]Yl +(—Li+ §[V1,Ai])Y2}

1 _ _
+ = / d'z A" (D? g, — 2igF,, + gQQW)ab Abr 4 O(A3)} (309)

2
where
Yi(z1) =[x 4 oopr,x]W, Ya(zy) =[xy, 21 — oopi]W,
Wi(zy) = [x1 + oopg, z1]D, Wa(z,) = [z, 21 — oopa] ), (310)

and the operator G,,, is the second variational derivative of the source term
with respect to A,, A,. The non-zero components of G,,,, are

2 . :8/2 2 . . 8/2
goo :6(;33*)(81 —Z[V;,) zE) g** :6(;33.)(81 _Z[Uiy) 1E7 (311)
while all other components vanish. In the first order in our cluster expansion
we obtain
o 1 ab
S, = —2((0, AN =———= 0,A 12
eg N poamm) 180 (312

%{((O,Ll\ P (00na

o+ ic %‘((O’Ll o + ((0.1v:, A1

B+ ie

p_’f a
B
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1 ab
) (DQQIW - 2i9Fuu + QQQ;w>
) Eolran) o) <)

where l = %( - )(similarlyforl and ‘0 A)) Edel‘O,Zl))Ai(ZL)

a—ie | atie

P1
B — i€

ete. We Wlll now demonstrate that with O[U, V] accuracy one can reduce
in right-hand side of Eq. (819) to et Indeed,

DQg/AV_ngF/AVJFg g

1
i 1 313
D2%g,, — 2igF,, + ¢°Gu (315)
. gH’/ 1 - 1 2 1 1 1 2 1 1
= D T 29pe by 49 pr b gt — 9 pa G

It is easy to note that the term ~ ﬁFHV B does not contrlbute to right-
hand side of Eq. (',312- ) because the relevant components of F),,, vanish: sz =

F.e = 0. Let us prove that the last term in the right-hand side of Eq. (:313
leads to the contributions ~ [U, V]3. Consider the first term 1n the r1ght hand
side of Eq. (Sili) The corresponding contribution is D2 Fie25 poF] Fo s 5z + (o =
). Because F,; = Uj; —I— O(A ), Fie = Vi + O(A;) this term is actually
proportional to A2 oE Vi D2 Ui = oE Ay~ [U, V] Let us now turn our attention to
the second term in the rlght hand elde of Eq (',3121) The relevant contributions

have the btrllcture Ly ($rFeigrFei Bz — 57Gee) L1 77 D7 }/1 D2 Foigs D2 Fuigzla,
[VuA]( ozDzeDz"‘nguDz)[VuA] [VuA] ozDz *zDz[UuA]
and slmllar expressions with U < V| x <> o. All of them are clearly ~ [U, V]3

except the first term which is
)) (314)

1 4 -1 - 1 1 1 1
2
0,L ‘— Fei=5Fi=5— 55%0e= | 7
g (( NG e (D2 e T 5Y D2> =
If we neglect the [U,V]? terms in cluster expansion, the Green function in

braces in right-hand side of Eq. (814) should be taken in the U;f(z.) back-
ground. This Green function has the form

(el - 1P P + ig--i\y)) = (#lowly) @)

= —ie(x*)e(—y*)UT(xl)/dzé Z (( ‘ )) (ZL)((Z‘Z%‘Z])),

plus the similar term ~ 6(—.)0(y.). It is easy to see that the terms ~
0(x.)0(—ys) or ~ 6(—z,)0(y.) do not contribute to Eq. (814) — recall that
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this term comes from the contraction of LiWa(z) and L1Ya(y) where both
T, Y < 0. .
Thus, the [U, V]? term in cluster expansion of Eq. (812) reduces to

s = (0 %‘O’Ai)) (316)
LOnl et )

- f((o,Ll _t iy, [Ui,Ai])) + 9_2((0,&‘ L 11y [Vi,Ai]))

y ptieD?a s a+ie D23
2
Lo i ) + £ (o g o)

It is easy to see that the remaining Green function connect points belonging to
the different boundaries of the same sector in Fig. 40. It may be demonstrated

Figure 40: Trial field configuration.

that up to [U, V] accuracy the only effect of the background field on the Green
function with the arguments belonging to the same sector is the corresponding

gauge factor: ((x o )) QT (x1 (( ‘—‘ ))QT y1), where Qis U, V, or A.
We obtain

O oslmmprr=rlon) = (ol mmmrrmlon). @0

1 1 1 1 -1 1
SIS A H
(( xLoz—l—zeDQﬁ—l—ze gL * xla—l—zepQ—l—zeﬁ—l—ze YL))Zy
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((O L‘ 1251;261 ‘O’yl)):VJ((OJL‘@iiepQ_—l—lieﬁiie‘o’yl))Vy'

In the leading log approxmlation:_z:

((O,xl‘pQ_—_:ie‘O,yL)) = %hl 552(11 —yl), (319)
and
(O e o) = ((O’JCi\aiiepﬂfegiie\o’w)
S L
so we get
ng) = 2_—;1n§</dxlA“i(xL)Af(xl) + g2/dedyl

X

{L‘f(xl) ((JJL ‘ % ‘yl)) L(y.)

L5 (@) ((= \QUT1U+42 \yL)) Vi, AT (y1)

+ L“(xL)((xl‘ (VT ! V+ = ‘yL)) [Ui,Ai]b(yL)}) (321)

pl

Finally, the effective actuion in the [U, V]? order in the cluster expansion has
the form

ig® o 1 )
S&f) = _2g_ﬂ_1n;2Tr{/dxl?Ai(xi)Az(xl)+/dxldyl{[/1($i)

(| o) Bat) + 200 ) (o - v N‘](yu}} (322)

—i
P +ze ‘0 yl)) T @93
which does not have any In <. However, careful analysis with the slope of the Y operators
n = op1 + dp2 instead of p; and the slope of W operators n’ = o/p1 + ¢'ps instead of po,
yields logarithmic contribution of the form

(o= T

(a+ Zp—ie)(B+ ,a—f—ze)p + e

#This formula may obviously seem confusing since ((O,m 1

O,yl)) =2 mZsx, —y.). (318)
47 o’
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which coincides with Eq. (223).

References

1. V.S. Fadin, E.A. Kuraev, and L.N. Lipatov, Phys. Lett. B 60, 50 (1975)
LI. Balitsky and L.N. Lipatov, Sov. Journ. Nucl. Phys. 28, 822 (1978).

2. L.N. Lipatov, Phys. Rept. 286, 131 (1997).

3. L. Balitsky, Phys. Rev. D60, 014020 (1999).

4. L. McLerran and R. Venugopalan, Phys. Rev. D49, 2233 (1994); Phys.
Rev. D49, 3352 (1994).

5. J. Jalilian-Marian, A. Kovner, L. McLerran, and H. Weigert, Phys. Rev.
D55,5414 (1997).

6. K.J. Eskola, K. Kajantie, P.V. Ruuskanen, and K. Tuominen, Nucl.
Phys. B570, 379 (2000).

7. A.H. Mueller, Nucl. Phys. B572, 227 (2000); R. Venugopalan, Acta.
Phys. Polon. B30, 3731 (1999).

8. O. Nachtmann, Annals Phys. 209, 436 (1991).

9. J.C. Collins and R.K. Ellis Nucl. Phys. B360, 3 (1991).

10. J. R. Forshaw and D. A. Ross, Quantum Chromodynamics and the
Pomeron, Cambridge Lecture Notes in Physics, 9 (Cambridge Univ.
Press, 1997).

11. LI. Balitsky and L.N. Lipatov, JETP Letters 30, 355 (1979).

12. L.N. Lipatov, Sov. Phys. JETP 63, 904 (1986).

13. V.S. Fadin and L.N. Lipatov, Phys. Lett. B 429, 127 (1998); G. Carnici
and M. Ciafaloni, Phys. Lett. B 430, 349 (1998).

14. E. Levin, Nucl. Phys. B453, 303 (1995).

15. D.E. Kharzeev and E. Levin, Nucl. Phys. B578, 351 (2000);

D.E. Kharzeev, Y. V. Kovchegov, and E. Levin, Preprint BNL-NT-00-18,

_16. M.A. Braun, FEur.Phys.J.C16, 337 (2000), [hep-ph/0001268); [heps
L _ph/0010041).
17. Y.V. Kovchegov, A.H. Mueller, Phys. Lett. B 439, 428 (1998).
18. C. Coriano, A. R. White, and M. Wusthoff, Nucl. Phys. B493, 397
(1997).
19. N. Armesto, J. Bartels, and M.A. Braun, Phys. Lett. B 442 459 (1998).

21. M. Ciafaloni, D. Colferai, G.P. Salam, Phys. Rev. D60, 114036 (1999).

22. R. Kirschner, L.N. Lipatov, L. Szymanowski, Nucl. Phys. B425, 579
(1994); Nucl. Phys. B452, 369 (1996).

23. J. Bartels, Nucl. Phys. B175, 365 (1980);

108


http://xxx.lanl.gov/abs/hep-ph/0007182
http://xxx.lanl.gov/abs/hep-ph/0001268
http://xxx.lanl.gov/abs/hep-ph/0010041
http://xxx.lanl.gov/abs/hep-ph/0010041
http://xxx.lanl.gov/abs/hep-ph/0011047

24.

25.

26.

27.

28.

29.
30.

31.

35.
36.
37.

38.
39.
40.
41.
42.
43.

44.

45.
46.

J. Kwiecinski and M. Praszalowicz, Phys. Lett. B 94, 413 (1980).

AH. Mueller, Nucl. Phys. B415, 373 (1994); A.H. Mueller and Bimal
Patel, Nucl. Phys. B425, 471 (1994).

N.N. Nikolaev and B.G. Zakharov, Phys. Lett. B 332, 184 (1994); Z.
Phys. C64, 631 (1994); N.N. Nikolaev B.G. Zakharov, and V.R. Zoller,
JETP Letters 59, 6 (1994).

V.S. Fadin, R. Fiore, M.I. Kotsky, Phys. Lett. B 359, 181 (1995); Phys.
Lett. B 387, 593 (1996).

I.A. Korchemskaya and G.P. Korchemsky, Phys. Lett. B 387, 346
(1996).

L.N. Lipatov, Phys. Lett. B 251, 284 (1990); Phys. Lett. B 309, 394
(1993).

H. Cheng and T.T. Wu, Ezpanding Protons: Scattering at High Energies,
(MIT press, Cambridge, 1987).

L.N. Lipatov, JETP Letters 59, 571 (1994);

L.D. Faddeev and G.P. Korchemsky, Phys. Lett. B 342, 311 (1995).

. R.A. Janik and J. Wosiek, Phys. Rev. Lett. 82, 1092 (1999).
. M.A. Braun, P. Gauron, and B. Nicolescu, Nucl. Phys. B542, 329

(1999).

. J. Bartels, L.N. Lipatov, and G.P. Vacca, “A New Odderon Solu-

1. Balitsky, Nucl. Phys. B463, 99 (1996).

I. Balitsky and V.M. Braun, Nucl. Phys. B311, 541 (1989).

Yu.V. Kovchegov, Phys. Rev. D60, 034008 (1999); Phys. Rewv.
D61,074018 (2000).

L.V. Gribov, E.M. Levin, and M.G. Ryskin, Phys. Rept. 100, 1 (1983).
A H. Mueller and J.W. Qiu Nucl. Phys. B268, 427 (1986).

I. Balitsky and E. Kuchina Phys. Rev. D62,074004 (2000).

A H. Mueller, Nucl. Phys. B437, 107 (1995).

I. Balitsky and V.M. Braun, Phys. Lett. B 222 121 (1989); Nucl. Phys.
B361, 93 (1991).

A. Berera and D.E. Soper, Phys. Rev. D53, 6162 (1996); M. Grazzini,
L. Trentadue, and G. Veneziano, Nucl. Phys. B519, 394 (1998); J.C.
Collins, Phys. Rev. D57, 3051 (1998).

J. Bartels and M. Wusthoff, Z. Phys. C66, 157 (1995).

A. Bialas, H. Navelet, and R. Peschanski, Phys. Rev. D57, 6585 (1998);
G.P. Korchemsky, Nucl. Phys. B550, 397 (1999).

109


http://xxx.lanl.gov/abs/hep-ph/9511370
http://xxx.lanl.gov/abs/hep-ph/9912423
http://xxx.lanl.gov/abs/hep-ph/9912423
http://xxx.lanl.gov/abs/hep-ph/9706411

47
48

49.
50.
51.
52.
53.
54.
55.
56.

o7.

58.

59.

60

. Y. V. Kovchegov and E. Levin, Nucl. Phys. B577, 221 (2000).

. 1. Balitsky, Phys. Rev. Lett. 81, 2024 (1998).

LI. Balitsky, Nucl. Phys. B254, 166 (1985).

H.G. Dosch, E. Ferreira, and A. Kraemer, Phys. Rev. D50, 2015 (1994).
H. Verlinde and E. Verlinde, “QCD at High Energies and Two-

L. McLerran and R. Venugopalan, Phys. Rev. D50, 2225 (1994); A.
Ayala, J. Jalilian-Marian, L. McLerran , and R. Venugopalan, Phys.
Rev. D52, 2935 (1995).

A. Kovner, L. McLerran and H. Weigert, Phys. Rev. D52, 6231 (1995).

A. Kovner, L. McLerran and H. Weigert, Phys. Rev. D52, 3809 (1995);
M. Gyulassy and L. McLerran, Phys. Rev. C52, 2219 (1997).
Alex Krasnitz, Raju Venugopalan, Nucl. Phys. B557, 237 (1999); Phys.

B.Z Kopeliovich, I.L. Lapidus, and Al.B. Zamolodchikov, JETP Letters
33, 612 (1981);

N.N. Nikolaev and B.G. Zakharov, Z. Phys. C53, 331 (1992).

J. Jalilian-Marian, A. Kovner, and H. Weigert, Phys. Rev. D59,014015
(1999).

Yu.V. Kovchegov, A.H. Mueller, Nucl. Phys. B529, 451 (1998).

. 1. Balitsky and V.M. Braun, Nucl. Phys. B380, 51 (1992).

110


http://xxx.lanl.gov/abs/hep-th/9302104
http://xxx.lanl.gov/abs/hep-ph/9808215
http://xxx.lanl.gov/abs/hep-ph/0007108

