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At high energies the particles move very fast so their trajectories can be approxi-
mated by straight lines collinear to their velocities. The proper degrees of freedom
for the fast gluons moving along the straight lines are the Wilson-line operators
– infinite gauge factors ordered along the straight line. I review the study of the
high-energy scattering in terms of Wilson-line degrees of freedom.
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1 Introduction

Traditionally, high-energy scattering in perturbative QCD (pQCD) is stud-
ied by direct summation of Feynman diagrams. In the leading logarithmic
approximation (LLA)

αs � 1, αs ln
s

m2
' 1 , (1)

the amplitudes at high energy are determined by the Balitsky-Fadin-Kuraev-
Lipatov (BFKL) pomeron 1 (for a review, see Ref. 2),

A(s) ∼
( s

m2

)12αsπ ln 2

. (2)

Here m is the characteristic mass or virtuality of scattered particles (for ex-
ample, for the small-x deep inelastic scattering m2 = Q2). In order for per-
turbative QCD (pQCD) to be applicable, m must be sufficiently large so that
αs(m) � 1.

The power behavior of BFKL cross section (2) violates the Froissart bound
and, therefore, the BFKL pomeron describes only the pre-asymptotic behavior
at intermediate energies when the cross sections are small in comparison to the
geometric cross section 2πR2. In order to find the true high-energy asymp-
totics by analysis of Feynman diagrams we should sum up not only the leading
logarithms (αs ln s)n but also the sub-leading ones αs(αs ln s)n, then the sub-
sub-leading terms α2

s(αs ln s)n, etc. This is almost equivalent to finding an
exact answer to arbitrary QCD amplitude in all orders in perturbation theory.
A more realistic approach is to unitarize the BFKL pomeron, i.e. to sum up the
subset of sub-leading logarithms which restores the unitarity in s channel. Still,
it is a difficult problem which has been in a need of a solution for more than 20
years. One of the most popular ideas on solving this problem is reducing QCD
at high energies to some sort of low-dimensional effective theory which will be
simpler than original QCD, maybe even to the extent of exact solvability. The
first step on this road is to identify proper degrees of freedom for this effective
theory. One of the possible choices is to formulate high-energy scattering in
terms of “reggeized gluons.”2 An alternative and related approach 35 is based
on so-called Wilson lines – infinite gauge links corresponding to fast gluons
moving along the straight-line classical trajectories.

An important aspect of the Wilson-line approach to high-energy scatter-
ing is the fact that it serves as a bridge between pQCD calculations and the
semiclassical approach to high-energy scattering based on the solution of the
classical equations for the fast-moving sources.4 The semiclassical QCD (sQCD)
is applicable when the coupling constant is small but the characteristic fields
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produced by colliding particles are large, ∼ 1
g . As advocated in Ref. 4, sQCD

may be relevant for the heavy-ion collisions because the coupling constant can
be relatively small due to high density of partons in the center of the collision.
The relevant “saturation scale” was estimated to be ∼ 1 GeV at RHIC and
∼ 2− 3 GeV at LHC.5,6,7

Let us demonstrate that the relevant degrees of freedom for the high-energy
scattering are Wilson lines.8 As a result of the high-energy collision, we have
a shower of produced particles in the range of rapidity between those of the
colliding particles. Consider two clusters of particles with different rapidities:
“A” particles with rapidities close to ηA and “B” particles with rapidities
' ηB. From the viewpoint of the “B” particles the “A” gluon moves very
fast, so its trajectory can be approximated by a straight line collinear to the
gluon momentum, see Fig. 1. The propagator of such gluon reduces to the free

ηslow  (   ~     )ηΒ
‘‘Wilson line" - infinite gauge link

η ηΑfast  (   ~     ) U(x  , n   )Α

Figure 1: Propagator of a fast “A” gluon in the slow “B” background.

propagator multiplied by the infinite gauge factor (made from “B” gluons)
ordered along the straight line parallel to nA, the direction corresponding to
the rapidity ηA:

U(x, nA) = [∞nA + x,−∞nA + x]. (3)

Hereafter we use the notation

[x, y] ≡ P exp ig
∫ 1

0

du(x− y)µAµ(ux+ (1− u)y) (4)

for the straight-line gauge link connecting the points x and y. Therefore, the
B particles can interact with A fields only via the Wilson lines (3). Similarly,
if we sit in the rest frame of the “A” gluons the “B” particles are moving fast
along the direction collinear to the vector nB corresponding to rapidity ηB, see
Fig. 2. The propagator of these gluons reduces to the Wilson line (made from
“A” gluons) collinear to nB

U(x, nB) = [∞nB + x,−∞nB + x]. (5)

Again, the relevant degree of freedom is the non-local Wilson line (5) rather
than the local field A(x). We see that the particles with different rapidities
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η

η ηΒfast  (   ~     )

ηslow  (   ~     )

U(x  , n   )Β

Α

Figure 2: Gluon of “B” type viewed from the rest frame of “A” gluons.

perceive each other as Wilson lines. The formal proof of this statement in
terms of Feynman diagrams is given in the Appendix (see also Ref. 9).

In this review I give a pedagogical introduction to the Wilson-line-based
approach to high energy scattering. After a short overview of the traditional
approach, I shall present the operator expansion for high-energy scattering
which provides the operator language for the BFKL equation in the same way
as the usual light-cone expansion gives the operator description of the DGLAP
equation. Unlike the latter, there is a symmetry between the coefficient func-
tions and matrix elements in the high-energy operator expansion which can
be summarized by the factorization formula for high-energy scattering. This
factorization formula gives us the rigorous definition of the effective action for
a given interval of rapidity. In the last section we discuss the semiclassical
approach to effective action related to the problem of scattering of two shock
waves in QCD.

2 The hard pomeron in pQCD

Since there are many excellent reviews of the traditional, Feynman diagrams-
based, approach to high-energy scattering (see e.g. Refs. 2, 10), I will present
here the short introduction to the subject so as to set up the stage for the
subsequent analysis of the high-energy scattering in terms of Wilson-line op-
erators.

2.1 High-energy γ∗γ∗ scattering

For simplicity, we consider the classical example of high-energy scattering of
virtual photons with virtualities ∼ − m2

A(s, t) = −i
∫
d4xd4yd4ze−ipAx−ipBy+ip′Az〈0|T{jA(x)jB(y)j′A(z)j′B(0)}|0〉. (6)

Here jA(x) is electromagnetic current jµ(x) multiplied by the polarization
vector eAµ (p). In the Regge limit (s� m2, t) it is convenient to use the Sudakov
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decomposition:
pµ = αpp

µ
1 + βpp

µ
2 + pµ⊥, (7)

where pµ1 and pµ2 are the light-like vectors close to pA and pB, respectively:

pA = p1 +
p2
A

s
p2, pB = p2 +

p2
B

s
p1, r ≡ pB − p′B = αrp1 + βrp2 + r⊥. (8)

The momentum transfer r = p′A − pA = αrp1 + βrp2 + r⊥ has components
αr ∼ βr ∼ m2

s
so t ' −~r2. The typical diagram for the high-energy γ∗γ∗

amplitude is shown in Fig. 3 (recall that the diagrams with gluon exchanges
dominate at high energies).

pA

p
B

p’B

p’A

Figure 3: A typical Feynman diagram for the high-energy γ∗γ∗ scattering.

We will calculate the imaginary part of the amplitude A(s, t)

W =
1
π

ImA. (9)

The real part of A(s, t) can be restored using the dispersion relations. (It
turns out that in the leading logarithmic approximation (LLA) the amplitude
at high energy is purely imaginary, see e.g. the review in Ref. 2).

Let us start with the lowest-order diagrams shown in Fig. 4. The integral
over gluon momentum k = αkp1 + βkp2 + k⊥ has the form

W 0 =
2
π
g4

∫
d4k

16π4

1
k2

1
(r − k)2

Im(ΦA)abξη(k,+r − k)ImΦξηabB (−k, k − r) (10)

where (ΦA)abξη(k, r − k) and (ΦB)abξη(−k, k − r) are the upper and the lower
blocks of the diagram in Fig. 4 (stripped of the strong coupling constant g).
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Figure 4: Lowest-order diagrams for the high-energy scattering of virtual photons.

Here a, b and ξ, η are the color and Lorentz indices, respectively. In the Regge
kinematics (≡ s � everything else) αk ∼ m2

s and βk ∼ x so k2 ' −~k2
⊥.

Moreover, alpha’s in the upper block are ∼ 1 so one can drop αk in the upper
block. Similarly, beta’s in the lower block are ∼ 1 hence one can neglect βk in
the lower block. We get (Φab = δab

N2
c−1

Φcc)

W 0 =
2g4

(N2
c − 1)π

(11)

×
∫

d4k

16π4

1
~k2
⊥

1

(~r − ~k)2
⊥

Im Φaaξη(k, r − k)
∣∣
αk=0

Im Φξηbb(−k, k − r)
∣∣
βk=0

,

where Nc = 3 is the number of colors. At high energies, the metric tensor gµν

in the numerator of the Feynman-gauge gluon propagator reduces to 2
s
pµ2p

ν
1,

so the integral (11) for the imaginary part factorizes into a product of two
“impact factors” integrated with two-dimensional propagators

W 0 =
s

π
g4N

2
c − 1
4

(∑
e2
q

)2
∫
d2k⊥
4π2

1
~k2
⊥

1

(~r − ~k)2
⊥
IA(k⊥, r⊥)IB(−k⊥,−r⊥),

(12)
where

IA(k⊥, r⊥) =
pξ2p

η
2

s(N2
c − 1)

(∑
e2
q

)−1
∫
dβk
2π

ImΦaaξη(k, r − k)
∣∣∣∣
αk=0

, (13)

IB(−k⊥,−r⊥) =
pξ1p

η
1

s(N2
c − 1)

(∑
e2
q

)−1
∫
dαk
2π

ImΦaaNξη(−k, k − r)
∣∣∣∣
βk=0

, (14)

and
(∑

e2
q

)
is the sum of squared charges of active flavors. The photon impact

factor is given by the two one-loop diagrams shown in Fig. 5.
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Figure 5: Photon impact factor.

The standard calculation of these diagrams yields 11

IA(k⊥, r⊥) = ĪA(k⊥, r⊥) − ĪA(0, r⊥), (15)

where

ĪA(k⊥, r⊥) =
1
2

∫ 1

0

dα

2π

∫ 1

0

dα′

2π

{
~P 2
⊥α
′ᾱ′ − [p2

Aᾱ
′ + (p′A)2α′]αᾱ

}−1

(16)

×
{

(1− 2αᾱ)(1− 2α′ᾱ′)~P 2
⊥(~eA, ~e′A)⊥ + 4αᾱα′ᾱ′[ ~P 2

⊥(~eA, ~e′A)⊥

− 2(~P ,~eA)⊥(~P ,~e′A)⊥] + (eA, e′A)⊥(p2
A − (p′A)2)αᾱ(1− 2αᾱ)

× (1 − 2α′) + 4αᾱ(1− 2α)α′(~P ,~eA)⊥(~r,~e′A)⊥

}
for the transverse polarizations A,A′ = 1, 2. Here P⊥ ≡ k⊥ − r⊥α and (a, b)⊥
denotes the (positive) scalar product of transverse components of vectors a
and b.

2.2 The BFKL kernel

In the next order in perturbation theory there are two types of diagrams for
the γ∗γ∗ amplitude: diagrams with 5-particle cut describing the emission of
an extra gluon and diagrams with 4-particle cut as in Fig. 4 but with an extra
gluon loop.

Let us at first consider the diagrams with the 5-particle cut shown in Fig. 6.
The contribution of the diagram shown in Fig. 6a has the form

W
(5)
(a) =

2
π
g6

∫
d4k

16π4

∫
d4k′

16π4

ImΦµνabA (k, r − k)
k2(r − k)2

ImΦξηmnB (−k′, k′ − r)
(k′)2(r − k′)2

× famcfbncΓ σ
µξ (k, k′)2πδ((k − k′)2)θ(αk)Γνησ(r − k, r− k′)

8
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p -p
A

k-k’

p’

B

(a) (b) (c)
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=++

Figure 6: The effective vertex in LLA.

× ImΦξηmnB (−k′, k′ − r)
(k′)2(r − k′)2

, (17)

where

Γµνλ(k, k′) = (k + k′)λgµν + (k′ − 2k)νgλµ + (k − 2k′)µgνλ (18)

is the three-gluon vertex divided by g. (Strictly speaking, in order to obtain
ΦA and ΦB we must add the diagrams with permutations of the quark lines, as
in Fig. 4). As mentioned above, it is convenient to use Sudakov variables (7):
k = αkp1 +βkp2 +k⊥, k′ = α′kp1 +β′kp2 +k′⊥. We will see that the logarithmic
contribution comes from the region

1� α� α′ ∼ m2

s
,

m2

s
∼ β � β′ � 1, ~k2

⊥ ∼ (k′⊥)2 ∼m2. (19)

In this region k2 = αkβks − ~k2
⊥ ' −~k2

⊥. In the same way, (k′)2 = −(~k′⊥)2,
(r− k)2 = −(~r−~k)2

⊥, and (r− k′)2 = −(~r −~k′)2
⊥. As we mentioned above, at

high energies we can replace gµν in gluon propagators connecting the clusters
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with different rapidities by 2p
µ
2p
ν
1

s . With these approximations, the integral
(17) reduces to

W
(5)
(a) =

2
π
g6
(2
s

)4
∫
dαkdβk

4π2

d2k⊥
4π2

∫
dα′kdβ

′
k

4π2

d2k′⊥
4π2

1
~k2
⊥

1

(~r − ~k)2
⊥

× ImΦ∗∗abA (k, r− k)famcfbncΓ σ
•∗ (k, k′)2πδ(αkβ′ks+ (~k − ~k′)2

⊥)θ(αk)

× Γ•∗σ(r − k, r − k′) 1

(~k′)2
⊥

1

(~r − ~k′)2
⊥

ImΦ••mnB (−k′, k′ − r). (20)

Since α in the upper block is ∼ 1, one can neglect αk-dependence in ΦA which
leads to the replacement of

∫
dβkΦA by the impact factor IA(k⊥, r⊥), see

Eq. (16). Likewise,
∫
dα′kΦB → IB(k′⊥, r⊥) so we get

W
(5)
(a) =

2g6

π

Nc(N2
c − 1)
4

(∑
e2
q

)2

(21)

×
∫
d2k⊥
4π2

d2k′⊥
4π2

IA(k⊥, r⊥)
1

~k2
⊥(~r − ~k)2

⊥

1

(~k′)2
⊥(~r − ~k′)2

⊥
IB(k′⊥, r⊥)

×
∫
dαkdβ

′
k

4π2
Γ σ
•∗ (k, k′)2πδ(αkβ′ks+ (~k − ~k′)2

⊥)θ(αk)Γ•∗;σ(r − k, r − k′).

Let us now turn to the diagram shown in Fig. 6b. Since the gluon with mo-
mentum k−k′ now connects parts of the diagrams with different rapidities, we
can replace gµν in this propagator by 2p

µ
2 p
ν
1

s
. After that, the quark propagator

with the momentum p+ k′ in the upper block reduces to

ta 6p2

(αp + α′k)6p1 + 6p⊥ + 6k′⊥
−(αp + α′k)(βp + β′k)s+ (~p − ~k′)2

⊥ − iε
6p2t

c → ta 6p2

1
−β′k − iε

tc, (22)

(recall that αp ∼ 1, βp ∼ m2

s ). We see that in the transverse space this propa-
gator shrinks to a point so the answer for the upper block is again IA multiplied
by 1

β′
k
+iε . (The eikonal factor 1

β′
k
+iε is the Fourier transform of the first term of

the expansion of Wilson-line propagator (3) in powers of “external slow field”
represented by gluon with momentum k′). The right part of the diagram in
Fig. 6b is identical to that in Fig. 6a so we obtain

W
(5)
(b) = i

2
π
g6Tr{tatctb}

∫
d2k⊥
4π2

∫
dαkdβ

′
k

4π2

d2k′⊥
4π2

IA(k⊥, r⊥)fbac (23)

× 1
β′k

1

(~r − ~k)2
⊥

2πδ(αkβ′ks+ (~k − ~k′)2
⊥)θ(αk)Γ•∗•(r − k, r− k′)

× 1

(~k′)2
⊥

1

(~r − ~k′)2
⊥
IB(k′⊥, r⊥).

10



The contribution of the diagram in Fig. 6c is calculated in a similar way. One
can replace

tc 6p2

[
(αp − αk + α′k)6p1 + 6p⊥ − 6k⊥ + 6k′⊥ 6p2t

a
]

(αp − αk + α′k)(βp − βk + β′k)s− (~p− ~k + ~k′)2
⊥ + iε

→ tc 6p2

1
β′k − iε

ta, (24)

and, therefore,

W
(5)
(c) = − i 2

π
g6Tr{tbtatc}

∫
d2k⊥
4π2

∫
dαkdβ

′
k

4π2

d2k′⊥
4π2

IA(k⊥, r⊥)fabc (25)

× 1
β′k

1

(~r − ~k)2
⊥

2πδ(αkβ′ks+ (~k − ~k′)2
⊥)θ(αk)Γ•∗•(r − k, r− k′)

× 1

(~k′)2
⊥

1

(~r − ~k′)2
⊥
IB(k′⊥, r⊥).

Note that the sum of the results (21), (23), and (25) may be obtained from
the contribution (21) of the diagram in Fig. 6a. by the replacement

Γ σ
•∗ (k, k′)→ Γ σ

•∗ (k, k′)−
~k2
⊥
β′k
pσ2 . (26)

Now consider now the the diagram in Fig. 6d. The two quark propagators
carrying the momentum k′ give

6p2

(1− αp + α′k)6p1 − 6p⊥ + 6k′⊥
(1− αp + α′k)(m2

s
− βp + β′k)s− (~p − ~k′)2

⊥ + iε

× 6eA⊥
(αp + α′k)6p1 + 6p⊥ + 6k′⊥

(αp + α′k)(βp + β′k)s− (~p − ~k′)2
⊥ + iε

6p2

→ 6p2

(1− αp)6p1 − 6p⊥ + 6k′⊥
(1 − αp)β′ks

eA⊥
(αp + α′k)6p1 + 6p⊥ + 6k′⊥

αpβ
′
ks

. (27)

Since we cannot keep both large terms (1−αp)p1 and αpp1 in the numerators
this expression is m2

β′
k
s times smaller than the contribution (23) of the diagram

in Fig. 6b so it vanishes in the LLA.
The diagrams in Fig 6e,f are calculated in the same way as the diagrams

in Fig 6b,c. Similarly, the result may be obtained from Eq. (21) by the re-
placement

Γ σ
•∗ (k, k′)→ −(~k′)2

⊥
αks

pσ1 . (28)

11



In conclusion, the diagram in Fig. 6g vanishes in the LLA for the same reasons
as the Fig. 6c diagram.

Thus, the contribution of the diagrams in Fig. 6a–6e can be represented
by one diagram shown in Fig. 6h:

W
(5)
(a+...g) =

sg6

π

Nc(N2
c − 1)
4

(∑
e2
q

)2

(29)

×
∫
d2k⊥
4π2

d2k′⊥
4π2

IA(k⊥, r⊥)
1

~k2
⊥(~r − ~k)2

⊥

1

(~k′)2
⊥(~r − ~k′)2

⊥
IB(k′⊥, r⊥)

×
∫
dαkdβ

′
k

4π2
Lσ(k, k′)2πδ(αkβ′ks+ (~k − ~k′)2

⊥)θ(αk)Γ•∗σ(r − k, r− k′),

where

Lσ(k, k′) =
2
s

Γσ•∗(k, k
′) − 2

(~k⊥)2

β′ks
pσ2 − 2

(~k′⊥)2

αks
pσ1

= (k + k′)σ⊥ − (αk + 2
~k2
⊥

β′ks
)pσ1 − (β′k + 2

(~k′)2
⊥

αks
)pσ2 (30)

is the Lipatov effective vertex for the gluon emission shown in Fig. 6h by
a shaded circle. Note that unlike the usual three-gluon vertex, the effective
vertex is gauge-invariant,

(k − k′)σLσ(k, k′) = 0. (31)

We have demonstrated that if we take the diagram in Fig. 6a and attach
the left end of the k − k′ gluon line in all possible ways, the left three-gluon
vertex in Fig. 6a is replaced by the effective vertex (30). Likewise, the sum of all
possible attachments of the right end of this k−k′ gluon line converts the right
three-gluon vertex Γ•∗σ(r−k, r−k′) into the effective vertex Lσ(r−k, r−k′).
Hence the sum of all the diagrams with 5-particle cut takes the form (see Fig. 7)

W (5) =
g6

π

Nc(N2
c − 1)
4

(∑
e2
q

)2 s2

2
(32)

×
∫
d2k⊥
4π2

d2k′⊥
4π2

IA(k⊥, r⊥)IB(k′⊥, r⊥)
~k2
⊥(~r − ~k)2

⊥(~k′)2
⊥(~r − ~k′)2

⊥

×
∫
dαkdβ

′
k

4π2
Lσ(k, k′)2πδ(αkβ′ks+ (~k − ~k′)2

⊥)θ(αk)Lσ(r − k, r− k′).
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r-kk

k’ r-k’

Figure 7: Sum of the diagrams with gluon emission in LLA. Shaded circle denotes the
effective vertex.

Since αkβ′ks = −(~k−~k′)2
⊥ due to the δ-function, the product of two Lipatov’s

vertices gives

1
2
Lσ(k, k′)Lσ(r − k, r − k′) = −~r2

⊥ +
~k2
⊥(~r − ~k′)2

⊥
(~k − ~k′)2

⊥
+

(~k′)2
⊥(~r − ~k)2

⊥
(~k − ~k′)2

⊥
, (33)

which is proportional to the “emission” part of the BFKL kernel, see the
Eq. (36) below. Now one can easily perform the remaining integrations over
αk and β′k in the LLA

s

∫
dαkdβ

′
kδ(αkβ

′
ks+ (~k − ~k′)2

⊥)θ(αk) =
∫ 1

m2
s

dαk
1
αk

= ln
s

m2
, (34)

and, therefore, the final result (for the diagrams with 5-particle cut) is

W (5) =
s

π
g4N

2
c − 1
4

g2

2π
Nc ln

s

m2
(35)

×
∫
d2k

4π2

d2k′

4π2
IA(k⊥, r⊥)

1
~k2
⊥(~r − ~k)2

⊥
K1(k⊥, k′⊥, r)I

B(k′⊥, r⊥)

where

K(1)(k⊥, k′⊥, r) = − ~r2
⊥

(~k′)2
⊥(~r − ~k′⊥)2

+
~k2
⊥

(~k′)2
⊥(~k − ~k′⊥)2

+
(~k − ~r)2

⊥

(~k′ − ~r)2
⊥(~k − ~k′⊥)2

(36)
is the first part of the BFKL kernel coming from the diagrams with gluon
emission.
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(d)
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r-k
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r-k k’ k-k’

p-k+k’

r-k

r-k
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(g)

p’-k+k’

p

(h)

k’

p’-k+k’

+++ =k’r-k r-k r-kk’ k-k’

p’

Figure 8: Virtual corrections.

Apart from the diagrams with 5-particle cut shown in Fig. 6, there are
also diagrams with four-particle cut (“virtual corrections”) of the type shown
in Fig. 8. Let us consider the diagram shown in Fig. 8a. The integrals over
αk and βk are similar to the same integrals in the first-order diagram in Fig. 4
and therefore αk ∼ βk ∼ m2

s . The logarithmic contribution comes from the
region 1 ∼ αp � α′k � αk. In this region we can replace the quark propagator
with momentum p − k′ by the eikonal propagator (see Appendix 7.1),

6p2(6p+ 6k′) 6p2→6p2
1

−β′k + iε
. (37)

In addition, one can neglect β′k in comparison to β′p ∼ 1 in the lower block .
The loop integral over k′ turns into∫

dα′kdβ
′
k

4π2

d2k′

4π2

[
ta

6p2

−β′k + iε
tb
]

1

α′kβ
′
ks− ~k2

⊥

1

α′k(β′k − βk)− (~k − ~k′)2
⊥

×
[
ta
6p1(β′p 6p2+ 6p′⊥+ 6k′⊥) 6p1

α′kβ
′
ps− (~p′ + ~k′)2

⊥
tb

]
. (38)

14



The integral over β′k is determined by the residue at β′k = 0 so we obtain∫ 1

m2
s

dα′k
2πα′k

∫
d2k′⊥
4π2

[
ta 6p2t

b
] 1
~k2
⊥

1

(~k − ~k′)2
⊥

[
ta 6p1t

b
]

=
[
ta 6p2t

b
][
ta 6p1t

b
]
× g2

4π2
ln

s

m2

∫
d2k′⊥
4π2

1
~k2
⊥

1

(~k − ~k′)2
⊥
. (39)

Let us add now the contribution of the diagram in Fig. 8b. Like the Fig. 8a
case, we get the loop integral over k′ in the form∫

dα′kdβ
′
k

4π2

d2k′

4π2

[
ta

6p2

−β′k + iε
tb
]

1

α′kβ
′
ks− ~k2

⊥

1

α′k(β′k − βk)− (~k − ~k′)2
⊥

×
[
ta
6p1(β′p 6p2+ 6p′⊥+ 6k′⊥) 6p1

α′kβ
′
ps− (~p′ + ~k′)2

⊥
tb

]

=
∫ 1

m2
s

dα′k
2πα′k

∫
d2k′⊥
4π2

[
ta 6p2t

b
] 1
~k2
⊥

1

(~k − ~k′)2
⊥

[
ta 6p1t

b
]

=
[
ta 6p2t

b
][
ta 6p1t

b
]
× g2

4π2
ln

s

m2

∫
d2k′⊥
4π2

1

(~k′)2
⊥(~k − ~k′)2

⊥
. (40)

The diagrams shown in Fig. 8c–g do not give the logarithmic contribution for
the same reason as the diagram in Fig. 6d.

We see that the sum of diagrams in Fig. 8a–g reduces to the first-order
diagram in Fig. 4a with the left gluon propagator 1

−~k2
⊥

replaced by the factor

1

−~k2
⊥
→ g2

4π
Nc ln

s

m2

∫
d2k′⊥
4π2

1

(~k′)2
⊥(~k − ~k′)2

⊥
(41)

shown schematically in Fig. 8h. We get

W
(4)
(a+...g)

= − s
π
g4N

2
c − 1
4

(∑
e2
q

)2 g2

4π
Nc ln

s

m2
(42)

×
∫
d2k⊥
4π2

IA(k⊥, r⊥)IB(k⊥, r⊥)
~k2
⊥(~r − ~k)2

⊥

{∫
d2k′⊥
4π2

~k2

(~k′)2
⊥(~k − ~k′)2

⊥

}
.

The diagrams with the gluon loop to the right of the cut lead to similar re-
placement of the right gluon propagator 1

−(~k−~r)2
⊥

by

1

−(~k − ~r)2
⊥
→ g2Nc

4π
ln

s

m2

∫
d2k′⊥
4π2

1

(~k′⊥ − ~r⊥)2(~k − ~k′)2
⊥
. (43)
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Thus we obtain the result

W (4) = − s
π
g4N

2
c − 1
4

(∑
e2
q

)2 g2

4π
Nc ln

s

m2

×
∫
d2k⊥
4π2

IA(k⊥, r⊥)IB(k⊥, r⊥)
~k2
⊥(~r − ~k)2

⊥

×
∫
d2k′⊥
4π2

{
~k2

(~k′)2
⊥(~k − ~k′)2

⊥
+

(~k − ~r)2

(~k′ − ~r)2
⊥(~k − ~k′)2

⊥

}
(44)

for the contribution of the diagrams with 4-particle cut.
Adding the sum of the diagrams with real gluon emission W 5 we obtain

the final result for the γ∗γ∗ scattering amplitude in the first order in LLA. It
can be represented in the form

W 1 =
s

π
g4N

2
c − 1
4

(∑
e2
q

)2 g2

2π
Nc ln

s

m2

∫
d2k

4π2

d2k′

4π2
(45)

× IA(k⊥, r⊥)
1

~k2
⊥(~r − ~k)2

⊥
K(k⊥, k′⊥, r)I

B(k′⊥, r⊥),

where

K(k⊥, k′⊥, r) = K(1)(k⊥, k′⊥, r)−
1
2
δ(2)(k − k′) (46)

×
{∫

d2k”⊥
4π2

~k2

(~k”)2
⊥(~k − ~k”)2

⊥
+
∫
d2k”⊥
4π2

(~k − ~r)2

(~k”− ~r)2
⊥(~k − ~k”)2

⊥

}

is the BFKL kernel.1 The explicit form of K is

K(k⊥, k′⊥, r) = − ~r2
⊥

~k′
2

⊥(~r − ~k′)2
⊥

+
~k2
⊥

~k′
2

⊥(~k − ~k′)2
⊥

+
(~r − ~k)2

⊥
(~r − ~k′)2

⊥(~k − ~k′)2
⊥

−1
2
δ(2)(k − k′)

∫
d2k”⊥

4π2

{
~k2

(~k”)2
⊥(~k − ~k”)2

⊥
+

(~k − ~r)2

(~k”− ~r)2
⊥(~k − ~k”)2

⊥

}
. (47)

Note that both W (5) and W (4) are IR divergent but their sum W 1 given by
Eq. (45) is IR finite. This is the usual Bloch-Nordsieck cancellation between
th emission of real gluon in diagrams in Fig. 6 and virtual gluon in Fig. 8.
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2.3 Bare pomeron in the LLA

The γ∗γ∗ amplitude in the first two orders in perturbation theory may be
represented in the operator form as

W (0+1) = sC
∫
d2k

4π2
IA(k⊥, r⊥)

1
~k2
⊥(~r − ~k)2

⊥

(
1 +

g2

8π3
Nc ln

s

m2
K̂
)
IB(k⊥, r⊥),

(48)
where C ≡ αs(N2

c − 1)(
∑
e2
q)

2 and the operator K̂r is defined by its kernel
K(k, k′, r),

(K̂rf)(~k⊥) =
∫
d2k′

4π2
K(k⊥, k′⊥, r)f(~k′⊥). (49)

We can demonstrate (and we will do this using the evolution equations for
the Wilson-line operators) that in the next orders in LLA the operator K
exponentiates:

WLLA = sC
∫
d2k

4π2
IA(k⊥, r⊥)

1
~k2
⊥(~r − ~k)2

⊥

( s

m2

)g2Nc
8π3 K̂r

IB(k⊥, r⊥). (50)

It is convenient to represent the amplitude as an integral over the complex
momenta:

W (s, t) =
s

2πi

∫ δ+i∞

δ−i∞
dω
( s

m2

)ω
W (ω, t), (51)

WLLA(ω, t) = C
∫
d2k

4π2

IA(k⊥, r⊥)
~k2
⊥(~r − ~k)2

⊥

1

ω − g2

8π3NcK̂r

IB(k⊥, r⊥),

where ω = j − 1. The relation between the LLA and the power series for
W (ω, t) is

WLLA(s, t) = sC
∞∑
n=1

1
n!

(
g2 ln

s

m2

)n
fn(t) ⇒

WLLA(ω, t) = C
∞∑
n=1

g2n

ωn+1
fn(t) (52)

where

fn(t) =
∫
d2k

4π2
IA(k⊥, r⊥)

1
~k2
⊥(~r − ~k)2

⊥

(
Nc
8π3

K̂r

)n
IB(k⊥, r⊥) (53)

are the coefficients of the LLA expansion.

17



The asymptotics of the amplitude at s → ∞ is given by the rightmost
singularity of the integrand in the right-hand side of Eq. (51) in the ω plane.
The position of this singularity is given by the maximal eigenvalue of the
operator K̂r determined by the eigenfunction equation

αsNc
2π2

(K̂rf)(~k⊥) = ωf(~k⊥). (54)

This equation is solved at arbitrary momentum transfer r 12 yet it turns out
that the maximal eigenvalue of Eq. (50) does not actually depend on r. For
simplicity, let us consider the case r = 0 corresponding to total cross section of
γ∗γ∗ scattering. (In the next section we prove that the position of singularity
does not depend on t = −~r2

⊥).
At r = 0, the full and orthogonal set of eigenfunctions of the BFKL oper-

ator are simple powers
f(~k) =

(
~k2
)− 1

2 +iν
einφ, (55)

with the eigenvalues

ω = 2Nc
αs
π
χ(ν, n), χ(ν, n) = −ReΨ(

|n|+ 1
2

+ iν)−C. (56)

The maximal eigenvalue is 2Nc αsπ χ(0, 0) = 4αsπ Nc ln 2, so the rightmost singu-
larity (intercept of the “hard pomeron”) is located at

j = 1 + ω0, ω0 = 4
αs
π
Nc ln 2, (57)

so the asymptotics at high energies in the LLA is

σ '
( s

m2

)4αsπ Nc ln 2

. (58)

It is easy to see that the singularity at ω = ω0 is the branch point 1√
ω−ω0

.
As we mentioned in the introduction, the singularity at j > 1 violates the

Froissart bound σ ≤ ln2 s. Recently, the next-to-leading correction (∼ αs) to
the BFKL kernel was found,13 but the result still violates the Froissart bound,
so the unitarization of the BFKL pomeron is required. (Consequently, the
BFKL pomeron (57) is sometimes called “the bare pomeron in pQCD”).

In the case of γ∗γ∗ scattering, it is possible to find the explicit form of the
cross section in the LLA. Expanding impact factors I(k, 0) ≡ I(k) in a set of
eigenfunctions (55), we obtain

σtot(pA, pB) = g4 1
2

(N2
c − 1)(

∑
e2
i )

2 (59)

×
∫
dν(

s

m2
)

2αs
π Ncχ(ν)

∫
dp⊥
4π2

IA(p⊥)(~p2
⊥)−

3
2 +iν

∫
dp′⊥
4π2

IB(p′⊥)(p,2⊥)−
3
2−iν.
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Here we neglected the angle-dependent contributions coming from n 6= 0 since
they decrease with energy. At s→∞ the cross section (59) is determined by
the rightmost singularity in the ν plane located at ν = 0 (in terms of j-plane
it corresponds to Eq. (57)) and the result is

σtot(pA, pB) =
1
2
g4 (N2

c − 1)π√
14ζ(3)Nc αsπ ln s

m2

(
∑

e2
i )

2 (60)

× (
s

m2
)

4αs
π Nc ln 2

∫
dp⊥
4π2

IA(p⊥)(~p2
⊥)−

3
2

∫
dp′⊥
4π2

IB(p′⊥)(~p2
⊥)−

3
2

where ζ(3) ' 1.202.

2.4 Diffusion in the transverse momentum and the BFKL equation with run-
ning coupling constant

At first, let us demonstrate that the rightmost singularity of the BFKL equa-
tion is located at ω = ω0 at t 6= 0 as well (although its character changes
from 1√

ω−ω0
to
√
ω − ω0). We shall see that in higher orders in perturbation

theory there is a “diffusion” in k⊥ such that ln
~k2
⊥
m2 ∼

√
n (where n is the or-

der of perturbation theory). To illustrate the diffusion, consider a rung of the
BFKL ladder located in the middle of the rapidity region (see Fig. 9). Each of
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Figure 9: Diffusion in k⊥.

the upper or lower blocks in this diagram are “non-integrated gluon distribu-
tion”. The s→∞ asymptotics is governed by the rightmost singularity of the
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function W (ω, t) (see Eq. (51)) which is determined by the asymptotics of the
coefficients fn at n→∞. For even n, these coefficients can be represented as

f2n(t) =
∫

d2k

4π2

1
~k2
⊥(~r − ~k)2

⊥
fAn (k⊥, r⊥)fBn (k⊥, r⊥), (61)

where

fAn (k⊥, r⊥) =
(
Nc
8π3

K̂r

)n
IA(k⊥, r⊥), fBn (k⊥, r⊥) =

(
Nc
8π3

K̂r

)n
IB(k⊥, r⊥).

(62)
Let us demonstrate that the characteristic momenta ~k2

⊥ in the integral in
Eq. (61) are ∼ m2e

√
n. At large transverse momenta k⊥ the recursion for-

mula fAn+1(k⊥, r⊥) = Nc
8π3 K̂rf

A
n (k⊥, r⊥) can be reduced to

ωφn+1(ξ) = (63)

g2Nc
4π2

∫
dξ′

[
e(ξ−ξ′)/2

1− eξ−ξ′ φn(ξ′)−
(

1
1− eξ−ξ′ −

1√
1 + 4e2(ξ−ξ′)

)
φn(ξ)

]

where ξ = ln
~k2
⊥
m2 and φn(ξ) =

(
g2

ω

)n
1
|k⊥|fn(~k2

⊥). Next, we expand the function
φn(ξ′) in the integrand in Eq. (63) in Taylor series φn(ξ′) = φn(ξ) + (ξ′ −
ξ)φ′n(ξ) + 1

2
(ξ′ − ξ)2φ”n(ξ) + .... As we shall see below, at large n and k⊥ one

can neglect higher terms in Taylor expansion, and then the recursion integral
equation (63) can be approximated by the differential equation

ω
∂

∂n
φ(n, ξ) = (ω0 − ω)φ(n, ξ) + c∂2∂ξ2φ(n, ξ), (64)

where c = 7
π2 g

2ζ(3), ζ(3) ' 1.202. This equation describes the diffusion of the
“particle” where n serves as a time and ξ as a coordinate. It is well known that
at large time n the mean position ξ of the “particle” is proportional to

√
n,

and therefore our approximation of Eq. (63) by the diffusion equation (64) is
justified.

Thus, we must find the solution of the diffusion equation (64) with the
“wall-type” boundary condition

φ(n, ξ)|ξ=ξt = 0, ξt ≡ ln
~r2
⊥
m2

(65)

which reflects the fact that our approximation is not valid at ~k2
⊥ < ~r2

⊥. It is
easy to check that the solution of the Eq. (64) with the boundary condition
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(65) behaves at large ξ ∼
√
n as

φ(n, ξ) ∼ (ξ − ξt)
n3/2

e(
ω0
ω −1)ne−

ω
4nc (ξ−ξt)2

(66)

where the coefficient of the proportionality may be determined by a more ac-
curate analysis of the transition from the integral equation (63) to the diffusion
equation (64).

Substituting the estimate (66) in the integral (61), we obtain(
g2

ω

)n
fn

∣∣∣∣
n→∞

∼ 1
n3/2

e(
ω0
ω −1)n, (67)

which gives

W (ω, t) ∼
∑(

g2

ω

)n
fn =

∫ ∞
1

dn
1

n3/2
e(

ω0
ω −1)n =

√
ω0 − ω. (68)

We see that the singularity is located at the same point ω = ω0 as in the
case of forward scattering, although its character is slightly different:

√
ω0 − ω

instead of 1√
ω0−ω .1

At t = 0 there is no “wall” boundary condition (65) which shows that the
diffusion equation (64) leads to |ξ| ∼

√
n. This means that the characteristic

momenta k⊥ are either very large, ~k2
⊥ ∼ m2e

√
n, or very small, ~k2

⊥ ∼ m2e−
√
n.

The large contribution from the region of small k⊥ region indicates the possi-
bility of the breakdown of perturbative QCD for high-energy scattering.

We can safely apply pQCD to high-energy scattering if the characteristic
transverse momenta of the gluons k⊥ in the ladder are large. For the γ∗γ∗

with p2
A ∼ p2

A ∼ m2 � Λ2
QCD one can check by explicit calculation that the

characteristic k⊥ for the first few diagrams are ∼ m. However, due to the
diffusion in k⊥ , the leading contribution to the loop integrals comes from
the gluon momenta which are either very large, ~k2

⊥ ∼ m2e
√
n, or very small,

~k2
⊥ ∼ m2e−

√
n. Due to the asymptotic freedom, the fact that the k⊥ may

be very large at n → ∞ only strengthens the applicability of pQCD. On the
contrary, the fact that k⊥ may be small questions the applicability of pQCD
to the high-energy γ∗γ∗ scattering.

To take into account the asymptotic freedom, one may consider the BFKL
equation with the running coupling constant. Each of the upper or lower blocks
in the diagram in Fig. 9 is a “non-integrated gluon distribution”

FA(B)(k⊥, r⊥; s) =
∑ 1

n!

(
g2 ln

s

m2

)n
fA(B)
n (k⊥, r⊥) (69)
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which satisfies the BFKL equation

ωFA(B)(k⊥, r⊥;ω) = (70)

IA(B)(k⊥, r⊥) +
g2

8π3
Nc

∫
d2k′⊥K(k⊥, k′⊥, r⊥)FA(B)(k′⊥, r⊥;ω)

where F (k⊥, r⊥;ω) is a Mellin transform of Eq. (69):

F (k⊥, r⊥; s) =
1

2πi

∫
dω
( s

m2

)ω
F (k⊥, r⊥;ω).

In order to account for the asymptotic freedom, we can replace g2 in the right-
hand side of the Eq. (70) by g2(~k2

⊥):b

ωF (k⊥, r⊥;ω) = I(k⊥, r⊥) +
g2(k⊥)

8π3
Nc

∫
d2k′⊥K(k⊥, k′⊥, r⊥)F (k′⊥, r⊥;ω).

(71)
This equation exceeds the LLA accuracy but it it can be demonstrated that
in the case of large (or small) ~k2

⊥ the replacement g2 → g2(~k2
⊥) agrees with

the renormalization group analysis 12). Another arguments in favor of taking
into account these particular sub-leading logs follows from the analysis of the
renormalon contributions.14

At large k⊥ one can replace the equation (71) by the corresponding dif-
fusion equation. It turns out that at large momentum transfer |t| = ~r2

⊥ the
rightmost singularity of F (k⊥, r⊥;ω) is located simply at t = 12αs(|t|)π Nc ln 2.
At t = 0 the diffusion goes in both directions leading to the contributions
coming from k⊥ ∼ ΛQCD. If one removes these contributions “by hand” (im-
posing the “wall” condition at ~k2

⊥ = ΛQCD), one obtains a discrete set of Regge
poles which condense from the right to the point ω = 0.12 A more satisfactory
solution of the problem of the diffusion to small k⊥ would be to match the
hard pomeron with the soft Landshoff-Donnachie pomeron (responsible for
the high-energy hadron-hadron scattering) which presumably comes from the
high-energy exchanges by soft gluons (see, however, Ref. 15 for an alternative
“hard” soft pomeron). Another possibility is that the diffusion to small k⊥
disappears if one takes into account the unitarization effects.16

The proper way to address the problem of running coupling constant in the
BFKL equation is to use the NLO BFKL kernel in the renormalization-group
analysis.17 The NLO correction to the anomalous dimension of the correspond-
ing leading-twist gluon operator consists of two parts: the conformal part and

bWe have seen from the diffusion equation that (k′⊥)2 ∼ ~k2
⊥ in the adjacent rungs of the

ladder so g2(~k2
⊥) ≡ g2((~k′)2

⊥).
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the running coupling part. The conformal part (see also Ref. 18) corrects the
intercept of the BFKL pomeron (57), while the running coupling part, be-
sides replacing 12αsπ Nc ln 2 by 12αs(q

2)
π Nc ln 2 in the leading order, leads to

the non-Regge terms in the energy dependence of the cross section. The nu-
merical value of the correction to the hard pomeron’s intercept introduced by
the conformal part of the NLO BFKL kernel is large and negative. Its exact
contribution is somewhat difficult to estimate.19,20 There are hopes, however,
that collinear singularities causing this large NLO correction cancel each other
at higher orders in αs.21

2.5 Reggeized gluons and unitarization of the pomeron

As I mentioned above, the bare pomeron violates the Froissart bound so we
need to unitarize the BFKL pomeron. There are several approaches to the
unitarization: effective reggeon field theory,22 the generalized LLA23 equivalent
to the quantum mechanics of reggeized gluons,c and the dipole model.24,25 We
postpone the discussion of the dipole model until the next section and turn
the attention to reggeon-based schemes of the unitarization.

The reggeized gluon can be defined as a “hard pomeron” for the quark-
quark scattering. We have seen that the gluon propagator 1

~k2
⊥

describing the

exchange between two quarks to the left of the cut in Fig. 4 is replaced in the
next order by the factor (41) coming from two diagrams in Fig. 8a,b. Thus,
in the first two orders in perturbation theory the propagator describing the
exchange between two quarks with gluon (color octet) quantum numbers in
the t channel has the form

1
~k2
⊥

(
1− αsNc ln

s

m2

∫
d2k′⊥
4π2

~k2
⊥

(~k′)2
⊥(~k − ~k′)2

⊥

)
. (72)

It can be demonstrated (either by direct summation of the Feynman diagrams1

or by evolution of the Wilson-line operators, see Sec. 3 below), that in the LLA
the logarithmic factor in parenthesis exponentiates, therefore the exchange
between two quarks is described by the “reggeized” gluon propagator

1
~k2
⊥

( s

m2

)αreg(~k2
⊥)

, (73)

cIn the reggeon quantum mechanics, the unitarity is preserved only in the direct s-channel,
while in a reggeon field theory the unitarity holds true in all the sub-channels corresponding
to different groups of particles in the final state.
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where

αreg(t = −~k2
⊥) = −αsNc

∫
d2k′⊥
4π2

~k2
⊥

(~k′)2
⊥(~k − ~k′)2

⊥
(74)

is the trajectory of the reggeized gluon in the plane of complex momenta in
the leading order in αs.d Recently, this trajectory was computed in the next-
to-leading order in αs by direct summation of Feynman diagrams 26 and by
calculation of the two-loop anomalous dimensions of the relevant Wilson-line
operators.27

In terms of the reggeized gluons the BFKL ladder can be resummed as
shown in Fig. 9 where the dash-dotted line denotes reggeized gluon (73) and
the reggeon-reggeon-particle interaction is described by Lipatov’s vertex (30).
(The expansion of the reggeon trajectory in powers of g2 reproduces the BFKL
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Ψ(ρ ,η  )

i

B

Figure 10: BFKL ladder as a propagator of the two-reggeon state. Reggeized gluons are
represented by dash-dot-dot lines.

result (50) after combining the terms with like powers of g2). This diagram can
be interpreted as an evolution with respect to “time” ≡ rapidity of the two-
particle state described by the wave function Ψ(ρ1, ρ2) in quantum mechanics

dThis trajectory is IR divergent as it should be for the amplitude of the scattering of the
colored objects. For the scattering of white objects (like virtual photons discussed in the
previous section) this divergence will cancel with the IR divergence for real gluon emissions.
To avoid the infinities in the intermediate results, one can use the dimensional regularization
(with d = 2 + ε transverse dimensions) or assume a small gluon mass µ.
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with the Hamiltonian12

Ĥ12 =
g2Nc
16π2

{
ln |p̂1|2 + ln |p̂2|2 (75)

+
1

p̂1|2p̂1|2
(
p̂∗1p̂2 ln |ρ̂12|2

(
p̂1p̂
∗
2 + c.c.

)
+ 4C

}
where ρj = x

(j)
⊥1 + ix

(j)
⊥2, p̂j = i ∂

∂ρj
(index j = 1, 2 numbers the particles),

and ρ̂12 is the coordinate operator (ρ12 ≡ ρ1 − ρ2). The first two “kinetic
terms” correspond to the propagators of the reggeized gluons and the third
term describes the interaction of reggeized gluons by exchange potential coming
from product of two Lipatov’s vertices given by Eq. (36). The Hamiltonian
(75) has a property of holomorphic separability 28

Ĥ12 = ĥ12 + ĥ∗12, (76)

where

ĥ12 =
g2Nc
16π2

{
ln p̂1p̂2 +

1
p̂1

(lnρ12)p̂1 +
1
p̂2

(ln ρ12)p̂2 + 2C
}
, (77)

and C=0.557 is Euler’s constant. The generalized LLA is the summation of
the diagrams shown in Fig. 11 (see the discussion in Ref. 29). The number
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Figure 11: Generalized LLA as quantum mechanics of the reggeized gluons.

of reggeized gluons in t channel is conserved, so the sum of the diagrams in
Fig. 10a can be described by quantum mechanics of the reggeized gluons with
pairwise interaction (75),

Ĥ =
∑
i<k

T ai T
a
kHik, (78)
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where Hik is obtained from Eq. (75) by the trivial replacement 1→ i, 2→ k.
The unitarity follows from the representation of the sum of these di-

agrams as a generalized eikonal 30 (see Fig. 12). In the multi-color limit

exp

Figure 12: Quantum mechanics of the reggeized gluons as a generalized eikonal.

(Nc → ∞, g2Nc-fixed), the non-planar diagrams vanish hence only the inter-
action between the adjacent reggeons survives (the unitarity still holds true).
The color structure is then unique and the Hamiltonian reduces to 28

Ĥ =
1
2

n∑
i=1

Ĥi,i+1, (79)

where 1
2 comes from the fact that the adjacent gluons are in the octet state.

Using the property of the holomorphic separability (76), it is possible to reduce
the quantum mechanics of the reggeons described by the Hamiltonian (79) to
the XXX Heisenberg model with spin s = 0.31 Unfortunately, the explicit
solution for the number of the magnets k ≥ 3 (≡ number of the reggeons)
has not yet been found. For the k = 3 (the so-called Odderon state of three
reggeized gluons) the variational estimates give the intercept at the value of J
slightly below 1 32,33 (recently, another Odderon-type solution with intercept
at j = 1 was found in Ref. 34).

In synopsis, we have found the subset of the non-LLA diagrams which
restores unitarity in the s-channel and in the large Nc limit this subset reduces
to the one-dimensional quantum mechanical model (XXX magnet with s = 0).

3 Operator expansion for high-energy scattering

The expansion of the amplitudes at high energy in Wilson-line operators is
very useful in a situation like small-x DIS from the nucleon or nucleus. As
the usual light-cone expansion provides the operator language for the DGLAP
evolution, the high-energy OPE gives us the operator form of the BFKL equa-
tion. In the case of deep inelastic scattering there are two different scales of
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transverse momentum k⊥, and therefore it is natural to factorize the ampli-
tude in the product of contributions of hard and soft parts coming from the
regions of small and large transverse momenta, respectively. Technically we
choose the factorization scale Q > µ > mN , and the integrals over ~k2

⊥ > µ2

give the coefficient functions in front of light-cone operators while the contri-
butions from ~k2

⊥ < µ2 give matrix elements of these operators normalized at
the normalization point µ. In the final result for the structure functions the
dependence on µ in the coefficient functions and in the matrix elements cancels
out yielding the Q2 behavior of structure functions of DIS.

In the case of the high-energy (Regge ) limit, all the transverse momenta
are of the same order of magnitude, but colliding particles strongly differ in
rapidity, thus it is natural to factorize in the rapidity space. Factorization in
rapidity space means that a high-energy scattering amplitude can be repre-
sented as a convolution of contributions due to “fast” and “slow” fields. To
be precise, we choose a certain rapidity η0 to be a “rapidity divide” and we
call fields with η > η0 fast and fields with η < η0 slow where η0 lies in the
region between spectator rapidity ηA and target rapidity ηB. (The interpre-
tation of these fields as fast and slow is literally true only in the rest frame of
the target but we will use this terminology for any frame). Similarly to the
case of usual OPE, the integrals over fast fields give the coefficient functions
in front of the relevant (Wilson-line) operators while the integrals over slow
fields form matrix elements of the operators. For a 2⇒2 particle scattering in
Regge limit s� m2 (where m is a common mass scale for all other momenta
in the problem t ∼ p2

A ∼ (p′A)2 ∼ p2
B ∼ (p′B)2 ∼ m2) this operator expansion

has the form 35

A(pA, pB ⇒ p′A, p
′
B) =

∑∫
d2x1...d

2xnC
i1...in(x1, ...xn)

× 〈pB|Tr{Ui1(x1)...Uin(xn)}|p′B〉. (80)

(As usual, s = (pA+pB)2 and t = (pA−p′A)2). Here xi (i = 1, 2) are the trans-
verse coordinates (orthogonal to both pA and pB) and Ui(x) = U†(x) i

g
∂
∂xi

U(x)
where the Wilson-line operator U(x) is the gauge link ordered along the infi-
nite straight line corresponding to the “rapidity divide” η0. Both coefficient
functions and matrix elements in Eq. (80) depend on the η0 but this depen-
dence is canceled in the physical amplitude just as the scale µ (separating
coefficient functions and matrix elements) disappears from the final results
for structure functions in case of usual factorization. Typically, we have the
factors ∼ (g2 lns/m2 − η0) coming from the “fast” integral and the factors
∼ g2η0 coming from the “slow” integral so they combine in a usual log factor
g2 lns/m2. In the leading log approximation these factors sum up into the
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BFKL pomeron.
Unlike usual factorization, the expansion (80) does not have the additional

meaning of perturbative versus nonperturbative separation – both the coeffi-
cient functions and the matrix elements have perturbative and non-perturbative
parts. This happens because the coupling constant in a scattering process is
determined by the scale of transverse momenta. When we perform the usual
factorization in hard (k⊥ > µ) and soft (k⊥ < µ) momenta, we calculate the
coefficient functions perturbatively (because αs(k⊥ > µ) is small) whereas the
matrix elements are non-perturbative. Conversely, when we factorize the am-
plitude in rapidity, both fast and slow parts have contributions coming from
the regions of large and small k⊥. In this sense, coefficient functions and matrix
elements enter the expansion (80) on equal footing.

3.1 High-energy OPE vs light-cone expansion

Let me remind the idea of the usual light-cone expansion for the deep inelastic
scattering (DIS) at moderate x. First, we take formal limit Q2 → ∞ and
expand near the light cone (≡in inverse powers of Q2). The amplitude of DIS
is then reduced to the matrix elements of the light-cone operators which are
known as parton densities in the nucleon. At this step, the support lines for
these operators are exactly light-like, leading to the logarithmical divergence in
transverse momenta. The reason for this divergence is the following: when we
expand T-product of electromagnetic currents near the light cone we assume
that there are no hard quarks and gluons inside the proton. However, the
matrix elements of light-cone operators contain formally unbounded integra-
tions over ~k2

⊥, consequently there are hard quarks and gluons in these matrix
elements. It is well known how to proceed in this case: define the renormal-
ized light-cone operators with the integrations over the transverse momenta
~k2
⊥ > µ2 cut off and expand the T-product of electromagnetic currents in a set

of these renormalized light-cone operators rather than in a set of the original
unrenormalized ones (see e.g. Ref. 36). After that, the matrix elements of
these operators (parton densities) contain factors ln µ2

m2 and the corresponding
coefficient functions contain ln Q2

µ2 . When we calculate the amplitude we add
these factors together, the dependence on the factorization scale µ cancels,
and we get the usual DIS logarithmical factors ln Q2

m2 . An advantage of this
method is that the dependence of structure functions on Q2 is determined by
the dependence of matrix elements of the light-cone operators on µ which is
governed by the renormalization group.

To get the operator expansion for high-energy scattering, we will proceed in
the same way. At first, we take the formal Regge limit s→∞ and demonstrate
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that the amplitude in this limit is reduced to matrix elements of the Wilson-
line operators representing the two quarks moving with the speed of light in
the gluon “cloud.” Formally, we obtain the operators U ordered along light-
like lines. Matrix elements of such operators contain divergent longitudinal
integrations reflecting the fact that light-like gauge factor corresponds to a
quark moving with speed of light (i.e., with infinite energy). The reason for
this divergency is the same as in the case of usual light-cone expansion: the
fast-quark propagator in the gluon “cloud” is replaced by the light-like Wilson
line assuming that there are no fast gluons in the cloud. However, when
we calculate the matrix element of the Wilson-line operators with light-like
support, the integration over the rapidities of the gluon ηp is unbounded so our
divergency comes from the fast part of the cloud which does not really belong
there. Indeed, if the rapidity of the gluon ηp is of the order of the rapidity
of the quark, this gluon is a fast one. As a result, it will contribute to the
coefficient function (in front of the operator constructed from the slow fields)
rather than to the matrix element of the operator. Similarly to the case of DIS,
we need some regularization of the Wilson-line operator which cuts off the fast
gluons. As demonstrated in Ref. 35, it can be done by changing the slope of
the supporting lines. If we wish the longitudinal integration stop at η = η0,
we should order our gauge factors U along a line parallel to n = σp1 + σ̃p2,
then the coefficient functions in front of Wilson-line operators (impact factors)
will contain logarithms ∼ g2 ln 1/σ. Similarly to DIS, when we calculate the
amplitude, we add the terms ∼ g2 ln 1/σ coming from the coefficient functions
to the terms ∼ g2 ln σ

m2/s
coming from matrix elements so that the dependence

on the “rapidity divide” σ cancels and we get the usual high-energy factors
g2 ln s

m2 which are responsible for BFKL pomeron. Again, the advantage of
this method is that the energy dependence of the amplitude is determined by
the renorm-group-like evolution equations for the Wilson-line operators with
respect to the slope of the line.

3.2 High-energy asymptotics as a scattering from the shock-wave field.

Consider again for simplicity the high-energy γ∗γ∗ scattering (6). To put this
amplitude in a form symmetric with respect the top and bottom photons, we
make a shift of the coordinates in the currents by (z•, 0, 0⊥) and then reverse
the sign of z•. This gives:

A(s, t) = −i2
s

∫
d2z⊥dz•dz∗

∫
d4xd4ye−ipA ·x−ipB·ye−iαrz•+iβrz∗−i(r,z)⊥

×
〈

0
∣∣∣T{jA(x•, x∗ + z∗, x⊥ + z⊥)j′A(0, z∗, z⊥)
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× jB(y• + z•, y∗, y⊥)j′B(z•, 0, 0⊥)}
∣∣∣0〉. (81)

As we discussed in Sec. 1, αr ∼ βr ∼ m2

s so it can be neglected.
It is convenient to start with the upper part of the diagram, i.e., to study

how fast quarks move in an external gluonic field. After that, functional inte-
gration over the gluon fields will reproduce us the Feynman diagrams of the
type of Fig. 3:

A(s, t) = −i s
2

∫
d2z⊥e

−i(r,z)⊥ N−1

∫
DAeiS(A)det(i∇) (82)

×
{

2
s

∫
dz∗

∫
d4x e−ipA·x 〈TjA(x•, x∗ + z∗, x⊥ + z⊥)j′A(0, z∗, z⊥)〉A

}
×
{

2
s

∫
dz•

∫
d4y e−ipB·y 〈TjB(y• + z•, y∗, y⊥)j′B(z•, 0, 0⊥)〉A

}
,

where

〈Tjµ(x)jν(y)〉A ≡
∫
DψDψ̄eiS(ψ,A)jµ(x)jν(y)∫

DψDψ̄eiS(ψ,A)
. (83)

Here S(A) and S(ψ,A) are the gluon and quark-gluon parts of the QCD action
respectively, and det(i∇) is the determinant of Dirac operator in the external
gluon field.

The Regge limit s→∞ with p2
A and p2

B fixed corresponds to the following
rescaling of the virtual photon momentum:

pA = λp
(0)
1 +

p2
A

2λp(0)
1 · p2

p2, (84)

with pB fixed. This is equivalent to

p1 = λp
(0)
1 , p2 = p

(0)
2 , (85)

where p(0)
1 and p

(0)
2 are fixed light-like vectors so that λ is a large parameter

associated with the center-of-mass energy (s = 2λp(0)
1 · p

(0)
2 ). Let us study the

asymptotics of high-energy γ∗γ∗ scattering from the fixed external field∫
dx

∫
dzδ(z•)e−ipAx−i(r,z)⊥〈T{jµ(x+ z)jν(z)}〉A. (86)

Instead of rescaling of the incoming photon’s momentum (84), it is convenient
to boost the external field instead:∫

dxdzδ(z•)e−ipAx−i(r,z)⊥〈T{jµ(x+ z)jν(z)}〉A
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=
∫
dxdzδ(z◦)e−ip

(0)
A
x−i(r,z)⊥〈T{jµ(x+ z)jν(z)}〉B , (87)

where p(0)
A = p

(0)
1 + p2

A

s0
p2 and the boosted field Bµ has the form

B◦(x◦, x∗, x⊥) = λA◦(
x◦
λ
, x∗λ, x⊥),

B∗(x◦, x∗, x⊥) =
1
λ
A∗(

x◦
λ
, x∗λ, x⊥),

B⊥(x◦, x∗, x⊥) = A⊥(
x◦
λ
, x∗λ, x⊥), (88)

where we used the notations x◦ ≡ xµp(0)
1µ , x∗ ≡ xµp2µ. The field

Aµ(x◦, x∗, x⊥) = Aµ(
2
s0
x◦p

(0)
1 +

2
s0
x∗p2 + x⊥) (89)

is the original external field in the coordinates independent of λ, therefore we
may assume that the scales of x◦, x∗ (and x⊥) in the function (89) are O(1).
First, it is easy to see that at large λ the field Bµ(x) does not depend on x◦.
Moreover, in the limit of very large λ the field Bµ has a form of the shock
wave. It is especially clear if one writes down the field strength tensor Gµν
for the boosted field. If we assume that the field strength Fµν for the external
field Aµ vanishes at the infinity we get

G◦i(x◦, x∗, x⊥) = λF◦i(
x◦
λ
, x∗λ, x⊥)→ δ(x∗)Gi(x⊥),

G∗i(x◦, x∗, x⊥) =
1
λ
F∗i(

x◦
λ
, x∗λ, x⊥)→ 0,

G◦∗(x◦, x∗, x⊥) = F◦∗(
x◦
λ
, x∗λ, x⊥)→ 0,

Gik(x◦, x∗, x⊥) = Fik(
x◦
λ
, x∗λ, x⊥)→ 0, (90)

so the only component which survives the infinite boost is F◦⊥ and it exists
only within the thin “wall” near x∗ = 0. In the rest of the space the field Bµ
is a pure gauge. Let us denote by Ω the corresponding gauge matrix and by
BΩ the rotated gauge field which vanishes everywhere except the thin wall:

BΩ
◦ = lim

λ→∞

∂i

~∂2
⊥
GΩ
i◦(0, λx∗, x⊥)→ δ(x∗)

∂i

~∂2
⊥
GΩ
i (x⊥), BΩ

∗ = B⊥ = 0. (91)

To illustrate the method, consider at first the propagator of the scalar
particle (say, the Faddeev-Popov ghost) in the shock-wave background. In
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Schwinger’s notations we write down formally the propagator in the external
gluon field Aµ(x) as

G(x, y) =
((
x
∣∣∣ 1
P 2 + iε

∣∣∣y)) =
((
x
∣∣∣ 1
(p+ gA)2 + iε

∣∣∣y)), (92)

where ((x|y)) = δ(4)(x − y),

((x|pµ|y)) = −i ∂

∂yµ
δ(4)(x− y), ((x|Aµ|y)) = Aµ(x)δ(4)(x− y). (93)

Here |x)) are the eigenstates of the coordinate operator X |x)) = x|x)) (nor-
malized according to the second line in the above equation). From Eq. (93) it
is also easy to see that the eigenstates of the free momentum operator p are
the plane waves |p)) =

∫
d4x e−ip·x|x)). The path-integral representation of a

Green function of scalar particle in the external field has the form:((
x
∣∣∣ 1
P2

∣∣∣y)) = −i
∫ ∞

0

dτ
((
x
∣∣∣eiτP2

∣∣∣y)) (94)

= −i
∫ ∞

0

dτN−1

∫ x(τ)=x

x(0)=y

Dx(t)e−i
∫ τ

0
dt ẋ

2
4 Pexp{ig

∫ τ

0

dt(BΩ
µ (x(t))ẋµ(t)},

where τ is Schwinger’s proper time. It is clear that all the interaction with
the external field BΩ

µ occurs at the point of the intersection of the path of
the particle with the shock wave (see Fig. 13). Therefore, it is convenient to

y

x
*x

x

Figure 13: Propagator in the shock-wave field.
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rewrite at first the bare propagator((
x
∣∣∣ 1
p2

∣∣∣y)) =
i

4π2(x− y)2
= −i

∫ ∞
0

dτN−1

∫ x(τ)=x

x(0)=y

Dx(t)(τ)e−i
∫
τ

0
dt ẋ

2
4 (95)

marking the point of the intersection of integration path with the plane z∗ = 0.
To this end, consider the case x∗ > 0, y∗ < 0 and insert

1 =
∫
dτ ′ẋ∗(τ ′)δ(x∗(τ ′)) (96)

in the path integral (95). (Here τ ′ has the meaning of the time at which the
intersection with the plane z∗ = 0 takes place). We get((

x
∣∣∣ 1
p2

∣∣∣y)) = −i
∫ ∞

0

dτ
((
x
∣∣∣eiτp2

∣∣∣y)) (97)

= −i
∫ ∞

0

dτ

∫ τ

0

dτ ′N−1

∫ x(τ)=x

x(0)=y

Dx(t)ẋ∗(τ ′)δ(x∗(τ ′))e
−i
∫ τ

0
dt ẋ

2
4

= −i
∫ ∞

0

dτ

∫ τ

0

dτ ′
∫
dzδ(z∗)N−1

∫ x(τ)=x

x(τ′)=z

Dx(t)e−i
∫
τ

τ′
dt ẋ

2
4 N−1

×
∫ x(τ′)=z

x(0)=y

Dx(t)ẋ∗(τ ′)e
−i
∫
τ′

0
dt ẋ

2
4 .

Making the shift of integration variable τ − τ ′ → τ , we can rewrite the path
integral (97) in the form:

−i
∫ ∞

0

dτ

∫ ∞
0

dτ ′
∫
dzδ(z∗) (98)

× N−1

∫ x(τ)=x

x(0)=z

Dx(t)e−i
∫ τ

0
dt ẋ

2
4 N−1

∫ x(τ′)=z

x(0)=y

Dx(t)ẋ∗e
−i
∫ τ′

0
dt ẋ

2
4 .

Using Eq. (95) and similar formula∫ ∞
0

dτN−1

∫ x(τ)=x

x(0)=y

Dx(t)ẋµ(τ)e−i
∫
τ

0
dt ẋ

2
4 =

i(x− y)µ
π2(x− y)4

, (99)

we arrive at the following representation of the bare propagator (in the case of
x∗ > 0, y∗ < 0):((

x
∣∣∣ 1
p2 + iε

∣∣∣y)) =
∫
dzδ(z∗)

1
4π2(x− z)2

y∗
π2(z − y)4

(100)
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where z is the point of the intersection of the path of the particle with the
shock wave.

Now let us recall that our particle moves in the shock-wave external field
and therefore each path in the functional integral (94) is weighted with the

additional gauge factor Peig
∫
Bµdxµ . Since the external field exists only within

the infinitely thin wall at x∗ = 0 we can replace the gauge factor along the
actual path xµ(t) by the gauge factor along the straight-line path shown in
Fig. 13. It intersects the plane z∗ = 0 at the same point (z◦, z⊥) at which
the original path does. Since the shock-wave field outside the wall vanishes
we may formally extend the limits of this segment to infinity and write the
corresponding gauge factor as UΩ(z⊥) = [∞p1 + z⊥,−∞p1 + z⊥]. The error
brought by replacement of the original path inside the wall by the segment of

straight line parallel to p1 is
√

m2

s . Indeed, the time of the transition of the
particle through the wall is proportional to the thickness of the wall which is
∼ m2

s
. It indicates that the particle can deviate in the perpendicular directions

inside the wall only to the distances
√

m2

s
. Thus, if the particle intersects this

wall at some point (z∗, z⊥) the gauge factor Peig
∫
BΩ
µ dxµ reduces to UΩ(z⊥).

One can now repeat for the path integral (94) the steps which lead us from
path-integral representation of bare propagator (95) to the formula (100); the
only difference will be the factor UΩ(z⊥) in the point of the intersection of the
path with the plane z∗ = 0:((

x
∣∣∣ 1
P2

∣∣∣y)) =
∫
dzδ(z∗)

1
4π2(x− z)2

UΩ(z⊥)
y∗

π2(z − y)4
(101)

(in the region x∗ > 0, y∗ < 0). It is easy to see that the propagator in the
region x∗ < 0, y∗ > 0 differs from Eq. (101) by the replacement UΩ ↔ UΩ†.
Also, the propagator outside the shock-wave wall (at x∗, y∗ < 0 or x∗, y∗ > 0)
coincides with the bare propagator. The final answer for the Green function
of the scalar particle in the BΩ background can be written down as:((

x
∣∣∣ 1
P2

∣∣∣y)) = i
1

4π2(x− y)2
θ(x∗y∗) +

∫
dzδ(z∗)

1
4π2(x− z)2

(102)

× {UΩ(z⊥)θ(x∗)θ(−y∗) − UΩ†(z⊥)θ(y∗)θ(−x∗)}
y∗

π2(z − y)4
.

We see that the propagator in the shock-wave background is a convolution of
the free propagation up to the plane z∗ = 0, instantaneous interaction with
the shock wave described by the Wilson-line operator UΩ (U†Ω), and another
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free propagation from z to the final point (see Fig. 13) One can check that the
Green function (102) is continuous as x∗ → 0 (or y∗ → 0).

In order to get the propagator in the original field Bµ we must perform
back the gauge rotation with the Ω matrix. It is convenient to represent the
result in the following form:((
x
∣∣∣ 1
P2

∣∣∣y)) =
i

4π2(x− y)2
[x, y]θ(x∗y∗) +

∫
dzδ(z∗)

1
4π2(x − z)2

(103)

×{U(z⊥; x, y)θ(x∗)θ(−y∗) − U†(z⊥; x, y)θ(y∗)θ(−x∗)}
y∗

π2(z − y)4
,

where

U(z⊥; x, y) = [x, zx][zx, zy][zy, y] ,

zx ≡ (
2
s0
z◦p

(0)
1 +

2
s0
x∗p2, z⊥), zy = zx(x∗ ↔ y∗) (104)

is a gauge factor for the contour made from segments of straight lines as shown
in Fig. 14. Since the field Bµ outside the shock-wave wall is a pure gauge, the
precise form of the contour does not matter as long as it starts at the point x,
intersects the wall at the point z in the direction collinear to p2, and ends at
the point y. We have chosen this contour in such a way that the gauge factor
(104) is the same for the field Bµ and for the original field Aµ (see Eq. (88)).

The quark propagator in a shock-wave background can be calculated in a
similar way (see Appendix 7.2),((

x
∣∣∣ 1
6 P

∣∣∣y)) = − 6x− 6y
2π2(x− y)4

[x, y]θ(x∗y∗) + i

∫
dzδ(z∗)

6x− 6z
2π2(x− z)4

× {U(z⊥; x, y)θ(x∗)θ(−y∗)− U†(z⊥; x, y)θ(y∗)θ(−x∗)}
6z − 6y

2π2(z − y)4
. (105)

For the quark-antiquark amplitude in the shock-wave field (see Fig. 14) we get

Trγµ
((
x
∣∣∣ 1
6 P

∣∣∣y))γν((y∣∣∣ 1
6 P

∣∣∣x)) (106)

=
Trγµ(6x− 6y)γν(6y − 6x)

4π4(x− y)8
θ(x∗y∗) − θ(−x∗y∗)

∫
dzdz′δ(z∗)δ(z′∗)

× Trγµ
6x− 6z

2π2(x− z)4
6p2

6z − 6y
2π2(z − y)4

γν
6y− 6z′

2π2(y − z′)4
6p2

6z′ − 6x
2π2(z′ − x)4

U(z⊥; z′⊥),

where we can write down the gauge factor U(z⊥; z′⊥) ≡ U(z⊥; x, y)U†(z′⊥; y, x)
as a product of two infinite Wilson-lines operators connected by gauge segments
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*x
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Figure 14: Quark-antiquark propagation in the shock wave.

at ±∞,

U(z⊥; z′⊥)

= lim
u→∞

{
[up1 + z⊥,−up1 + z⊥][−up1 + z⊥,−up1 + z′⊥][−up1 + z′⊥, up1 + z′⊥]

×[up1 + z′⊥, up1 + z⊥]
}

= Uz [z⊥, z′⊥]−U
†
z′ [z
′
⊥, z⊥]+. (107)

Here we use the notations

[x⊥, y⊥]+ ≡ [∞p1 + z⊥,∞p1 + z′⊥], [x⊥, y⊥]− ≡ [−∞p1 + z⊥,−∞p1 + z′⊥].
(108)

As we mentioned above, the precise form of the connecting contour at infinity
does not matter as long as it is outside the shock wave. We have chosen this
contour in such a way that the gauge factor (107) is the same for the field
Bµ and for the original field Aµ (see Eq. (88)). Now, substituting our result
for quark-antiquark propagation (106) in the right-hand side of Eq. (86), one
obtains∫

d4x

∫
d4z δ(z•)e−i(r,z)⊥e−ipA·x〈T{jA(x+ z)j′A(z)}〉A

=
∑

e2
i

∫
d2k⊥
4π2

IA(k⊥, r⊥)Tr{U(k⊥)U†(r⊥ − k⊥)}, (109)
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where the impact factor IA is given by Eq. (15). For brevity, we omit the end
gauge factors (108).

Formula (107) describes a quark and antiquark moving fast through an
external gluon field. After integrating over gluon fields in the functional inte-
gral we obtain the virtual photon scattering amplitude (82). It is convenient
to rewrite it in the factorized form:

A(pA, pB) = i
s

2

∑
e2
i

∫
d2k⊥
4π2

IA(k⊥, r⊥)〈〈Tr{Û(k⊥)Û†(r⊥ − k⊥)}〉〉. (110)

where IA(p⊥) = eAµ e
A
ν I

A
µν(p⊥). The gluon fields in U and U† have been pro-

moted to operators, a fact which we signal by replacing U by Û , etc. The
reduced matrix elements of the operator Tr{Û(k⊥)Û†(r⊥ − k⊥)} between the
“virtual photon states” are defined as follows:

〈〈Tr{Û(k⊥)Û†(r⊥ − k⊥)}〉〉 =
∫
d2x⊥e

−i(kx)⊥〈〈Tr{Û(x⊥)Û†(0)}〉〉

〈〈Tr{Û(x⊥)Û†(0)}〉〉 ≡ −
∫
d4zδ(z∗)ei(r,z)⊥

∫
d4ye−ipB ·y (111)

〈0|T{Tr{Û(x⊥)Û†(0)}jB(y + z)j′B(z)}|0〉.

This matrix element describes the propagation of the “color dipole” in the
background of the shock wave created by the second virtual photon.

It is worth noting that for a real photon our definition of the reduced
matrix element can be rewritten as

〈ε, pB|Tr{Û(x⊥)Û†(x′⊥)}|ε′, pB + βpB〉 = 2πδ(β) 〈〈Tr{Û(x⊥)Û†(x′⊥)}〉〉,
(112)

where ε and ε′ represent the polarizations of the photon states. The fac-
tor 2πδ(β) reflects the fact that the forward matrix element of the operator
Û(x⊥)Û†(x′⊥) contains an unrestricted integration along p1. Taking the inte-
gral over β one reobtains Eq. (111).

3.3 Regularized Wilson-line operators

In the Regge limit (84) we have formally obtained the operators Û ordered
along the light-like lines. Matrix elements of such operators contain divergent
longitudinal integrations which reflect the fact that light-like gauge factor cor-
responds to a quark moving with speed of light (i.e., with infinite energy). This
divergency can be already seen at the one-loop level if one calculates the con-
tribution to the matrix element of the two-Wilson-line operator Û(x⊥)Û†(y⊥)
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between the “virtual photon states”. As I mentioned above, the reason for this
divergence is that we have replaced the fast-quark propagators in the “external
field” represented by two gluons coming from the bottom part of the diagram
in Fig. 15a by the light-like Wilson lines in Fig. 15b. The integration over

(b)(a)

p
B

p
A

pp

p’
p’

Figure 15: A typical Feynman diagram for the γ∗γ∗ scattering amplitude (a) and the corre-
sponding two-Wilson-line operator (b).

rapidities of the gluon ηp in the matrix element of the light-like Wilson-line
operator Û(x⊥)Û†(y⊥) is formally unbounded , consequently we need some
regularization of the Wilson-line operator which cuts off the fast gluons. As
demonstrated in Ref. 35, it can be done by changing the slope of the supporting
line. If we wish the longitudinal integration stop at η = η0, we should order
our gauge factors U along a line parallel to pζ = p1 + ζp2 where η0 = ln ζ.e

We define

Ûζ(x⊥) = [∞pζ + x⊥,−∞pζ + x⊥],

eThe situation here is again quite similar to the usual OPE for DIS. Recall that when
separating the Feynman integrals over loop momenta p into the coefficient functions (with
p2 � µ2) and matrix elements (p2 � µ2) we expand hard propagators in powers of soft
external fields. As a result of this expansion we formally obtain the expressions of the type
ψ̄(λe1)[λe1, 0]ψ(0) with external fields lying exactly on the light cone. In operator language

it corresponds to the matrix element of the same light-cone operator ˆ̄ψ(λe1)[λe1,0]ψ̂(0)
normalized at the point µ2 in order to ensure the restriction that matrix elements of this
operator do not contain virtualities larger than µ2. Moreover, in principle we can regularize
these light-cone operators for DIS by changing the slope of the supporting line (say, take

e = e1 + µ2

Q2 e2). The only reason why we use the regularization by counterterms is that,

unlike the regularization by the slope, counterterms are governed by renormalization-group
equations.
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Û†ζ(x⊥) = [−∞pζ + x⊥,∞pζ + x⊥]. (113)

Matrix elements of these operators coincide with matrix elements of the oper-

ators Û and Û† calculated with the restriction α < σ =
√

p2
A

sζ
imposed in the

internal loops (and external tails). Let us demonstrate this using the simple
example of the matrix element of the operator Ûζ(k⊥)Û†ζ(r⊥ − k⊥) coming
from the diagram shown in Fig. 15. It has the form

− i
2
g6

∫
dαp
2π

d4p′

16π4

[(αp − 2α′k)β′ks− (~k + ~k′)2
⊥]ΦB(k′)

(ζα2
ps+ ~k2

⊥ − iε)2 (α′kβ
′
ks− ~p′

2

⊥ + iε)2

× 1

[−(αp − α′)(αpζ + β′k)s− (~k − ~k′)2
⊥ + iε]

, (114)

where the numerator comes from the product of two three-gluon vertices (18)

4
s2

Γ∗•σ(k,−k′)Γ∗•σ(k,−k′) == (αk − 2α′k)β′ks− (~k + ~k′)2
⊥. (115)

As we shall see below, the logarithmic contribution comes from the region√
m2

ζs � αk � α′k ∼ m2

s , 1 � β′p � βp = −ζαk ∼
√

m2ζ
s . In this region

one can perform the integration over β′k by taking the residue at the pole[
−(αp − α′)(αpζ + β′k)s− (~k − ~k′)2

⊥ + iε
]−1

. The result is f

g6

s

∫
dαk
2π

dα′k
2π

∫
d2k′⊥
4π2

[Θ(αk > α′k > 0 + Θ(0 > α′k > αk)] (116)

×

(
~k2
⊥ + p′

2
⊥ − α2

kζs/2
)

ΦB
(
α′kp1 − (αkζ + (~k−~k′)2

⊥
αps

)p2 + k′⊥

)
|αp − α′k| (ζα2

ps+ ~k2
⊥ − iε)2 [α

′
k

αk
(~k − ~k′)2

⊥ + ~p′
2

⊥ + iε]2
.

We see that the integral over αp is logarithmic in the region
√

m2

ζs � αp �
α′k ∼ m2

s (cf. Eq. (18)). The lower limit of this logarithmical integration is
provided by the matrix element itself (βk ∼ 1 in the lower quark bulb) while
the upper limit, at α2

k ∼ m2/ζs is enforced by the non-zero ζ and the result
has the form

〈〈TrÛζ(k⊥)Û†ζ(−k⊥)〉〉Fig. 15 =
g6

8π
ln
(

s

m2ζ

)∫
d2k′⊥
4π2

~k2
⊥ + p′

2
⊥

~k4
⊥
~p′

4

⊥

IB(k′⊥).

(117)
f In the region we are investigating, we can neglect the β′k dependence of the lower quark

loop.
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Similarly to the case of usual light-cone expansion, we expand the ampli-
tude in a set of “regularized” Wilson-line operators Ûζ (see Fig. 16):

A(pA, pB ⇒ p′A, p
′
B) =

∑∫
d2x1...d

2xnC(x1, ...xn : ζ) (118)

× 〈pB |Tr{Ûζ(x1)Û†ζ(x2)...Ûζ(xn−1)Û†ζ(xn)|p′B〉.

The coefficient functions in front of Wilson-line operators (impact factors) will

(a)

p
B

p
A

p

p’
p

p

p’

p’

(b)

Figure 16: Decomposition into product of coefficient function and matrix element of the
two-Wilson-line operator for a typical Feynman diagram. (Double Wilson line corresponds
to the fast-moving gluon.)

contain logarithms ∼ g2 ln 1/σ and the matrix elements ∼ g2 ln sσ
m2 . Similar to

DIS, when we calculate the amplitude, we add the terms ∼ g2 ln 1/σ coming
from the coefficient functions (see Fig. 16b) to the terms ∼ g2 ln σ

m2/s
coming

from matrix elements (see Fig. 16a) so that the dependence on the “rapidity
divide” σ cancels resulting in the usual high-energy factors g2 ln s

m2 which are
responsible for the BFKL pomeron, cf. (50).

In the LLA, the light-like operators Û and Û† in Eq. (110) should be re-
placed by the Wilson-line operators Ûζ and Û†ζ ordered along n ‖ pA. Indeed,
let us compare the matrix element (117) shown in Fig. 6b to the corresponding
physical amplitude (17) shown in Fig. 6a. The integral in Eq. (17) is similar
to the one for the matrix element of the operator (117), except that there is
now a factor of the upper quark bulb and the integral over p⊥. If we calculate
only the contribution of the diagram in Fig. 6a , we would get (cf. Eq. (35))

∼ i
g6

4π
ln
( s

m2

)∫ d2k⊥
4π2

d2k′⊥
4π2

~k2
⊥ + ~p′

2

⊥
~k4
⊥
~p′

4

⊥

IA(k⊥)IB(k′⊥) (119)

which agrees with the with estimate Eq. (117), if we set ζ = p2
A

s
. This cor-

responds to making the line in the path-ordered exponential collinear to the
momentum of the photon.
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3.4 One-loop evolution of Wilson-line operators.

As we demonstrated in previous section, with the LLA accuracy, the improved
version of the factorization formula Eq. (109) has the operators Û and Û†

“regularized” at ζ ∼ p2
A

s :∫
d4x

∫
d4z δ(z•)e−ipA·x−i(r,z)⊥T{jA(x+ z)j′A(z)} (120)

=
∑
i

e2
i

∫
d2k⊥
4π2

IA(k⊥, r⊥)Tr{Ûζ=m2
s (k)Û†ζ=

m2
s (r − k)}.

In the next-to-leading order in αs we will have the corrections
∼ αsTrÛ(x⊥)Û†(y⊥)TrÛ(y⊥)Û†(z⊥), see Fig. 16.

Next we derive the equation for the evolution of these operators with
respect to slope ζ (in the LLA). In order to find the behavior of the matrix
elements of the operators Ûζ(x⊥)Û†ζ(y⊥) on the slope ζ we must take the
matrix element of this operator “normalized” at ζ1 and integrate over the
momenta with σ1 =

√
m2

sζ1
> α > σ2 =

√
m2

sζ2
(similar to the case of ordinary

Wilson OPE where in order to find the dependence of the light-cone operator
on the normalization point µ we integrate over the momenta with virtualities
µ2

1 > p2 > µ2
2). The result will be the operators Û and Û† “normalized” at the

slope ζ2 times the coefficient functions determining the kernel of the evolution
equation. The calculation of the kernel is essentially identical to the calculation
of the impact factor with the only difference of having initial gluons instead of
quarks. Here we will present only the outline of the calculations; the details
can be found in Appendix C.

In the first order in αs there are two one-loop diagrams for the matrix
element of operator Û(x⊥)Û†(y⊥) in external field (see Fig. 17). This external

A B C

Figure 17: One-loop diagrams for the evolution of the two-Wilson-line operator.

field is made from slow gluons with α < ζ2. Like the case of the fast quark
propagator considered above, it is convenient to go to the rest frame of “fast”
gluons, as a consequence the “slow” gluons will form a thin pancake.
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Let us start with the diagram shown in Fig. 17a. We will calculate the one-
loop evolution of the operator Û(x⊥)⊗Û†(y⊥) ≡ {Û(x⊥)}ij{Û†(y⊥)}kl with the
non-convoluted color indices. In the LLA, the slope pζ of the operators U can
be replaced by p1. Using the expression for the axial-gauge gluon propagator
in the external field (308) g we obtain:

Û(x⊥) ⊗ Û†(y⊥)〉A (121)

= −ig2

∫
du[∞p1, up1]xta[up1,−∞p1]x

∫
dv[−∞p1, vp1]ytb[vp1,∞p1]y

×
((
up1 + x⊥

∣∣∣(p1ξ −P•
p2ξ

p · p2
)Oξη(p1η −

p2η

p · p2
P•)
∣∣∣vp1 + y⊥

))
ab
.

Hereafter we use the space-saving notation

[un, vn]x ≡ [un+ x⊥, vn+ x⊥]. (122)

We may drop the terms proportional to P• in the parenthesis since they
lead to the terms proportional to the integrals of total derivatives, namely∫

du[∞p1, up1]ta[up1,−∞p1]p1µ(DµΦ(up1, ...))ab

=
∫
du

d

du
{[∞p1, up1]ta[up1,−∞p1](Φ(up1, ...))ab} = 0 (123)

and similar for the total derivative with respect to v. Now, we can rewrite
Eq. (121) in the form

〈Û(x⊥)⊗ Û†(y⊥)〉A = − ig2

∫
du[∞p1, up1]xta[up1,−∞p1]x (124)

⊗
∫
dv[−∞p1, vp1]ytb[vp1,∞p1]y

((
up1 + x⊥

∣∣∣O••∣∣∣vp1 + y⊥
))
ab
.

As in the calculation of the quark propagator, it is convenient to go to the
rest frame of “fast” gluons. In this frame the “slow” gluons will form a thin
pancake shown in Fig. 18. At first, we consider the case x∗ > 0, y∗ < 0. It is
clear from the picture that we can rewrite Eq. (124) as follows:

〈Û(x⊥)Û†(y⊥)〉A = − ig2taU(x⊥)⊗ tbU†(y⊥) (125)

×
∫ ∞

0

du

∫ 0

−∞
dv
((
up

(0)
A + x⊥

∣∣∣O••∣∣∣vp(0)
A + y⊥

))
ab

gIt can be demonstrated that further terms in expansion in powers of gluon propagator (306)
beyond those given in Eq. (307) do not contribute in the LLA.
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a b c

x*x

Figure 18: Path integrals describing one-loop diagrams for Wilson-line operators in the
shock-wave field background.

(we shall calculate only the contribution ∼ U which comes from the region
x∗ > 0, y∗ < 0 - the term ∼ U† coming from x∗ > 0, y∗ < 0 is similar).
Technically it is convenient to find at first the derivative of the integral of
gluon propagator in the right-hand side of Eq. (125) with respect to x⊥. Using
the thin-wall approximation we obtain((

x
∣∣∣O••∣∣∣y)) =

s2

2

∫
dzδ(z∗)

ln(x− z)2

16π2x∗
(126)

× {2[FF ](z⊥) − i[DF ](z⊥)} 1
4π2(z − y)2

,

where

[DF ](x⊥)
def≡

∫
du[∞p1, up1]xDαFα•(up1 + x⊥)[up1,−∞p1]x,

[FF ](x⊥)
def≡

∫
du

∫
dvΘ(u − v)[∞p1, up1]xF ξ• (up1 + x⊥)

× [up1, vp1]xFξ•(vp1 + x⊥)[vp1,−∞p1]x. (127)

It is easy to see that the operators in braces are in fact the total derivatives of
U and U† with respect to translations in the perpendicular directions,

~∂2
⊥U(x⊥) ≡ ∂2

∂xi∂xi
U(x⊥) = −i[DF ](x⊥) + 2[FF ](x⊥),

~∂2
⊥U
†(x⊥) ≡ ∂2

∂xi∂xi
U†(x⊥) = i[DF ](x⊥) + 2[FF ](x⊥), (128)

(note that ~∂2
⊥U = −∂2U).
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For the derivative of the gluon propagator (x|piO|y) we obtain:

−ig2

∫
du

∫
dv
((
up

(0)
A + x⊥

∣∣∣piO••∣∣∣vp(0)
A + y⊥

))
ab

(129)

=
g2

16π4

∫
dz⊥

∫ ∞
0

du

u
dv

∫
dz•

× (x⊥ − z⊥)i[~∂2
⊥U(z⊥)]ab

[u(uζs− 2z•)− (~x− ~z)2
⊥ − iε][v(vζs + 2z•) − (~y − ~z)2

⊥ − iε]
.

The integration over z• can be performed by taking the residue; the result is

− i g2

16π3

∫
dz⊥

∫ ∞
0

du

u
dv

(x⊥ − z⊥)i[~∂2
⊥U(z⊥)]ab

[(~x− ~z)2
⊥v + (~y − ~z)2

⊥v − uv(u + v)ζs + iε]
. (130)

This integral diverges logarithmically when u→ 0 — in other words when the
emission of quantum gluon occurs in the vicinity of the shock wave. (Note
that if we had done integration by parts, the divergence would be at v → 0,
therefore there is no asymmetry between u and v). The size of the shock wave
z∗ ∼ m−1 σ2

σ1
(where 1/m is the characteristic transverse size) serves as the

lower cutoff for this integration and we obtain

−i g2

16π3
ln
σ1

σ2

∫
dz⊥

∫ 1

0

dα

α

(x⊥ − z⊥)i[~∂2
⊥U(z⊥)]ab

[(~x− ~z)2
⊥ᾱ+ (~y − ~z)2

⊥α]

= − g2

16π3
ln
σ1

σ2

((
x⊥

∣∣∣ pi
~p2
⊥

(~∂2
⊥U)

1
~p2
⊥

∣∣∣y⊥))
ab
, (131)

(recall that ᾱ ≡ 1 − α). Thus, the contribution of the diagram in Fig. 18a in
the LLA takes the form

〈Û(x⊥)Û†(y⊥)〉A = −
(
g2

2π
ln
σ1

σ2

){
taU(x⊥)⊗ tbU†(y⊥)

((
x⊥

∣∣∣ 1
~p2
⊥

(~∂2
⊥U)

× 1
~p2
⊥

∣∣∣y⊥))
ab

+ U(x⊥)ta ⊗ U†(y⊥)tb
((
x⊥

∣∣∣ 1
~p2
⊥

(~∂2
⊥U
†)

1
~p2
⊥

∣∣∣y⊥))
ab

}
. (132)

where we have added the term coming from x∗ < 0, y∗ > 0. A corresponding
result for the diagram shown in Fig. 18b can be obtained by comparing the
space-time picture Fig. 18b for this process with Fig. 18a,

〈Ûζ(x⊥) ⊗ Û†ζ(y⊥)〉A =
(
g2

2π
ln
σ1

σ2

)
U(x⊥)⊗ taU†(y⊥)tb

×
((
y⊥

∣∣∣ 1
~p2
⊥

(~∂2U)
1
~p2
⊥

∣∣∣y⊥))
ab
. (133)
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Likewise, the diagram in Fig. 18c yields

〈Ûζ(x⊥) ⊗ Û†ζ(y⊥)〉A =
(
g2

2π
ln
σ1

σ2

)
taU(x⊥)tb ⊗ U†(y⊥)

×
((
x⊥

∣∣∣ 1
~p2
⊥

(~∂2U)
1
~p2
⊥

∣∣∣x⊥))
ab
. (134)

The total result for the one-loop evolution of two-Wilson-line operator is
the sum of Eqs. (132), (133), and (134),

〈{Ûζ1(x⊥)}ij{Û†ζ1(y⊥)}kl 〉A =
g2

8π3
ln
σ1

σ2

∫
dz⊥ (135)

×
{
−
[
{Û†ζ2(z⊥)Ûζ2(x⊥)}kj {Ûζ2(z⊥)Û†ζ2(y⊥)}il

+ {Ûζ2(x⊥)Û†ζ2(z⊥)}il{Û†ζ2(y⊥)Ûζ2(z⊥)}kj

− δkj {Ûζ2(x⊥)Û†ζ2(y⊥)}il − δil{Û†ζ2(y⊥)Ûζ2(x⊥)}kj
] (~x− ~z, ~y − ~z)⊥

(~x− ~z)2
⊥(~y − ~z)2

⊥

+
[
{Ûζ2(z⊥)}ijTr{Ûζ2(x⊥)Û†ζ2(z⊥)} −Nc{Ûζ2(x⊥)}ij

]
{Û†ζ2(y⊥)kl }

× 1
(~x− ~z)2

⊥
+ {Ûζ2(x⊥)}ij

[
{Û†ζ2(z⊥)}kl Tr{Ûζ2(z⊥)Û†ζ2(y⊥)}

− Nc{Û†ζ2(y⊥)}kl
] 1

(~y − ~z)2
⊥

}
.

The evolution of a general n-Wilson-line operator is presented in Appendix
7.3.h

3.5 BFKL pomeron from the evolution of the Wilson-line operators

As we demonstrated in Sec. 3.2, with the LLA accuracy the improved version of
the factorization formula Eq. (109) has the operators U and U † “regularized”
at ζ ∼ p2

A

s
:∫
d4x

∫
d4z δ(z•)e−ipA·x−i(r,z)⊥T{jA(x+ z)j′A(z)} (136)

=
∑
i

e2
i

∫
d2k⊥
4π2

IA(k⊥, r⊥)Tr{Uζ=m2
s (k)U†ζ=

m2
s (r − k)}+O(g2).

h A more careful analysis performed in Appendix shows that the Wilson lines U and U† are
connected by gauge links at infinity, see Eq. (299).
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In the next-to-leading order in αs we will have the corrections
∼ αsTrU(x⊥)U†(y⊥)TrU(y⊥)U†(z⊥), see Fig. 16. The matrix element of this
operator 〈〈Uζ(x⊥)U†ζ(y⊥)〉〉 (see Eq. (111) for the definition) describes the
gluon-photon scattering at large energies ∼ s. (Hereafter we will wipe the
label (̂) from the notation of the operators). The behavior of this matrix
element with energy is determined by the dependence on the “normalization
point” ζ. From the one-loop results for the evolution of the operators U and
U† (135) it is easy to obtain the following evolution equation:35,37i

ζ
∂

∂ζ
U(x⊥, y⊥) = −αsNc

4π2

∫
dz⊥

{
U(x⊥, z⊥) + U(z⊥, y⊥)−U(x⊥, y⊥)

+ U(x, z)U(z, y)
} (~x − ~y)2

⊥
(~x⊥ − ~z⊥)2(~z⊥ − ~y⊥)2

, (137)

where

U(x⊥, y⊥) ≡ 1
Nc

(Tr{U(x⊥)[x⊥, y⊥]−U†(y⊥)[y⊥, x⊥]+} −Nc) (138)

(cf. Eq. (107)). Note that right-hand side of this equation is both infrared
(IR) and ultraviolet (UV) finite.j We see that as a result of the evolution,
the two-line operator Tr{UU†} is the same operator (times the kernel) plus
the four-line operator Tr{UU†}Tr{UU†}. The result of the evolution of the
four-line operator will be the same operator times some kernel plus the six-line
operator of the type Tr{UU†}Tr{UU†}Tr{UU†}+Tr{UU†UU†}Tr{UU†} and
so on. Therefore it is instructive to consider at first the linearization of the
Eq. (137) with the number of operators U conserved during the evolution.

The linear evolution of the two-line operator U(x⊥, y⊥) is governed by the

iThe similar non-linear equation describing the multiplication of pomerons was suggested in
Ref. 38 and proved in Ref. 39 in the double-log approximation
jThe IR finiteness is due to the fact that TrUU† corresponds to the colorless state in t-
channel, as a consequence the IR divergent parts coming from the diagrams in Figs. 18a,
18b, and 18c cancel out. If we had the exchange by color state in t-channel, the result will
be IR divergent (cf. Eq. (73)).
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BFKL equation k

ζ
∂

∂ζ
U(x⊥, y⊥) (140)

= − αs
4π2

Nc

∫
dz⊥ {U(x⊥, z⊥) + U(z⊥, y⊥)− U(x⊥, y⊥)} (~x− ~y)2

⊥
(~x− ~z)2

⊥(~z − ~y)2
⊥
.

Let us start from the simplest case of forward matrix elements (which describes,
for example, the small-x DIS from the virtual photon). Then the equation (140)
takes the form

ζ
∂

∂ζ
〈〈U(x⊥)〉〉 = − αs

4π2
Nc

∫
dz⊥[U(x− z⊥) + U(z⊥)−U(x⊥)]

~x2
⊥

(~x− ~z)2
⊥~z

2
⊥
,

(141)
where 〈〈U(x⊥)〉〉 ≡ 〈〈U(x⊥, 0)〉〉 (see Eq. (111)). The eigenfunctions of this
equation are powers (x2

⊥)−
1
2 +iν and the eigenvalues are −αsπ Ncχ(ν), where

χ(ν) = −Reψ(1
2 + iν) − C. Therefore, the evolution of the operator U takes

the form:

〈〈Uζ1(x⊥)〉〉 =
∫

dν

2π2
(~x2
⊥)

1
2 +iν

(
ζ1
ζ2

)−αsπ Ncχ(ν)

×
∫
dz⊥(~z2

⊥)−
3
2−iν〈〈Uζ2(z)〉〉 (142)

We may proceed with this evolution as long as the upper limit of our

logarithmic integrals over α,
√

p2
A

ζs , is much larger than the lower limit p2
B

s de-
termined by the lower quark bulb, see the discussion in Sec. 3.3. It is convenient
to stop evolution at a certain point ζ0 such as

ζ0 = σ2 s

m2
, σ� 1, g2 lnσ � 1, (143)

then the relative energy between the Wilson-line operator Uζ0 and lower vir-
tual photon will be s0 = m2σ2 which is big enough to apply our usual high-
energy approximations (such as pure gluon exchange and substitution gµν →
kIf F (k⊥, r⊥) satisfies the BFKL Eq. (69) then

U(x⊥, y⊥) =

∫
dk⊥dr⊥e

i(~k,~x)⊥+i(~r−~k,~y)⊥ (139)

×
(
F (k⊥, r⊥)

~k2
⊥(~r − ~k)2

⊥
− 1

2
[δ(k⊥) + δ(r⊥ − k⊥)]

∫
dk′⊥

F (k′⊥, r⊥)

(~k′)2
⊥(~r− ~k′)2

⊥

)
.
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2
s0
p2µp1ν) but small in a sense that one does not need take into account the

difference between g2 ln s
m2 and g2 ln s

m2σ2 . Finally, the evolution (140) takes
the form:

〈〈Uζ=m2
s (x⊥)〉〉 =

∫
dν

2π2
(x2
⊥)

1
2 +iν(

s

m2
)

2αs
π Ncχ(ν)

∫
dz⊥(z2

⊥)−
3
2−iν〈〈Uζ0(z⊥)〉〉.

(144)
Now let us rewrite this evolution in terms of original operators UU † in the
momentum representation. One obtains:

〈〈Tr{Uζ=m2
s (p⊥)U†ζ=

m2
s (−p⊥)}〉〉 =

∫
dν

2π2
(~p2
⊥)−

3
2−iν (145)

×
( s

m2

) 2αs
π Ncχ(ν)

∫
dp′⊥(~p′

2

⊥)
1
2 +iν〈〈Tr{Uζ0(p′⊥)U†ζ0(−p′⊥)}〉〉

where we omit the gauge links at infinity (108) for brevity. Since we neglect the
logarithmic corrections ∼ g2 lnσ the matrix element of our operator U ζ0U†ζ0
coincides with impact factor IB up to O(g2) corrections:

〈〈Tr{Uζ0(p⊥)U†ζ0(−p⊥)}〉〉 (146)

= g4N
2
c − 1
2

∑
e2
i

∫
dα

πs

ΦB(αpp1 − ζ0αpp2 + p⊥)
(ζ0α2

p + ~p2
⊥)2

= g4N
2
c − 1
2

∑
e2
i

(
1
~p4
⊥
IB(p⊥)− δ(p⊥)

∫
dp′⊥

1
~p′

4

⊥

IB(p′⊥)

)
.

Combining Eqs. (110), (145), and (146) we reproduce the leading logarithmic
result for virtual γγ scattering (59).

In the case of small-x DIS from the nucleon the matrix element of the
operator UU† describes the propagation of the “color dipole”57 in the nucleon.
The evolution of the matrix element 〈N |U|N〉 is the same as Eq. (145) with the
only difference that the lower impact factor IB should be substituted by the
nucleon impact factor IN determined by the matrix element of the operator
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UU† between the nucleon states:l

〈N, pB |Tr{Uζ0(x⊥)U†ζ0(0)}|N, pB + βp2〉 = 2πδ(β)
∫
dp⊥
4π2

ei(px)⊥
1
~p4
⊥
IN (p⊥)

(147)
where 2πδ(β) reflects the fact that matrix element of the operator UU † con-
tains unrestricted integration along pζ0 , (cf. Eq. (111)). The nucleon impact
factor IB(p⊥) defined in (147) is a phenomenological low-energy characteristic
of the nucleon. In the BFKL evolution it plays a role similar to that of a
nucleon structure function at low normalization point for DGLAP evolution.
In principle, it can be estimated using QCD sum rules or phenomenological
models of nucleon.

In conclusion, let us present the results for the linear evolution for the
non-forward case. Due to the conformal invariance of the tree-level QCD the
eigenfunctions of the equation (140) are powers 12

(
(~x− ~y)2

⊥
(~x− ~x0)2

⊥(~y − ~x0)2
⊥

) 1
2 +iν

(148)

where x0 is arbitrary. The eigenvalues are the same as for the forward case,
−αsπ Ncχ(ν). The corresponding formula for the result of the evolution of the
two-Wilson-line operator has the form:

Uζ1(x⊥, y⊥) =
∫
dνd2x0

ν2

π4

(
(~x− ~y)2

⊥
(~x− ~x0)2

⊥(~y − ~x0)2
⊥

) 1
2−iν

×
(
ζ1
ζ2

)−αsπ Ncχ(ν))

Uζ2(x0, ν) (149)

where

Uζ(x, ν) ≡
∫
dx′
∫
dy′

1
(~x′ − ~y′)4

⊥

(
(x′ − y′)2

(~x′ − ~x)2
⊥(~y′ − ~x)2

⊥

) 1
2 +iν

Uζ(x′⊥, y′⊥)

(150)

lThis is called “hard pomeron” contribution to the structure functions of DIS since the
transverse momenta in our loop integrals are large (∼ Q2), at least in the lowest orders in
perturbation theory. However, due to the diffusion in transverse momenta the characteristic

size of the ~p2
⊥ in the middle of gluon ladder is Q2e−

√
g2 ln s (see the discussion in Sec. 2.4),

so at very small x the region p⊥ ∼ ΛQCD may become important. It corresponds to the
contribution of the “soft” pomeron which is constructed from non-perturbative gluons in our
language and must be added to the hard-pomeron result.

49



It is worth noting that at large momentum transfers −t = ~r2
⊥ � m2

N the
nucleon impact factor is determined by the well-studied electric and magnetic
form factors of the nucleon

IN (k⊥, r⊥)
~k2
⊥�m

2

= δλλ′F
p+n
1 (t) +

1
2ms

ū(p′, λ′) 6p1 6r⊥u(p, λ)F p+n2 (t), (151)

which gives an opportunity to calculate the amplitude of deeply virtual Comp-
ton scattering from the nucleon at small x without any model assumptions.40

3.6 Non-linear evolution of Wilson lines

Unlike the linear evolution, the general picture is very complicated: not only
the number of operators U and U† increase after each evolution but they form
increasingly complicated structures like those displayed in Eq. (153) below. In
the leading log approximation the evolution of the 2n-line operators such as
Tr{UU†}Tr{UU†}...Tr{UU†} comes from either self-interaction diagrams or
from the pair-interactions ones (see Fig. 19) The one-loop evolution equations

A

B

Figure 19: Typical diagrams for the one-loop evolution of the n-line operator.

for these operators can be constructed using the pair-wise kernels calculated in
the Appendix C. For instance, the evolution equation for the four-line operator
appearing in the right-hand side of Eq. (137) has the form:

ζ
∂

∂ζ
Tr{Ux[x, z]−U†z [z, x]+}Tr{Uz[z, y]−U†y [y, z]+} (152)

= − g2

16π3

∫
dt⊥

{[
Tr{Ux[x, t]−U

†
t [t, x]+}Tr{Ut[t, z]−U†z [z, t]+}
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− NcTr{Ux[x, z]−U†z [z, x]+}
]
Tr{Uz[z, y]−U†y [y, z]+}

(~x− ~z)2
⊥

(~x− ~t)2
⊥(~z − ~t)2

⊥

+ Tr{Ux[x, z]−U†z [z, x]+}
(~y − ~z)2

⊥
(y − t)2

⊥(~z − ~t)2
⊥

×
[
Tr{Uz [z, t]−U

†
t [t, z]+}Tr{Ut[t, y]−U†y [y, t]+}

− NcTr{Uz[z, y]−U†y [y, z]+}
]

+
[
Tr{Ux[x, z]−U†z [z, t]+Ut[t, y]−U†y [y, z]+Uz[z, y]−U

†
t [t, x]+}

+ Tr{Ux[x, t]−U
†
t [t, z]+Uz [z, y]−U†y [y, t]+Ut[t, z]−U†z [z, x]+}

− 2Tr{Ux[x, y]−U†y}[y, x]+
]

×
[
− (~x − ~t, ~y − ~t)⊥

(~x− ~t)2
⊥(y − t)2

⊥
− 1

(~z − ~t)2
⊥

+
(~x− ~t, ~z− ~t)⊥

(~x− ~t)2
⊥(~z − ~t)2

⊥
+

(~z − ~t, ~y− ~t)⊥
(~z − ~t)2

⊥(~y − ~t)2
⊥

]}
,

where we have displayed the end gauge links (299) explicitly. Note that each
of the separate contributions (300) and (301) corresponding to the diagrams in
Fig. 39a and 39b diverges at large t while the total result (152) is convergent.
This is the usual cancellation of the IR divergent contributions between the
emission of the real (Fig. 39a) and virtual (Fig. 39b) gluons from the colorless
object (corresponding to the l.h.s. of Eq. (152)) (cf Eq. (137)).

Thus, the result of the evolution of the operator in the right-hand side of
Eq. (120) has a generic form:

Tr{Uζx [x, y]−U†ζy [y, x]+} ⇒
∞∑
n=0

(αs ln
ζ

ζ0
)n
∫
dz1dz2...dzn

×
[
An(x, z1, z2, ...zn, y)Tr{Uζ0x [x, 1]−U

†ζ0
1 [1, x]+}

× Tr{Uζ01 [1, 2]−U
†ζ0
2 [2, 1]+} . . .Tr{Uζ0n [n, y]−U†ζ0y [y, n]+}

+ Bn(x, z1, z2, ...zn, y)

× Tr{Uζ0x [x, 1]−U
†ζ0
1 [1, 2]+U

ζ0
2 [2, 3]−U

†ζ0
3 [3, 1]+U

ζ0
1 [1, 2]−U

†ζ0
2 [2, x]+}

× Tr{Uζ03 [3, 4]−U
†ζ0
4 [4, 3]+}...Tr{Uζ0n [n, y]−U†ζ0y [y, n]+}+ ...

+ Nn
c Cn(x, z1, z2, ...zn, y; )Tr{Uζ0x [x, y]−U†ζ0y [y, x]+}

]
, (153)
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where U (†)
n ≡ U (†)(zn⊥), [i, j] ≡ [xi, xj] and

An(x, z1, z2, . . . , zn, y), Bn(x, z1, z2, . . . , zn, y), . . ., Cn(x, z1, z2, . . . , zn, y) are
the meromorphic functions that can be obtained by using the Eqs.(300,301) n
times which give us a sort of Feynman rules for calculation of these coefficient
functions. If we now evolve our operators from ζ ∼ p2

A

s to ζ0 given by Eq. (143)
we shall obtain a series (153) of matrix elements of the operators (U)n(U†)n

normalized at ζ0. These matrix elements correspond to small energy ∼ m2 and
they can be calculated either perturbatively (in the case the “virtual photon”
matrix element ) or using some model calculations such as QCD sum rules in
the case of nucleon matrix element corresponding to small-x γ∗p DIS . It should
be mentioned that in the case of virtual photon scattering considered above
we can calculate the matrix elements of operators UU†...UU† perturbatively.
Because U = 1+ ig

∫
Aµdxµ+ ..., in the leading order in αs we can replace by 1

all but two U(U†)’s, so we return to the BFKL picture describing the evolution
of the two operators UU†. The non-linear equation (137) enters the game in
the situation like small-x DIS from a nucleon or nucleus when the matrix
elements of the operators UU†...UU† are non-perturbative, consequently there
is no reason to expect that extra U and U† will lead to extra smallness. In
this case, at the low “normalization point” ζ0 one must take into account the
whole series of the operators in the right-hand side of Eq. (153), indicating
the need for all the coefficients an, bn...cn. Recently, these coefficients were
calculated by Y. Kovchegov 37 for the case of DIS from the large nuclei in
the McLerran-Venugopalan model, and the results indicate that the non-linear
equation (137) leads to unitarization of the pomeron in this case.37

The zoo of different Wilson-line operators (153) may be reduceded by using
the dipole picture.24,25 Technically, it arises when in each order in αs ln( ζ

ζ0
) we

keep only the term Tr{U ζ0x U
†ζ0
1 }Tr{Uζ01 U†ζ02 }...Tr{Uζ0n U†ζ0y }-subtractions m in

right-hand side of Eq. (153); for example, in Eq. (152) we keep the two first
terms and disregard the third one. In other words, we take into account only
those diagrams in Fig. 39 which connect the Wilson lines belonging to the
same Tr{UkU†k+1}. (This corresponds to the virtual photon wave function
in the large-Nc approximation). The diagrams of the corresponding effective
theory are obtained by multiple iteration of Eq. (137) and give a picture where
each “dipole” Tr{UkU†k+1} can create two dipoles according to Eq. (137). The
motivation of this approximation is given in Refs. 24, 25, and the discussion
of unitarization of the BFKL pomeron in the dipole picture is presented in
Ref. 41.

mBy “subtractions” we mean this operator with some of the Tr{UkU†k+1
} substituted by

Nc.
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3.7 Operator expansion for diffractive high-energy scattering

The nonlinear term in the equation (137) describes the triple vertex of hard
pomerons in QCD. In order to see that, it is convenient to consider some
process which is dominated by the three-pomeron vertex — the best example
is the diffractive dissociation of the virtual photon.

The relevant operator expansion for diffractive scattering is obtained by
direct generalization of our approach to the diffractive processes.42 The total
cross section for diffractive scattering has the form:

σdiff
tot =

∫
dxeiqx

∫
d3p′

(2π)3

∑
X

〈p|jµ(x)|p′ +X〉〈p′ +X|jν(0)|p〉, (154)

p and p′ are the nucleon momenta and
∑
X means the summation over all

the intermediate states. We can formally write down this cross section as a
“diffractive matrix element” (cf. Ref. 43):

σdiff
tot = W diff

µν

def≡
∫
dxeiqx〈p|T{j−µ (x)j+

ν (0)}|p〉, (155)

where n

〈p|T{j−µ j+
ν e

i
∫
dz(L+(z)−L−(z))}|p〉 (156)

def≡
∫

d3p′

(2π)3

∑
X

〈p|T̃{jµ(x)e−i
∫
dzL(z)}|p′ +X〉

× 〈p′ +X|T{jν(0)ei
∫
dzL(z)}|p〉.

The superscript “–” marks the fields to the left of the cut and + to the right.
The definition of the T-product of the fields with ± labels is as follows: the
+ fields are time-ordered, the − fields stand in inverse time order (since they
correspond to the complex conjugate amplitude), and − fields stand always
to the left of the + ones. Therefore, the diagram technique with the double
set of fields is the following: contraction of two + fields is the usual Feynman
propagator 6p

p2+iε (for the quark field), contraction of two − fields is the com-
plex conjugated propagator 6p

p2−iε , and the contraction of the − field with the
+ one is the “cut propagator” 2πδ(p2)θ(p0) 6 p.o This diagram technique for
calculating T-products of double set of fields exactly reproduces the Cutkosky
nThe difference between Eq. (154) and the last line in Eq. (156) is that j’s are Heisenberg
operators in (154) while in Eq. (156) the operators stand in the interaction representation
oWe will use the −+ perturbative propagator only for hard momenta, hence the additional
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rules for calculation of cross sections. The light-cone expansion of the diffrac-
tive matrix element (155) gives operator definition of the diffractive parton
distributions.44

Let us discuss the high-energy operator expansion for the diffractive am-
plitude W diff

µν . Similarly to the case of usual amplitude (110), we get in the
lowest order in αs

W diff =
∑

flavors

e2
i

∫
d2k⊥
4π2

IA(k⊥, 0)

× 〈N |Tr{W ζ=m2/s(k⊥)W †,ζ=m
2/s(−k⊥)}|N〉, (158)

where W (k⊥) is a Fourier transform of

W (x⊥) = V †(x⊥)U(x⊥), W †(x⊥) = U†(x⊥)V (x⊥). (159)

Here U(x⊥) denotes the Wilson-line operator constructed from + fields and
V (x⊥) denotes the same operator constructed from − fields:

Uζ(x⊥) = [∞p1+x⊥,−∞p1+x⊥]+, V (x⊥) = [∞e+x⊥,−∞e+x⊥]−. (160)

After integration over fast quarks, the slope of the Wilson lines is ζ = xB ≡ Q2

s ,
see the discussion in Sec. 3.3.

The evolution equation (with respect to the slope of the supporting line)
turns out to have the same form as Eq. (137) for non-diffractive amplitudes:

ζ
d

dζ
W(x⊥, y⊥) = − αsNc

4π2

∫
dz⊥

(~x− ~y)2
⊥

(~x− ~z)2
⊥(~z − ~y)2

⊥
(161)

×
{
W(x⊥, z⊥) +W(x⊥, z⊥) −W(x⊥, y⊥) +W(x⊥, z⊥)W(z⊥, y⊥)

}
,

where
W(x⊥, y⊥)

def≡ 1
Nc

Tr{W (x⊥)W †(y⊥)} − 1, (162)

emitted nucleon with momentum p’ (constructed from soft quarks) can be factorized∑
X

〈0|ψ(x)|p′ +X〉〈p′ + X|ψ̄(0)|0〉 (157)

'
∑
X

〈0|ψ(x)|X〉〈X|ψ̄(0)|0〉 ⊗ |p′〉〈p′| =
∫

d4p

(2π)4i
6p2πδ(p2)θ(p0)⊗ |p′〉〈p′|.
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(cf. Eq. (138). Similarly, the linear evolution is:

〈N |Wζ1(x⊥, 0)|N〉 =
∫

dν

2π2
(~x2
⊥)

1
2 +iν

(
ζ1
ζ2

)− 3
2ω(ν)

(163)

×
∫
dz⊥(~z2

⊥)−
1
2−iν〈N |Wζ2(z⊥, 0)|N〉,

where ω(ν) = 2αsπ Ncχ(ν), see Eq. (56). Let us now describe the diffractive
amplitude in LLA and in leading order in Nc. In this approximation we must
take into account the non-linearity in the Eq. (161) only once, the rest of the
evolution is linear. The result is (roughly speaking) the three two-gluon BFKL
ladders which couple in a certain point, see Fig. 20. For the case of diffractive

q q

p

p’

+

+

+

+

+

+

+

+

+

+

+

+

gap

p’

p

Figure 20: Amplitude of diffractive scattering in the LLA-Nc approximation.

DIS, this evolution has the form (cf. Ref. 45):

〈N |
∫
dy⊥Wζ=xB (x⊥ + y⊥, y⊥)|N〉 (164)

=
αsNc
8π3

∫
dνdν1dx1dν2dx2(~x2

⊥)
1
2 +iν

(
(~x1 − ~x2)2

⊥
)− 1

2 +i(ν1+ν2−ν)
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× ν2
1ν

2
2

π8
Θ(ν; ν1, ν2)

∫
d2p′⊥
4π2

∫ s

Q2

dM2

M2

( s

M2

)ω(ν)
(
M2

Q2

)ω(ν1)+ω(ν2)

× 〈p|Uζ0(x1, ν1)|p′〉〈p′|Uζ0(x2, ν2)|p〉,

where M2 is the invariant mass of the produced particles, and

Θ(ν; ν1, ν2) =
Γ(1

2 − i(ν + ν1 − ν2))Γ(1
2 − i(ν − ν1 + ν2))

Γ(1
2 + i(ν + ν1 − ν2))Γ(1

2 + i(ν − ν1 + ν2))

×
Γ2(1

2 + iν)
Γ2(1

2 + iν)
Ω(

1
2

+ iν,
1
2
− iν1,

1
2
− iν2) (165)

is a certain numerical function of three conformal weights (the explicit form
was found in Ref. 46 ) which has a maximum Θ(0, 0, 0) = 2π7

4F3(1
2)6F5(1

2) '
7766.679 . The value of M2 determines the rapidity gap: from η = ln s

Q2 to

η = ln M4

Q2s we have a production of particles described by the cut part of the

ladder in Fig. 20 which brings in the factor
(
s/M2

)ω(ν) while from η = ln M4

Q2s
to η = lnxB we have a rapidity gap so there are two independent BFKL
ladders which bring in the factors

(
M2/Q2

)ω(ν1) and
(
M2/Q2

)ω(ν2). Since the
intercept of the BFKL pomeron ω0 > 0, this cross section increases with the
growth of the rapidity gap.

The coupling of BFKL ladder with non-zero momentum transfer to a nu-
cleon is described by the matrix element 〈p′|U(x, ν)|p〉. As we discussed in the
previous section, at large momentum transfer it can be approximated by the
electromagnetic form factor of the nucleon,

U(x, ν) =
∫
dx′dy′

(
(~x′ − ~y′)2

⊥
(~x′ − ~x)2

⊥(~y′ − ~x)2
⊥

) 1
2 +iν 1

(~x′ − ~y′)4
⊥

(166)

×
∫
dk⊥
4π2

dr⊥
4π2

ei(
~k,~x)⊥+i(~r−~k,~y)⊥

(
δλλ′F

p+n
1 (−~r2

⊥)

+
1

2ms
ū(p′, λ′) 6p1 6r⊥u(p, λ)F p+n2 (−~r2

⊥)
)
.

If one interpolates the form factors by the dipole formulas, the diffractive
amplitude in the LLA-Nc approximation (164) can be calculated numerically.

The non-linar equation (161) can be applied to the diffractive DIS from
the nuclei. In this case there is an additional large parameter, the atomic
number A, and therefore one should take into account the multitude of the
non-linear vertices rather than one vertex as in Fig. 20. These “fan” diagrams
were summed up in Ref. 47 resulting in a cross section which has a maximum
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at a certain rapidity gap (unlike the LLA-Nc model for the nucleon where the
cross section increases with the rapidity).

4 Factorization and effective action for high-energy scattering

4.1 Factorization formula for high-energy scattering

Unlike usual factorization, the coefficient functions and matrix elements enter
the expansion (80) on equal footing. We could have integrated first over slow
fields (having the rapidities close to that of pB) and the expansion would have
the form:

A(s, t) =
∑∫

d2x1...d
2xnD

i1...in(x1, ...xn)〈pA|Tr{Ui1(x1)...Uin(xn)}|p′A〉.
(167)

In this case, the coefficient functions D are the results of integration over
slow fields ant the matrix elements of the U operators contain only the large
rapidities η > η0. The symmetry between Eqs. (1) and (2) calls for a factor-
ization formula which would have this symmetry between slow and fast fields
in explicit form.

I will demonstrate that one can combine the operator expansions (80) and
(167) in the following way:48

A(s, t) =
∑ in

n!

∫
d2x1...d

2xn (168)

× 〈pA|Ua1i1(x1)...Uanin(xn)|p′A〉〈pB |Ua1
i1

(x1)...Uanin (xn)|p′B〉,

where Uai ≡ Tr(λaUi) (λa are the Gell-Mann matrices). It is possible to rewrite
this factorization formula in a more visual form if we agree that operators U act
only on states B and B′ and introduce the notation Vi for the same operator
as Ui only acting on the A and A′ states:

A(s, t) = 〈pA|〈pB| exp
(
i
∫
d2xV ai(x)Uai (x)

)
|p′A〉|p′B〉. (169)

The supporting lines of both U and V operators are collinear to the vector
n corresponding to the “rapidity divide” η0. The explicit form of this vector
is n = σp1 + σ̃p2, where σ̃ = m2

sσ and lnσ/σ̃ = η. In a sense, formula (169)
amounts to writing the coefficient functions in Eq. (80) (or Eq. (167)) as matrix
elements of Wilson-line operators. Eq. (169) illustrated in Fig. 21 is our main
tool for factorizing in rapidity space.

In order to understand how this expansion can be generated by the factor-
ization formula of Eq. (169) type we have to rederive the operator expansion in
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n

p
A

p
B

"A" fields

"B" fields

Figure 21: Structure of the factorization formula. The vector n gives the direction of the
“rapidity divide” between fast and slow fields.

axial gauge A• = 0 with an additional condition A∗|x∗=−∞ = 0 (the existence
of such a gauge was illustrated in Ref. 49 by an explicit construction). It is
important to note that with with power accuracy (up to corrections ∼ σ) our
gauge condition may be replaced by nµAµ = 0. In this gauge the coefficient
functions are given by Feynman diagrams in the external field

Bi(x) = Ui(x⊥)Θ(x∗), B• = B∗ = 0, (170)

which is a gauge rotation of our shock wave (it is easy to see that the only
nonzero component of the field strength tensor F•i(x) = Ui(x⊥)δ(x∗) corre-
sponds to shock wave). The Green functions in external field (170) can be
obtained from a generating functional with a source responsible for this exter-
nal field. Normally, the source for given external field Āµ is just Jν = D̄µF̄µν,
so in our case the only non-vanishing contribution is J∗(B) = D̄iF̄i∗. However,
we have a problem because the field which we try to create by this source does
not decrease at infinity. To illustrate the problem, suppose that we use another
light-like gauge A∗ = 0 for a calculation of the propagators in the external field
(170). In this case, the only would-be nonzero contribution to the source term
in the functional integral D̄iF̄i•A∗ vanishes, and it looks like we do not need
a source at all to generate the field Bµ! (This is of course wrong since Bµ is
not a classical solution). What it really means is that the source in this case
lies entirely at the infinity. Indeed, when we are trying to make an external
field Ā in the functional integral by the source Jµ we need to make a shift
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Aµ → Aµ + Āµ in the functional integral∫
DA exp

{
iS(A) − i

∫
d4xJaµ(x)Aaµ(x)

}
, (171)

after which the linear term D̄µF̄µνAν cancels out with our source term JµAµ
and the quadratic terms lead to the Green functions in the external field Ā.
(Note that the classical action S(Ā) for our external field Ā = B (170) van-
ishes). However, in order to reduce the linear term

∫
d4xF̄ µνD̄µAν in the

functional integral to the form
∫
d4xD̄µF̄µνAν(x) we need to perform an in-

tegration by parts, and if the external field does not decrease there will be
additional surface terms at infinity. In our case we are trying to make the
external field Ā = B, consequently the linear term which need to be canceled
by the source is

2
s

∫
dx•dx∗d

2x⊥F̄i•D̄∗Ai =
∫
dx∗d

2x⊥F̄i•Ai
∣∣x•=∞
x•=−∞

. (172)

This contribution comes entirely from the boundaries of integration. If we
recall that in our case F̄•i(x) = Ui(x⊥)δ(x∗) we can finally rewrite the linear
term as ∫

d2x⊥Ui(x⊥){Ai(−∞p2 + x⊥)−Ai(∞p2 + x⊥)}. (173)

The source term which we must add to the exponent in the functional integral
to cancel the linear term after the shift is given by Eq. (173) with the minus
sign. Thus, Feynman diagrams in the external field (170) in the light-like gauge
A∗ = 0 are generated by the functional integral∫
DA exp

{
iS(A) + i

∫
d2x⊥U

ai(x⊥)[Aai (∞p2 + x⊥)−Aai(−∞p2 + x⊥)]
}
.

(174)
In an arbitrary gauge the source term in the exponent in Eq. (174) can be
rewritten in the form

2i
∫
d2x⊥Tr{U i(x⊥)

∫ ∞
−∞

dv[−∞p2, vp2]x⊥F∗i(vp2 + x⊥)[vp2,−∞p2]x⊥}.

(175)
Therefore, we have found the generating functional for our Feynman diagrams
in the external field (170).

It is instructive to see how the source (175) creates the field (170) in
perturbation theory. To this end, we must calculate the field

Āµ(x) =
∫
DAAµ(x) exp

{
iS(A) + 2i

∫
d2x⊥Tr{U i(x⊥)

×
∫ ∞
−∞

dv[−∞p2, vp2]x⊥F∗i(vp2 + x⊥)[vp2,−∞p2]x⊥}
}

(176)
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by expansion of both S(A) and gauge links in the source term (175) in powers
of g (see Fig. 22). In the first order one gets

(c)

(a) (b)

Figure 22: Perturbative diagrams for the classical field (170).

Ā(0)
µ (x) = i

∫ ∞
−∞

dv

∫
dz⊥U

ia(z⊥)〈Aµ(x)F a∗i(vp2 + z⊥)〉, (177)

where 〈O〉 ≡
∫
DAeiS0O. Now we must choose a proper gauge for our cal-

culation. We are trying to create a field (170) perturbatively and therefore
the gauge for our perturbative calculation must be compatible with the form
(170), otherwise, we will end up with the gauge rotation of the field B(x). (For
example, in Feynman gauge we will get the field Āµ of the form of the shock
wave Āi = Ā∗ = 0, Ā• ∼ δ(x∗)). It is convenient to choose the temporal
gauge A0 = 0 p with the boundary condition A|t=−∞ = 0 where

Aµ(t, ~x) =
∫ t

−∞
dt′F0µ(t′, ~x). (178)

pThe gauge A∗ = 0 which we used above is too singular for the perturbative calculation.
In this gauge one must first regulate the external field (170) by the replacement Uiθ(x∗)→
Uiθ(x∗)e−εx• and let ε→ 0 only in the final results.
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In this gauge we obtain

Ā(0)
µ (x) =

∫
dp

(2π)3

(
gµν − 2

pµ(p1 + p2)ν + (µ↔ ν)
s(α + β + iε)

+
4pµpν

s(α + β + iε)2

)
× 1
αβs− ~p2

⊥ + iε

∫
dz⊥e

−iαx•−iβx∗+i~p⊥(~x−~z)⊥p2νδ(α
s

2
)∂jU ja(z⊥) (179)

where δ(α s2) comes from the
∫
dveivα

s
2 . (Note that the form of the singularity

1
(p0+iε) which follows from Eq. (178) differs from the conventional prescription
V.p. 1

p0
). Recalling that in terms of Sudakov variables dp = s

2
dαdβdp⊥ one

easily gets Ā(0)
∗ = Ā(0)

• = 0 and

Ā(0)
i (x) = θ(x∗)

∫
dp

(2π)2

1
~p2
⊥

∫
dz⊥e

i~p⊥(~x−~z)⊥∂i∂jU
ja(z⊥), (180)

or more formally,

Ā(0)
i (x) = −θ(x∗)

1
~∂2
⊥
∂i∂jU

j(x⊥)

= Ui(x⊥)θ(x∗) − θ(x∗)
1
~∂2
⊥

(~∂2
⊥gij + ∂i∂j)U j(x⊥), (181)

(in our notations ~∂2
⊥ ≡ −∂i∂i). Now, since Ui(x) is a pure gauge field (with

respect to transverse coordinates) we have ∂iUj − ∂jUi = i[Ui, Uj], so

Ā(0)
i (x) = Ui(x⊥)θ(x∗)− θ(x∗)ig

∂j

~∂2
⊥

[Ui, Uj])(x⊥). (182)

Consequently, we have reproduced the field (170) up to the correction of of g.
We will demonstrate now that this O(g) correction is canceled by the next-to-
leading term in the expansion of the exponent of the source term in Eq. (176).
In the next-to-leading order one gets (see Fig. 22b)

Ā(1)
µ (x) = g

∫
dy

∫
dz⊥dz

′
⊥U

ja(z⊥)Ukb(z′⊥) (183)

×
〈
Aµ(x)2Tr{∂αAβ(y)[Aα(y),Aβ(y)]}

×
∫
dvF a∗j(vp2 + z⊥)

∫
dv′F b∗k(vp2 + z′⊥)

〉
.
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It is easy to see that Ā(1)
∗ = Ā(1)

• = 0 and

Ā(1)
i (x) = −g

∫
dy

∫
dp

(2π)4i
e−ip(x−y) 1

p2
(184)

×
(
∂k[A(0)

i (y),A(0)
k (y)] + [A(0)k(y), ∂iA(0)

k (y) − (i↔ k)]
)
.

Since A(0)
k is given by Eq. (182), this reduces to

Ā(1)
i (x) = −gθ(x∗)

∫
dy⊥

dp⊥
(2π)2

e−ip⊥(x−y)⊥

~p2
⊥

i∂k([Ui(y), Uk(y)]) + O(g2). (185)

The right-hand side of this expressions cancels the second term in Eq. (182)
and we obtain

Āi(x) = Ui(x⊥)θ(x∗) +O(g2). (186)

Likewise, one can check that the contributions ∼ g2 coming the diagrams in
Fig. 22c cancel the g2 term in the Eq. (186). Taking into account arbitrary
number of the tree-gluon vertex iterations, one gets the expression Ui(x⊥)θ(x∗)
without any corrections.

We have found the generating functional for the diagrams in the external
field (170) which give the coefficient functions in front of our Wilson-line oper-
ators Ui. Note that formally we obtained the source term with the gauge link
ordered along the light-like line, a potentially dangerous situation. Indeed, it
it is easy to see that already the first loop diagram shown in Fig. 23 is diver-
gent. The reason is that the longitudinal integrals over αp are unrestricted
from below (if the Wilson line is light-like). However, this is not what we want
for the coefficient functions because they should include only the integration
over the region αp > σ (the region αp < σ belongs to matrix elements, see
the discussion in Sec. 3). Therefore, we must impose somehow this condition
αp > σ in our Feynman diagrams created by the source (175). Fortunately
we already faced similar problem — how to impose a condition αp < σ on the
matrix elements of operators U (see Fig. 15) — and we solved that problem
by changing the slope of the supporting line. We demonstrated that in order
to cut the integration over large α > σ from matrix elements of Wilson-line
operators Ui we need to change the slope of these Wilson-line operators to
n = σp1 + σ̃p2. Similarly, if we want to cut the integration over small αp < σ
from the coefficient functions we need to order the gauge factors in Eq. (175)
along (the same) vector n = σp1 + σ̃p2.q

qNote that the diagram in Fig. 23 is the diagram in Fig. 15b turned upside down. In the
Fig. 15b diagram we have a restriction α < σ. It is easy to see that this implies a restriction
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p’

p
A

p

Figure 23: A typical loop diagram in the external field created by the Wilson-line source
(175).

Therefore, the final form of the generating functional for the Feynman
diagrams (with α > σ cutoff) in the external field (170) is∫

DADΨexp
{
iS(A,Ψ) + i

∫
d2x⊥U

ai(x⊥)V ai (x⊥)
}
, (187)

where

Vi(x⊥) =
∫ ∞
−∞

dv[−∞n, vn]xnµFµi(vn+ x⊥)[vn,−∞n]x, (188)

and V ai ≡ Tr(λaVi) as usual. For completeness, we have added integration
over quark fields so S(A,Ψ) is the full QCD action.

Now we can assemble the different parts of the factorization formula (169).
We have written down the generating functional integral for the diagrams
with α > σ in the external fields with α < σ; what remains now is to write
down the integral over these “external” fields. Since this integral is completely
independent of (187) we will use a different notation B and χ for the α < σ
fields. We have∫

DADΨ̄DΨeiS(A,Ψ)j(pA)j(p′A)j(pB)j(p′B) (189)

β > σ̃ if one chooses to write down the rapidity integrals in terms of β’s rather than α’s.
Turning the diagram upside down amounts to interchange of pA and pB, leading to (i)
replacement of the slope of the Wilson line by σ̃p1 + σp2 and (ii) replacement α↔ β in the
integrals. Thus, the restriction β > σ̃ imposed by the line collinear to σp1 + σ̃p2 in diagram
in Fig. 15b means the restriction α > σ̃ by the line ‖ σ̃p1 + σp2 in the Fig. 23 diagram.
After renaming σ by σ̄ we obtain the desired result.
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=
∫
DADψ̄DψeiS(A,ψ)j(pA)j(p′A)

∫
DBDχ̄Dχ

× j(pB)j(p′B)eiS(B,χ) exp
{
i

∫
d2x⊥U

ai(x⊥)V ai (x⊥)
}
.

The operator Ui in an arbitrary gauge is given by the same formula (188) as op-
erator Vi with the only difference that the gauge links and F•i are constructed
from the fields Bµ. This is our factorization formula (169) in the functional
integral representation.

The functional integrals over A fields give logarithms of the type g2 ln 1/σ
while the integrals over slow B fields give powers of g2 ln(σs/m2). With loga-
rithmic accuracy, they add up to g2 lns/m2. However, there will be additional
terms ∼ g2 due to mismatch coming from the region of integration near the
dividing point α ∼ σ, where the details of the cutoff in the matrix elements of
the operators U and V become important. Therefore, one should expect the
corrections of order of g2 to the effective action

∫
dx⊥U

iVi of the type

exp
{
i

∫
d2x⊥Ui(x⊥)Vi(x⊥) + i

∫
dx⊥dy⊥dz⊥ (190)

× Ui(x⊥)Ui(y⊥)Vi(z⊥)Vi(t⊥)K(x⊥ − t⊥, y⊥ − t⊥, z⊥ − t⊥)
}

where K is a calculable kernel. In general, the fact that the fast quark moves
along the straight line has nothing to do with perturbation theory (cf. Ref. 50),
therefore it is natural to expect the non-perturbative generalization of the
factorization formula constructed from the same Wilson-line operators Ui and
Vi.

4.2 Effective action for given interval of rapidities

The factorization formula gives us a starting point for a new approach to the
analysis of the high-energy effective action. Consider another rapidity η′0 in
the region between η0 and ηB = lnm2/s. If we use the factorization formula
(189) once more, this time dividing between the rapidities greater and smaller
than η′0, we get the expression for the amplitude (6) in the form (see Fig. 24):r

iA(s, t) =
∫
DAeiS(A)j(pA)j(p′A)j(pB)j(p′B) (191)

=
∫
DAeiS(A)j(pA)j(p′A)

∫
DBeiS(B)j(pB)j(p′B)

rStrictly speaking, the l.h.s. of Eq. (191) contains an extra 16π4δ(pA + p′A − pB − p′B) in

comparison to the amplitude (6).
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×
∫
DCeiS(C)e

i
∫
d2x⊥V

ai(x⊥)Y ai (x⊥)+i
∫
d2x⊥W

ai(x⊥)Uai (x⊥)
.

(For brevity, we do not display the quark fields.) In this formula the operators

1

2

A
p

p
B

S eff Seff

n

n

Figure 24: The effective action for the interval of rapidities η0 > η > η′0. The two vectors n
and n′ correspond to “rapidity divides” η0 and η′0 bordering our chosen region of rapidities.

Vi (made from A fields) are given by Eq. (188), the operators Yi are also given
by Eq. (188) but constructed from the C fields instead, and the operators Wi

(made from C fields) and Ui (made from B fields) are aligned along the direction
n′ = σ′p1 + σ̃′p2 corresponding to the rapidity η′ (as usual, lnσ′/σ̃′ = η′ where
σ̃′ = m2/sσ′),

Vi(A)x⊥ =
∫ ∞
−∞

dv[−∞n, vn]xnµFµi(vn + x⊥)[vn,−∞n]x,

Yi(C)x⊥ =
∫ ∞
−∞

dv[−∞n, vn]xnµFµi(vn + x⊥)[vn,−∞n]x,

Wi(C)x =
∫ ∞
−∞

dv[−∞n′, vn′]xn
′µFµi(vn′ + x⊥)[vn′,−∞n′]x,

Ui(B)x⊥ =
∫ ∞
−∞

dv[−∞n′, vn′]xn
′µFµi(vn′ + x⊥)[vn′,−∞n′]x.

In conclusion, we have factorized the functional integral over “old” B fields
into the product of two integrals over C and “new” B fields.
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Now, let us integrate over the C fields and write down the result in terms
of an effective action. Formally, one obtains:

iA(s, t) =
∫
DAeiS(A)j(pA)j(p′A)

∫
DBeiS(B)j(pB)j(p′B)eiSeff (V,U ; σ

σ′ ), (192)

where the effective action for the rapidity interval between η and η′ is defined
as

eiSeff(V,U ; σ
σ′ ) =

∫
DCeiS(C)ei

∫
d2x⊥V

ai(x⊥)Y ai (x⊥)+i
∫
d2x⊥W

ai(x⊥)Uai (x⊥), (193)

(Ui ≡ U† i
g
∂iU and Vi ≡ V † i

g
∂iV as usually). This formula gives a rigorous

definition for the effective action for a given interval in rapidity.
Next step would be to perform explicitly the integrations over the longi-

tudinal momenta in the right-hand side of Eq. (193) and obtain the answer
for the integration over our rapidity region (from η0 to η′0) in terms of two-
dimensional theory in the transverse coordinate space,s hopefully resulting in
the unitarization of the BFKL pomeron. At present, the known how to do this.
One can obtain, however, a first few terms in the expansion of effective action
in powers of Vi and Ui. The easiest way to do this is to expand gauge factors
Yi and Wi in right-hand side of Eq. (193) in powers of C fields and calculate
the relevant perturbative diagrams (see Fig. 25). The first few terms in the

(a) (c)(b) (d)

W

U

V

Y

Figure 25: Lowest order terms in the perturbative expansion of the effective action.

effective action at the one-log level t have the form:3,22

sHistorically, the idea how to reduce QCD at high energies to the two-dimensional effective
theory was first suggested in Ref. 51 where the leading term in Eq. (194) was obtained.
However, careful analysis of the assumptions made in this paper shows that the authors
considered the fixed-angle limit of the theory (s, t→∞) rather than the Regge limit (where
→∞ but t is fixed). It turns out that the first term in Eq. (194) is the same for both limits,
but the subsequent terms differ.
tThis “one-log” level corresponds to one-loop level for usual Feynman diagrams. Superfi-
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(b)(a) (d)(c)

p’
p

B

p
A

pp

p’
p’

p
B

p
A

pp

p’

Figure 26: Counting of loops for Feynman diagrams (a),(c) and the corresponding Wilson-
line operators (b),(d).

Seff =
∫
d2xV ai(x)Uai (x) (194)

− g2

64π3
ln
σ

σ′

(
Nc

∫
d2xd2yV a

i,i(x) ln2(x− y)2Uaj,j(y)

+
fabcfmnc

4π2

∫
d2xd2yd2x′d2y′d2zV ai,i(x)V mj,j(y)U

b
k,k(x′)Unl,l(y

′)

ln
(x− z)2

(x− x′)2
ln

(y − z)2

(y − y′)2

(
∂

∂zi

)2

ln
(x′ − z)2

(x− x′)2
ln

(y′ − z)2

(y − y′)2

)
+ . . . ,

where we we use the notation V ai,j(x) ≡ ∂
∂xj

V ai (x) etc. The first term (see
Fig. 25a) looks like the corresponding term in the factorization formula (189),
only the directions of the supporting lines are now strongly different.u The
second term shown in Fig. 25c is the first-order expression for the reggeization

cially, the diagram in Fig. 25d looks like tree diagram in comparison to diagram in Fig. 25c
which has one loop. However, both of the diagrams in Fig. 25c and d contain integration over
longitudinal momenta (and thus the factor ln σ

σ′ ) so in the longituduinal space the diagram
in Fig. 25d is also a loop diagram. This happens because for diagrams with Wilson-line
operators the counting of number of loops literally corresponds to the counting of the num-
ber of loop integrals only for the transverse momenta. For the longitudinal variables, the
diagrams which look like trees may contain logarithmical loop integrations. This property
is illustrated in Fig. 26: the Wilson-line diagram shown in Fig. 26b has two loops and the
diagram shown in Fig. 26d is a tree but both of them originated from Feynman diagrams
shown in Fig. 26a and c with equal number of loops. To avoid confusion, we will use the
term “one-log level” instead of “one-loop level.”
uStrictly speaking, the contribution coming from the diagram shown in Fig. 25a has the form∫
d2xV ai(x)

∂i∂j
∂2 Uaj(x) which differs from the first term in the right-hand side of Eq. (194)

by
∫
d2xV ai(x) 1

∂2 (∂2gij −∂i∂j)Uaj(x). Yet, it may be demonstrated that this discrepancy
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of the gluon (74) and the third term (see Fig. 25d) is the gluon emission term
in the BFKL kernel (36) in the impact parameter representation.

Let us discuss subsequent terms in the perturbative expansion (194). There
can be two types of the logarithmical contributions. First is the “true” loop
contribution coming from the diagrams of the Fig. 27a type. This diagram is
an iteration of the Lipatov’s Hamiltonian. In addition, in the same (ln σ

σ′ )
2 or-

der there is another contribution coming from the diagram shown in Fig. 27b.
In perturbation theory, these two contributions are of the same order of mag-

(a) (b)

Figure 27: Typical perturbative diagrams in the next
(
ln σ
σ′
)2

order.

nitude.
The situation is different for the case of scattering of two heavy nuclei.

Assuming that the effective coupling constant is still small due to the high
density,4 we see that g � 1, yet the sources are strong (∼ 1

g ) so gUi ∼ gYi ∼ 1.

In this case, the diagram in Fig. 27a has the order g4U2
i V

2
i

(
ln σ

σ′

)2 ∼ (ln σ
σ′

)2
while the “tree” Fig. 25b diagram is

∼ g4U3
i V

3
i

(
ln
σ

σ′

)2

∼ 1
g2

(
ln
σ

σ′

)2

. (195)

In this approximation, first we shall sum up the tree diagrams. As usual, the
best way do this is to use the semiclassical method which will be discussed in
Sec. 5. In the next paragraph we will consider the intermediate situation with
one weak source and one strong source.

(which is actually ∼ O(g) for a a pure gauge field Ui) is canceled by the contribution from
the diagram with the three-gluon vertex shown in Fig. 25b just as in the case of perturbative
calculation of Ai discussed in Sec. 3.
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4.3 Effective action for one weak and one strong source

Consider again the DIS from a nucleon or nucleus where the high-energy be-
havior is governed by the non-linear evolution equation (137). In this section
we will translate the evolution results (153) into the effective action language
(see also Refs. 52, 53). In the case DIS one of the sources (corresponding to
quark-antiquark pair) is weak while the other (describing the nucleon or nuclei)
is strong.

For example, if the source Vi is weak (and hence gVi is a valid small
parameter) but the source Ui is not weak (so that gVi ∼ 1 is not a small
parameter), one must take into account the diagrams shown in Fig. 28a and
b. The multiple rescatterings in Fig. 28a,b describe the motion of the gluon

(a) (b)

Figure 28: Perturbative diagrams for the effective action in the case of one weak source and
one strong one.

emitted by the weak source Vi in the strong external field Ai = Uiθ(x∗) created
by the source Ui. The result of the calculation of the diagram in Fig. 28a
presented in a form of the evolution of the Wilson-line operators Ui can be
easily obtained using the evolution equations (301)

Uai (x⊥) → Uai (x⊥) (196)

− g2

8π3
ln
σ

σ′

∫
dy⊥

1
(~x − ~y)2

⊥

(
fabc

(
U†x∂iUy

)bc +NcU
a
i (x⊥)

)
+ . . . ,

where dots stand for the terms with higher powers of g2 ln σ
σ′ . This evolution

equation means that if we integrate over the rapidities η0 > η > η′0 in the ma-
trix elements of the operator Yi we will get the expression (196) constructed
from the operators Ui with rapidities up to η′0 times factors proportional to
g2(η0 − η′0) ≡ g2 ln σ

σ′ . Therefore, the corresponding contribution to the effec-
tive action at the one-log level takes the form∫

dx⊥V
a
i (x⊥)Uai(x⊥) →

∫
dx⊥V

a
i (x⊥)Uai(x⊥) (197)
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+
g2

8π3
ln
σ

σ′

∫
dx⊥dy⊥

1
(~x− ~y)2

⊥

(
i
(
V i(x⊥)U†x∂iUy

)aa −NcV ai(x⊥)Uai (x⊥)
)

where the first term is the lowest-order effective action (≡ the first term in
Eq. (194)) and the second term contains new information. To check the second
term, we may expand it in powers of the source Ui, then it is easy to see that
the first nontrivial term in this expansion coincides with the gluon-reggeization
term in Eq. (194).

Apart from the (197) term, there is another contribution to the one-loop
evolution equations coming from the diagrams in Fig. 28b. It can be easily
obtained using formulas (300) from the Appendix,

Uai (x⊥)U bj (y⊥)→ − g2

4π3
ln
σ

σ′
(198)

×
(
∇xi
[∫

dz⊥
(~x− ~z, ~y − ~z)⊥

(~x− ~z)2
⊥(~y − ~z)2

⊥
(U†xUy + 1− U†xUz − U†zUy)

] ←
∇
y

j

)ab
,

where

∇xiO(x⊥) ≡ ∂

∂xi
O(x⊥)− iUi(x⊥)O(x⊥),

O(y⊥)
←
∇
y

i ≡ − ∂

∂yi
O(y⊥)− iO(y⊥)Ui(y⊥), (199)

are the “covariant derivatives” (in the adjoint representation). The correspond-
ing term in effective action is

ig2

8π3
ln
σ

σ′

∫
dx⊥dy⊥ (∇xi V ai ) (x⊥)

∫
dz⊥

(~x− ~z, ~y − ~z)⊥
(~x− ~z)2

⊥(~y − ~z)2
⊥

×
(
U†xUy + 1− U†xUz − U†zUy

)ab (∇yjV bj ) (y⊥). (200)

The final form of the one-log effective action for this case is the sum of the
expressions (197) and (200),

S
(I)
eff (Vi, Uj) =

∫
d2xV ai(x)Uai (x) +

g2

8π3
ln
σ

σ′

∫
dx⊥dy⊥

1
(~x− ~y)2

⊥

×
(
i
(
V i(x⊥)U†x∂iUy

)aa −NcV ai(x⊥)Uai (x⊥)
)

+
ig2

8π3
ln
σ

σ′

∫
dx⊥dy⊥∇xi V ai(x⊥)

∫
dz⊥

(~x− ~z)⊥ · (~y − ~z)⊥
(~x− ~z)2

⊥(~y − ~z)2
⊥

×
(
U†xUy + 1− U†xUz − U†zUy

)ab∇yjV bj(y⊥), (201)
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where Vi is a weak source and Ui is a strong one. It is clear that if the source
Vi is strong and Ui is weak diagrams the effective action S(II)

eff (Vi, Uj) will have
the similar form with the replacement V ↔ U coming from the diagram shown
in Fig. 29.

Figure 29: Effective action for the strong source V and the weak source U .

As we mentioned above, in the case of two strong sources the
(
ln σ

σ′

)2
terms start from the diagram shown in Fig. 27b (see Eq. (195)), hence Fig. 27
and Fig. 29 complete the list of diagrams which contribute to the effective
action at the one-log level. Higher-order diagrams start from higher powers
of ln σ

σ′ . The analog of LLA here is a cluster expansion with the parameter
(U − 1)(V − 1) ln σ

σ′ shown in Fig. 30. Of course, the diagrams of Fig. 30 give

Figure 30: Cluster expansion of the effective action.

the terms ∼ ln σ
σ′ too, but in the leading order the kernel of the corresponding

evolution equation is determined by Fig. 27 and Fig. 28. Thus, the one-log
answer for two strong sources can be guessed by comparison of the answers
for Seff (Vi, Uj) with Vi ∼ 1, Ui ∼ 1

g and with Ui ∼ 1, Vi ∼ 1
g . Instead of

doing that, we will obtain the one-log result for two strong sources using the
semiclassical method and check that it agrees with (201).

It means that the one-log answer in the general case can be guessed by
comparison of the answers for Seff(Vi, Uj) with Vi ∼ 1, Ui ∼ 1

g and with
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Ui ∼ 1, Vi ∼ 1
g Instead of doing that, we will obtain the one-log result for two

strong sources using the semiclassical method and check that it agrees with
(201).

5 High-energy effective action in sQCD

5.1 Effective action and collision of two shock waves

The functional integral (193) which defines the effective action is the usual
QCD functional integral with two sources corresponding to the two colliding
shock waves, see Fig. 31.54 Instead of calculation of perturbative diagrams we

E>>m

shock waves

p

p

A

B

Figure 31: Scattering of two shock waves.

can use the semiclassical approach which is relevant when the coupling constant
is relatively small but the characteristic fields are large – in other words, when
g2 � 1 but gVi ∼ gUi ∼ 1. As was discussed in Ref. 4, this situation is
realized in the heavy-ion collisions where the coupling constant is defined by
the parton saturation scale Qs, which is estimated to be ∼ 1 GeV at RHIC and
∼ 2 − 3 GeV at LHC.6,7 Even if we consider the γ∗γ∗ scattering, the number
of gluons in the middle of the rapidity region may become very large leading
to the saturation at high energies so in the middle of the rapidity region we
will se the scattering of two strong shock waves.

If both sources are strong, one can calculate the functional integral (193)
by expansion around the new stationary point corresponding to the classical
wave created by the collision of the shock waves. With leading log accuracy,
we can replace the vector n by p1 and the vector n′ by p2. Then the functional
integral (193) takes the form

eiSeff(V,U ; σ
σ′ ) =

∫
DAeiSQCD(A)ei

∫
d2x⊥V

ai(x⊥)Y ai (x⊥)+i
∫
d2x⊥W

aiUai (x⊥), (202)
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where now

Y ai (x⊥) =
∫ ∞
−∞

dvF̂•i(vp1 + x⊥), W a
i =

∫ ∞
−∞

dvF̃∗i(vp2 + x⊥). (203)

Hereafter we use the notations

Ô(x) = [−∞p1 + x, x]O(x)[x,−∞p1 + x],
Õ(x) = [−∞p2 + x, x]O(x)[x,−∞p2 + x]. (204)

Note that we changed the name for the gluon fields in the integrand from C
back to A.

As usual, the classical equation for the saddle point Ā in the functional
integral (202) is

δ

δA

(
SQCD +

∫
d2x⊥V

ai(x⊥)Y ai (x⊥) +
∫
d2x⊥W

aiUai (x⊥

)∣∣∣∣
A=Ā

= 0. (205)

To write them down explicitly we need the first variational derivatives of the
source terms with respect to gauge field. We have:

δYi = δÂi(∞p1 + x⊥)− δAi(−∞p1 + x⊥)−
∫ ∞
−∞

du∇̂iδÂi(up1 + x⊥),

δWi = δÃi(∞p2 + x⊥)− δAi(−∞p2 + x⊥)−
∫ ∞
−∞

du∇̃iδÃi(up2 + x⊥), (206)

where

∇̂iO(x) ≡ ∂iO(x) − i[Yi(x⊥) + Ai(−∞p1 + x⊥),O(x)],
∇̃iO(x) ≡ ∂iO(x) − i[Wi(x⊥) + Ai(−∞p2 + x⊥),O(x)]. (207)

Therefore the explicit form of the classical equations (205) for the wave created
by the collision is

DµF̄µi = 0, (208)

DµF̄∗µ = δ(
2
s
x•)[

2
s
x∗p1,−∞p1]x⊥∇̂iV i(x⊥)[−∞p1,

2
s
x∗p1]x⊥,

DµF̄•µ = δ(
2
s
x∗)[

2
s
x•p2,−∞p2]x⊥∇̃iU i(x⊥)[−∞p2,

2
s
x•p2]x⊥.

These equations define the classical field created by the collision of two
shock waves.v Unfortunately, it is not clear how to solve these equations.w One
vThey are essentially equivalent to the classical equations describing the collision of two
heavy nuclei in Ref. 55. However, we do not impose the additional boundary conditions at
x2
‖ = 0.
wIn Ref. 56, the numerical solution was suggested.
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can start with the trial field which is a superposition of the two shock waves
(170), and improve it by taking into account the interaction between the shock
waves order by order.3 The parameter of this expansion is the commutator
g2[Ui, Vk]. Actually, there are two independent commutators,

L1 = La1t
a, La1 = ifabcUaj V

bj,

L2 = La2t
a, La2 = iεikfabcU

biV ck, (209)

where εik is the totally antisymmetric tensor in two transverse dimensions
(ε12 = 1). In these notations [Ui, V i] = L1 and [Ui, Vk] − (i ↔ k) = εikL2. It
can be demonstrated that each extra commutator brings a factor ln σ

σ′ (each
commutator means higher term in the cluster expansion in Fig. 30), thus this
approach is a kind of LLA. It is convenient to choose the trial field in the
form x

Ā
(0)
∗ = Ā

(0)
• = 0, Ā

(0)
i = θ(x•)Vi + θ(x∗)Ui + θ(x•)θ(x∗)∆i (210)

where Λi(x⊥) = Ui(x⊥) + Vi(x⊥) + ∆i(x⊥) is a pure gauge field satisfying the
gauge condition ∂i∆i − i[Λi,∆i] = 0. The explicit form of ∆i is

∆i(x⊥) = igεik
(
U†

∂k
~∂2
⊥
U + V †

∂k
~∂2
⊥
V − ∂k

~∂2
⊥

)
L2 +O(L2) (211)

= −ig
∫
dz⊥

εik(x− z)k
2π(~x− ~z)2

⊥
(UxU†z + VxV

†
z − 1)L2(z⊥)dz⊥ +O(L2).

In the first nontrivial order one gets:

Ā
(1)
i = − i

2π2

∫
dz⊥

1
−x2
‖ + (~x− ~z)2

⊥ + iε
∆i(z⊥)

= − g

4π2

∫
dz⊥

εik(x− z)k
(~x− ~z)2

⊥
ln

(
1− (~x− ~z)2

⊥
x2
‖ + iε

)
L2(z⊥),

Ā
(1)
• =

gs

16π2

∫
dz⊥

1
x∗ + iε

ln(−x2
‖ + (~x− ~z)2

⊥ + iε)L1(z⊥),

Ā
(1)
∗ = − gs

16π2

∫
dz⊥

1
x• + iε

ln(−x2
‖ + (~x− ~z)2

⊥ + iε)L1(z⊥), (212)

xIn the paper of Ref. 3, I used a slightly different trial configuration Ā
(0)
∗ = Ā

(0)
• = 0, Ā

(0)
i =

θ(x•)Vi + θ(x∗)Ui. The difference ∆i is corrected by the Ā(1) term, so the results for the
total field Ā(0) + Ā(1) are the same.
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where x2
‖ ≡

4
sx∗x• is a longitudinal part of x2. These fields are obtained in the

background-Feynman gauge. The corresponding expressions for field strength
have the form

F̄
(1)
•∗ =

gs

4π2

∫
dz⊥

1
−x2
‖ + (~x− ~z)2

⊥ + iε
L1(z⊥), (213)

F̄
(1)
ik =

g

2π2
εik

∫
dz⊥

1
−x2
‖ + (~x− ~z)2

⊥ + iε
L2(z⊥),

F̄
(1)
•i =

gs

8π2

∫
dz⊥

(x− z)k
−x2
‖ + (~x− ~z)2

⊥ + iε

(
gikL1(z⊥)
x∗ − iε

+
εikL2(z⊥)
x∗ + iε

)
− i[Ā(1)

• , Ā
(0)
i ],

F̄
(1)
∗i = − gs

8π2

∫
dz⊥

(x− z)k
−x2
‖ + (~x− ~z)2

⊥ + iε

(
gikL1(z⊥)
x• − iε

− εikL2(z⊥)
x• + iε

)
− i[Ā(1)

∗ , Ā
(0)
i ].

In terms of usual Feynman diagrams (when we expand in powers of source
just like in Sec. 4.2) these expressions come from the diagrams shown in Fig. 32.
When we sum up the three contributions from the diagrams in Figs. 32a, 32b,

z

(d)(c)(b)(a) 

z xx x x

Figure 32: Perturbative Feynman diagrams for the field strength (213).

and 32c the three-gluon vertex in Fig. 32a is replaced by the effective Lipatov’s
vertex (30) and we get (213) up to the terms 1

∂2 ∂i∂kU
k and 1

∂2 ∂j∂kV
k standing

in place of Ui and Vj . However, as we have discussed in Sec. 3, the difference
Ui − 1

∂2∂i∂kU
k = g ∂k∂2 [Ui, Uk] (which has an additional power of g) will be

canceled by the next-order perturbative diagrams of the Fig. 32d type.
Let us now find the effective action

S̄eff = SQCD(Ā) +
∫
d2x⊥V

ai(x⊥)Ȳ ai (x⊥) +
∫
d2x⊥W̄

aiUai (x⊥) (214)
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in the semiclassical approximation. In the trivial order the only non-zero
field strength components are F̄ (0)

•i = δ(2
sx∗)Ui(x⊥) and F̄ (0)

∗i = δ(2
sx•)Vi(x⊥),

hence we get the familiar expression S(0) =
∫
d2x⊥V

aiUai . In the next order
one has

S(1) =
∫
d4x

(
−2
s
F̄

(1)ai
∗ F̄

(1)a
•i − 1

4
F̄

(1)a
ik F̄ (1)aik +

2
s2
F̄

(1)a
∗• F̄

(1)a
∗•

)
+ 2

∫
d2x⊥

∫
du
(

TrV i
(
[−∞p1, up1]xF̄•i(up1 + x⊥)[up1,−∞p1]x

)(1)

+ TrU i
(
[−∞p2, up2]xF̄∗i(up2 + x⊥)[up2,∞p2]x

)(1)
)
. (215)

Above, we have seen that the effective action contains ln σ
σ′ (see Eq. (194)).

With logarithmic accuracy, the right-hand side of Eq. (215) reduces to

S(1) = −2
s

∫
d4xF̄

(1)ai
∗ (x)F̄ (1)a

•i (x). (216)

+
∫
d2x⊥2TrL1(x⊥)

(
[x⊥,−∞p2 + x⊥](1) − [x⊥,−∞p1 + x⊥](1)

)
.

The first term contains the integral over d4x = 2
sdx•dx∗d

2x⊥. In order to
separate the longitudinal divergencies from the infrared divergencies in the
transverse space we will work in the d = 2 + 2ε transverse dimensions. It is
convenient first to perform the integral over x∗ determined by a residue in
the point x∗ = 0. The integration over remaining light-cone variable x• then
factorizes in the form

∫∞
0
dx•/x• or

∫ 0

−∞ dx•/x•. This integral reflects our
usual longitudinal logarithmic divergencies, which arise from the replacement
of vectors n and n′ in (193) by the light-like vectors p1 and p2. In the mo-
mentum space this logarithmical divergency has the form

∫
dα/α. It is clear

that when α is close to σ (or σ′) we can no longer approximate n by p1 (or n′

by p2). Therefore, in the leading log approximation this divergency should be
replaced by ln σ

σ′
,∫ ∞

0

dx•
1
x•

=
∫ ∞

0

dα
1
α
→
∫ σ′

σ

dα
1
α

= ln
σ

σ′
. (217)

The (first-order) gauge links in the second term in the right-hand side of
Eq. (216) have the logarithmic divergence of the same origin,

[x⊥,−∞p1 + x⊥](1) = − i

8π2

∫ 0

−∞

dx∗
x∗

∫
d2z⊥

Γ(ε)
(~x− ~z)2ε

⊥
L1(z⊥),

[x⊥,−∞p2 + x⊥](1) =
i

8π2

∫ 0

−∞

dx•
x•

∫
d2z⊥

Γ(ε)
(~x− ~z)2ε

⊥
L1(z⊥), (218)
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which should also be replaced by ln σ
σ′ .

y Performing the remaining integration
over x⊥ in the first term in right-hand side of Eq. (216) we obtain the the
first-order classical action in the form

S(1) = − ig2

8π2
ln
σ

σ′
(220)

×
∫
d2x⊥d

2y⊥
(
La1(x⊥)La1(y⊥) + La2(x⊥)La2(y⊥)

) Γ(ε)
(~x− ~y)2ε

⊥

or

S(1) =
ig2

2π
ln
σ

σ′

∫
d2x⊥

(
La1

1
~∂2
⊥
La1 + La2

1
~∂2
⊥
La2

)
. (221)

Note that in the trivial order the three terms in Eq. (214) are equal up to the
different sign of the S(Ā) term. It can be demonstrated that this is true in the
first order, too:∫

d2x⊥2TrV iȲ (0+1)
i =

∫
d2x⊥2TrW̄ (0+1)

i Ui = −S(Ā)(0+1). (222)

A more accurate version of Eq. (221) has the form (see Appendix 7.5)

S(1) =
ig2

2π
ln
σ

σ′

∫
d2x⊥ (223)

×
(
La1

1
~∂2
⊥
La1 + La2

(
U†

1
~∂2
⊥
U + V †

1
~∂2
⊥
V − 1

~∂2
⊥

)ab
Lb2

+ La1
( ∂i
~∂2
⊥
U†

∂k
~∂2
⊥
U − U ↔ V

)
Lb2ε

ik

− La2ε
ik
(
U†

∂i
~∂2
⊥
U
∂k
~∂2
⊥
− U ↔ V

)ab
Lb1

)
+O([U, V ]3).

yThe fields Ā• and Ā∗ in Eq. (212) look like they satisfy the condition x∗A• + x•A∗ = 0

implying the fact that P exp ig
∫
dueµAµ(un + x⊥) = 0 for any vector e = ςp1 + ς̃p2. One

may suspect that the proper limit at e2 → 0 is to set [x⊥,−∞p1 +x⊥] and [x⊥,−∞p2 +x⊥]
to 0. However, careful analysis with the slope of the Y operators n = σp1 + σ̃p2 instead of
p1 and the slope of W operators n′ = σ′p1 + σ̃′p2 instead of p2 shows that

[x⊥,−∞e + x⊥] =
i

16π2

∫
d2z⊥

Γ(ε)

(~x− ~z)2ε
⊥
L1(z⊥) (219)

×
(
σ′/σ̃′ + ς/ς̃

σ′/σ̃′ − ς/ς̃
ln
ς̃

ς

σ′

σ̃′
− ς/ς̃ + σ/σ̃

ς/ς̃ − σ/σ̃
ln
ς̃

ς

σ

σ̃

)
leading to (218) if ς → σ or ς → σ′.
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It is easy to see that in the case of one weak and one strong source this
expressions coincides with (200) (up to the terms of higher order in weak source
which we neglect anyway).

At d = 2 we have an infrared pole in S(1) which must be canceled by the
corresponding divergency in the trajectory of the reggeized gluon. The gluon
reggeization is not a classical effect in our approach, rather it is a quantum cor-
rection coming from the loop corresponding to the determinant of the operator
of second derivative of the action

δ

δAµ

δ

δAν

(
SQCD +

∫
d2x⊥V

ai(x⊥)Y ai (x⊥) +
∫
d2x⊥W

aiUai (x⊥

)∣∣∣∣
A=Ā

.

(224)
The lowest-order diagrams are shown in Fig. 33 and the explicit form of the

(a) (b)

V U

Y W

Figure 33: Lowest-order diagrams for gluon reggeization.

second derivative of the Wilson-line operator is

δYi = i

∫ ∞
−∞

du

∫ u

−∞
dv[δÂi(up1 + x⊥), ∇̂iδÂi(vp1 + x⊥)],

δWi = i

∫ ∞
−∞

du

∫ u

−∞
dv[Ãi(up2 + x⊥), ∇̃iδÃi(up2 + x⊥)]. (225)

Now one easily gets the contribution of the Fig. 33 diagrams in the form

Sr =
g2Nc
8π3

ln
σ

σ′

∫
d2x⊥d

2y⊥ (226)

×
(
V ai (x⊥)Uai(y⊥) − V ai (x⊥)Uai(x⊥)

) Γ2(1 + ε)
((~x− ~y)2

⊥)(1+2ε)
.
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A more accurate form of this equation reads:

Sr =
g2Nc
8π3

ln
σ

σ′

∫
d2x⊥d

2y⊥
Γ2(1 + ε)

((~x− ~y)2
⊥)(1+2ε)

(227)

×
{
− V ai (x⊥)Uai(x⊥) +

1
Nc

(
V i(x⊥){U(x⊥)U†(y⊥)

+ V (x⊥)V †(y⊥)− 1}U i(y⊥)
)aa}

+ O([U, V ]),

where Oaa ≡TrO in the gluonic representation. In the case of one strong
and one weak source it coincides with (197) (up to the higher powers of weak
source).

The complete first-order (≡ one-log) expression for the effective action is
the sum of S(0), S(1), and Sr,

Seff =
∫
d2xV ai(x)Uai (x) +

ig2

8π2
ln
σ

σ′

∫
d2xd2y

{
− Γ(ε)

(~x− ~z)2ε
⊥

(228)

×
(
La1(x)La1(y) + La2(x)Lb2(y)

(
U†xUy + V †x Vy − 1

)ab)
+
∫
d2z

εij(x− z)i(z − y)j
π(~x − ~z)2

⊥(~z − ~y)2
⊥

×
(
La1(x)

(
U†zUy − U ↔ V

)ab
Lb2(y) − La2(x)

(
U†xUz − U ↔ V

)ab
Lb1(y)

)}

+
g2Nc
8π3

ln
σ

σ′

∫
d2x⊥d

2y⊥
Γ2(1 + ε)

((~x− ~y)2
⊥)(1+2ε)

{
− V ai (x⊥)Uai(x⊥)

+
1
Nc

(
V i(x⊥){U(x⊥)U†(y⊥) + V (x⊥)V †(y⊥)− 1}U i(y⊥)

)aa}
.

In the case of one weak and one strong source this expression coincides with
(201) up to the higher powers of weak source. (As we discussed in Sec. 4.3, the
new nontrivial terms in the case of two strong sources start from [Y, V ]3 ln2 σ

σ′ ).
As usual, in the case of scattering of white objects the logarithmic infrared

divergence ∼ 1
ε cancels. For example, for the case of one-pomeron exchange

the relevant term in the expansion of eiSeff has the form

− g2

16π2
ln
σ

σ′

∫
d2x⊥d

2y⊥f
dam(V aj U

mjgik + V ai U
m
k − V ak Umi )(x⊥)

× Γ(ε)
(~x− ~y)2ε

⊥
fdbn(V bl U

nlgik + V biUmk − V bkUmi)(y⊥)
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+
g2Nc
16π3

ln
σ

σ′

∫
d2x⊥V

a
i (x⊥)Uai(x⊥)

∫
d2y⊥d

2y′⊥(V bj (y⊥)− V bj (y′⊥))

× Γ2(1 + ε)
((~y − ~y′)2

⊥)(1+2ε)
(U bj(y⊥) − U bj(y′⊥)). (229)

It is easy to see that the terms ∼ 1
ε

cancel if we project Eq. (229) onto colorless
state in t-channel (that is, replace V aiV bj by δab

N2
c−1

V ciV cj ). It is worth noting
that in the two-gluon approximation the right-hand side of the Eq. (229) gives
the BFKL kernel (47).

As an illustration, let us present the next-to-leading contribution to the
effective action ' [U, V ]3 ln σ

σ′ coming from the diagrams of Fig. 34 type.

Figure 34: Typical next-to-leading order contribution to Seff .

Seff = g3fabc ln
σ

σ′

∫
dx⊥dy⊥d⊥z

[
K1(x⊥, y⊥, z⊥)La1(x⊥)Lb1(y⊥)Lc2(z⊥)

+ K2(x⊥, y⊥, z⊥)L2
2(x⊥)Lb2(y⊥)Lc2(z⊥)

]
, (230)

where

Ki(x, y, z) =
∫
d2p1

4π2

d2p2

4π2
Ki(p1, p2,−p1 − p2)eip1·(x−z)+ip2·(y−z),

K1(p1, p2, p3) =
i

2π2

εikp
i
1p
k
2

p2
1p

2
2p

2
3

(
lnp2

3 −
p2

1

p2
1 − p2

2

ln p2
1 −

p2
2

p2
2 − p2

1

lnp2
2

)
,

K2(p1, p2, p3) = − i

4π2

εikp
i
1p
k
2

p2
1p

2
2

(
1

p2
1 − p2

3

ln
p2

1

p2
3

+
1

p2
2 − p2

3

ln
p2

2

p2
3

)
. (231)

5.2 Effective action as integral over Wilson lines

In this section we will rewrite the functional integral for the effective action
(193) in terms of Wilson-line variables. To this end, let us use the factorization
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3
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η >η>η ’
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1
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...

2

n

η >η>η n-1n

Figure 35: Effective action factorized in n functional integrals.

formula (189) n times as shown in Fig. 35. The effective action factorizes
then into a product of n independent functional integrals over the gluon fields
labeled by index k:

eiSeff (U,V ;η) =
∫
DA1 . . .DAn+1 exp i

{
ViY

i
n+1 + S(An+1) (232)

+ Wn+1,iY
i
n + S(An) + . . .+W2iY

i
1 + S(A1) +W i

1Ui
}
,

where the integrals over x⊥ and summation over the color indices are implied.
As usual, Y ik = i

g
Y †k ∂

iYk and W i
k = i

g
W †k∂

iWk where

Yk(x⊥) = P exp ig
∫ ∞
−∞

du nµkAk,µ(unk + x⊥),

Wk(x⊥) = P exp ig
∫ ∞
∞

du nµk−1Ak,µ(unk−1 + x⊥), (233)
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and the vectors nk are ordered in rapidity: η0 > ηn > ηn−1 . . . η2 > η1 > η′0.
To disentangle integrations over different Ak we use the formula

ei
∫
dx⊥WiY

i

= det(∂i − igWi)(∂i − igY i) (234)

×
∫
DV (x⊥)DU(x⊥)ei

∫
dx⊥WiU

i+i
∫
dx⊥ViY

i−i
∫
dx⊥ViU

i

.

The determinant gives the perturbative non-logarithmic corrections of the same
order as the corrections to the factorization formula (190). In the LLA they
can be ignored, consequently, we obtain

eiSeff(U,V ) =
∫
DA1 . . .DAn+1DU1DV1 . . .DUnDVn

× exp i
{
ViY

i
n+1 + S(An+1) +W i

n+1Un,i − Vn,iY in + . . .

+ W3iU
i
2 − V i2U2i + V2,iY

i
2 + S(A2) +W2,iU

i
1 − V1,iU

i
1

+ V1,iY
i
1 + S(A1) +W i

1Ui

}
. (235)

Now we can integrate over the gluon fields Ak,∫
DAke

Vk,iY
i
k+S(Ak)+Wk,iU

i
k−1 = eiSeff(V

k,Uk−1;∆η) ; (236)

at sufficiently small ∆η

Seff (V k, Uk−1; ∆η) = Vk,iU
i
k−1 − i∆ηK(Vk, Uk−1) +O(∆η2), (237)

where K is the kernel calculated in the previous section,

K(V, U) = −αs
∫
d2x⊥

×
{
La1

1
~∂2
⊥
La1 + La2

(
U†

1
~∂2
⊥
U + V †

1
~∂2
⊥
V − 1

~∂2
⊥

)ab
Lb2

+ La1
( ∂i
~∂2
⊥
U†

∂k
~∂2
⊥
U − U ↔ V

)
Lb2ε

ik

− La2ε
ik
(
U†

∂i
~∂2
⊥
U
∂k
~∂2
⊥
− U ↔ V

)ab
Lb1

+
i

4π

(
Vi
(
U†(ln ~∂2

⊥)U + V †(ln ~∂2
⊥)V − (ln ~∂2

⊥)
)
U i
)aa}

.(238)
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Performing the integrations over Ak we get

eiSeff(U,V ) =
∫
DV1DU1 . . .DVnDUn exp

{
iViU

i
n +K(V, Un)∆η (239)

− iVn,iU
i
n + iVn,iU

i
n−1 +K(Vn, Un−1)∆η + . . .− iV2iU

i
2

− iV i2U1i +K(V2, U1)∆η − iV i1U1i + iV i1Ui +K(V1, U)∆η
}
.

In the limit n→∞ we obtain the following functional integral for the effective
action

eiSeff (U,V ) =
∫
DV (η)DU(η)

∣∣∣∣
U(η′0)=U

exp
{
iV ai U

ai(η) (240)

+
∫ η0

η′0

dη
(
− iV ai(η)U̇ai (η) +K(V (η), U(η)

)}
.

where we displayed the color indices explicitly. This looks like the functional
integral over the canonical coordinates U and canonical momenta V with the
(non-local) HamiltonianK(V, U). The rapidity η serves as the time variable for
this system. Let us demonstrate that perturbative expansion for the functional
integral (240) determines the effective field theory for reggeized gluons. To get
the perturbative series for the functional integral (240), we write down U(η)
and V (η) as

U(x⊥, η) = e−igφ(x⊥,η), V (x⊥, η) = e−igπ(x⊥,η), (241)

(φa(x⊥, η) and πa(x⊥, η) are scalar fields) and expand in powers of g. In the
leading order in g we obtain

eiSeff(φ,π) =
∫
Dπ(η)Dφ(η)

∣∣∣∣
φ(η′0)=φ

exp

{
− i∂iπa∂iφa(η0)

+ 2Tr
∫ η0

η′0

dη
(
i∂iπ(η)

(
∂

∂η
+
αs
4π
Nc ln ~∂2

⊥

)
∂iφ(η)

− αs[∂̄π(η), ∂̃φ(η)]
1
~∂2
⊥

[∂̃π(η), ∂̄φ(η)]
)}

, (242)

where ∂̃ ≡ ∂1 + i∂2, ∂̄ ≡ ∂1 − i∂2. The bare propagator for these fields is (cf.
Ref. 2)

〈φ(x⊥, η) φ(y⊥, η′)〉 = 0, 〈π(x⊥, η) π(y⊥, η′)〉 = 0,

〈φ(x⊥, η) π(y⊥, η′)〉 = θ(η − η′)
((
x⊥

∣∣∣ i
~p2
⊥

∣∣∣y⊥)). (243)
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The θ function in this formula satisfies the condition θ(0) = 0 as can be
easily seen from the limiting formula (239). It is convenient to include the
g2π~∂2

⊥ ln ~∂2
⊥φ in the kinetic term rather than in the interaction Hamiltonian.

Since this expression is IR divergent one should at first consider the regularized
Seff

eiSeff(φ,π) =
∫
DφDπ exp

{
2Tr

∫ η0

η′0

dη
{
i∂iπ

(
∂

∂η
+
αs
4π
Nc ln

~∂2
⊥
µ2

)
∂iφ

− αs[∂φ, ∂̄π]
1

~∂2
⊥ + µ2

[∂φ, ∂̄π]
}
− i∂iπa∂iφa(η0)

}
(244)

and then take the limit µ2 → 0. (Alternatively, one can use the regularization
d = 2 + ε for the number of transverse dimensions as it was done in Sec. 5.1.)
The propagator takes the form

〈φ(x⊥, η) φ(y⊥, η′)〉 = 0, 〈π(x⊥, η) π(y⊥, η′)〉 = 0, (245)∫
dp⊥
4π2

eip(x−y)⊥〈φ(x⊥, η)π(y⊥, η′)〉 = θ(η − η′) i

~p2
⊥
e
−αs4πNc(η−η

′) ln p2

µ2 ,

which coincides with the propagator of the reggeized gluon (73).
Since the only non-vanishing Green functions are

〈φ(x1, η) . . .φ(xm, η)π(y1, η
′) . . . π(yn, η′)〉

with m = n, the number of reggeized gluons is conserved. It is easy to see that
the Feynman rules for the Green function

〈φ(x1, η) . . .φ(xn, η)π(y1, η
′) . . . π(yn, η′)〉

reproduce the diagrams for the quantum mechanics of n particles with Lipa-
tov’s Hamiltonian (75) (see Fig. 10).

In the next order in the expansion (241) we get

eiSeff (φ,π) =
∫
Dπ(η)Dφ(η)

∣∣∣∣
φ(η′0)=φ

exp

{
− i∂iπa∂iφa(η0) (246)

+ 2Tr
∫ η0

η′0

{
i∂iπ(η)

(
∂

∂η
+
αs
4π
Nc ln ~∂2

⊥

)
∂iφ(η)

− αs[∂φ, ∂̄π]
1
~∂2
⊥

[∂φ, ∂̄π]
}

+ i
g3

4π
K(3)(φ, π) +

g4

4π
K(4)(φ, π)

}
,
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where

K(3)(φ, π) =

{[
[∂iφ, φ], ∂iπ

] 1
~∂2
⊥

[∂jφ, ∂jπ] (247)

+
([

[∂iφ, φ], ∂jπ
]

+ 2
[
φ, [∂iφ, ∂jπ

]) 1
~∂2
⊥

(
[∂iφ, ∂jπ]− (i↔ j)

)
− 2[∂jφ, ∂jπ]

∂i
~∂2
⊥
φa
∂k
~∂2
⊥

([
ta, [∂iφ, ∂kπ]

]
− (i↔ k)

)}
+
{
π ↔ φ

}
and

K(4)(φ, π) =
[
[∂iφ, φ], [∂iπ, π]

] 1
~∂2
⊥

[∂φ, ∂̄π] (248)

+
[
[∂φ, φ], ∂iπ

] 1
~∂2
⊥

[
[∂iφ, φ], ∂iπ

]
+ . . . .

The number of reggeized gluons is no longer conserved, hence we get the field
theory of reggeized gluons with Feynman diagrams shown in Fig. 36. In higher

τ=η

Figure 36: Feynman diagrams for the field theory of reggeized gluons.

orders we will get more complicated πmφn vertices.
It is intersting to compare (235) with Lipatov’s effective action for reggeized

gluons.22,2 In these papers the reggeon is defined as a scalar field depending
on both transverse and longitudinal coordinates. The integration of Lipatov’s
effective action over longitudinal coordinates of the reggeons in the LLA repro-
duces the first two (BFKL and three-pomeron) terms in the expansion (235).
Hopefully, the integration of the Lipatov’s action in the NLO LLA, NNLO
LLA etc. will reproduce the expansion (235) order by order in perturbation
theory.
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5.3 Semiclassical approach to Wilson-line functional integral for the effective
action

Perturbation expansion (241) is relevant when the characteristic Ui and Vi
inside the functional integral (240) are ∼ O(1). However, we shall see below
that at high energies the characteristic fields in this functional integral seem
to be large, consequently the expansion (241) may be useless. In this case, we
can try to calculate the functional integral (240) semiclassically. The classical
equations for the functional integral (240) are

(i∂i + g[Vi)U̇ i = − δ

V †δV
K(U, V ),

(i∂i + g[Ui)V̇ i =
δ

U†δU
K(U, V ), (249)

with the initial conditions

U(η) = U at η = η′0, V (η) = V at η = η0. (250)

Let us denote the solution of these equation by Ū(x⊥, η) and V̄ (x⊥, η). In the
LLA the semiclassical calculation of the Wilson-line integral (240) is equivalent
to the semiclassical calculation of the original functional integral (193). I will
make a conjecture that the saddle point of the original functional integral (202),
satisfying the classical equations (208), corresponds to the classical solution
(189) of the Wilson-line integral (240) even beyond the LLA:

exp
{
iViȲ

i(η0) + iW̄i(η′0)U i + iS(Ā)
}

(251)

= exp

{
iViŪi(η0) +

∫ η0

η′0

dη
(
− iV̄ i(η) ˙̄U i(η) +K(V̄ (η), Ū(η)

)}
,

where Ā is the classical solution of the equations (208). (As in previous section,
we do not display the integrals over the transverse coordinates). Being a
quantum correction, the gluon reggeization (227) exceeds the accuracy of the
semiclassical approximation, hence we can drop the last (reggeization) term in
the kernel (238).

Talking the variational derivative of both sides of Eq. (251) with respect
to V , we obtain

Ȳi(η) = Ūi(η). (252)

If we now take the derivative of both sides with respect to η0, we get the
equation

iVi
˙̄Y i(η0) = iVi

˙̄U i(η0) = K(V, Ū(η0)), (253)
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which may be used for the calculation of K. Correspondingly, one can differ-
entiate with respect to η′0 resulting in

− i ˙̄V i(η′0)Ui = K(V̄ (η′0), U). (254)

Since V in Eq. (253) and U in Eq. (254) are arbitrary, we may substitute V̄ (η)
and Ū(η) instead :

iV̄i(η) ˙̄U i(η) = −i ˙̄V i(η)Ūi(η) = K(V̄ (η), Ū(η)). (255)

The exponential of the Wilson-line functional integral vanishes except for the
non-integral term ViŪ

i(η0) = ViȲ
i(η0), so

exp
{
iViȲ

i(η′0) + iW̄i(η0)U i + iS(Ā)
}

= exp
{
iViŪi(η0)

}
= exp

{
iV̄i(η′0)Ui

}
. (256)

Thus, in a semiclassical approximation (and with the assumption mentioned
above) we obtain

Seff = ViŪi(η0) = V̄i(η′0)Ui = −S(Ā), (257)

so that all the three terms in left-hand side of Eq. (251) contribute equally up
to a different sign for S(Ā). We have checked it in LLA and it is crucial to
check it in the next-to-leading order. From Eqs. (255) and (257) we see that
the effective action in the semiclassical approximation can be written down
also as

Seff = V̄i(η)Ūi(η) (258)

for arbitrary η.
Instead of taking variational derivatives of the kernel K(V, U), it is possible

to calculate ˙̄U ≡ ˙̄Y directly. One obtains (cf. Eq. (218))

[x⊥,−∞p1 + x⊥](1) =
ig2

2π
ln
σ

σ′

∫
d2z⊥ (259)

×
((
x⊥

∣∣∣ 1
~p2
⊥

∣∣∣z))(L1(z⊥) + 2[Ui(z⊥),∆i(z⊥)]
)
,

[∞p1 + x⊥, x⊥](1) = − ig
2

2π
ln
σ

σ′
ta
∫
d2z⊥

×
((
x⊥

∣∣∣U† 1
~p2
⊥
U + U†

1
~p2
⊥

(~∂2
⊥U)

1
~p2
⊥

∣∣∣z))abLb1(z⊥),
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and, therefore,

[∞p1 + x⊥,−∞p1 + x⊥](1) =
ig2

π
ln
σ

σ′

∫
d2z⊥

×
{((

x⊥

∣∣∣ 1
~p2
⊥

∣∣∣z⊥))[Ui(z⊥),∆i(z⊥)]− ta
((
x⊥

∣∣∣U† pk
~p2
⊥
i(∂kU)

1
~p2
⊥

∣∣∣z⊥))abLb1(z⊥)

}

=
ig2

π
ta ln

σ

σ′

∫
d2z⊥

{((
x⊥

∣∣∣− U† pk
~p2
⊥
i(∂kU)

1
~p2
⊥

∣∣∣z⊥))abLb1(z⊥)

+
((
x⊥

∣∣∣ pi
~p2
⊥
U†

pk
~p2
⊥
U
∣∣∣z))abεikLb2(z⊥)

}
. (260)

The derivative Ū† ˙̄U is half of the coefficient in front of ln σ
σ′

in this formula so
we obtain

Ū† ˙̄U =
ig2

2π

(
Ū†

∂k

~∂2
⊥

(∂kŪ)

)ab
1
~∂2
⊥
L̄b1 −

ig2

2π
∂i
~∂2
⊥

(
Ū†

∂k
~∂2
⊥
Ū

)ab
εikL̄b2, (261)

and, similarly,

V̄ † ˙̄V = − ig
2

2π

(
V̄ †

∂k

~∂2
⊥

(∂kV̄ )

)ab
1
~∂2
⊥
L̄b1 −

ig2

2π
∂i
~∂2
⊥

(
V̄ †

∂k
~∂2
⊥
V̄

)ab
εikL̄b2, (262)

where Ū ≡ Ū(η), V̄ ≡ V̄ (η).
For illustration, let us present a first few terms in the semiclassical expan-

sion of the effective action,

S̄eff =
∫
d2x⊥ViU

i (263)

+
ig2

2π
ln
σ

σ′

∫
d2x⊥

(
La1

1
~∂2
⊥
La1 −

1
g2

∆a
i∆

a,i + 2La1
1
~∂2
⊥

(
Ui − Vi

)ab∆b,i

+
1
2

(
g2

2π
ln
σ

σ′

)2 {
La1

( 1
~∂2
⊥

(∂kU†)
∂k
~∂2
⊥
U
)ab
−∆akUabk

1
~∂2
⊥

}
×
(

(∂i − igU i)(∂i − igVi)
)bc{(

V †
∂j
~∂2
⊥

(∂jV )
1
~∂2
⊥

)cd
Ld1 +

1
~∂2
⊥
V cdj ∆dj

}
.

Once we know the solution of the Wilson-line classical equations (261)-
(262), it is possible to restore Ā. Suppose we want to find Ā(ηx, τ, x⊥) where
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τ = x2
‖ and ηx = ln x∗

x•
. Let us insert two factorization formulas at ηx + δη

and ηx − δη and integrate over the fields in the regions η0 > ηx + δη and
ηx − δη > η > η′0 semiclassically. The final integration over the region of
rapidities η + δη > η > ηx − δη takes the form∫
DA exp

{
iV̄ i(ηx + ∆η)Yi(ηx + ∆η) + iW i(ηx −∆η)Ūi(ηx −∆η) + iS(A)

}
.

(264)
(Here ηx + ∆η denotes the argument for the classical solution V̄ i and the
direction of the Wilson line for Yi). Comparing this to Eq. (202), we find that
the field Ā(ηx, τ, x⊥) is given by expressions (212) with U → Ū(η), V → V̄ (η).
Unfortunately, the accuracy is again up to [Ū(η), V̄ (η)]2. Still, we see that the
fields contain logarithms of ηx coming from and Ū(η) V̄ (η) so our assumption
about large characteristic fields in the functional integral (193) is justified.
Note that for the infinite Wilson line in ηx direction we can get an (almost)
explicit expression in terms of U → Ū(η) and V → V̄ (η) without the restriction
[Ū(η), V̄ (η)]� 1. It is easy to see that

[x⊥−∞nη, x⊥+∞nη](i∂i+Āi(x⊥+∞nη))[x⊥+∞nη , x⊥−∞nη] = Λi(x⊥, η),
(265)

where Λi(x⊥, η) = Ū(x⊥, η)+V̄ (x⊥, η)+∆̄(x⊥, η) is pure gauge field satisfying
the equation (

i∂i + [Ūi + V̄i,
)

∆i = 0, (266)

(see Eq. (211). Indeed, let us try to calculate the l.h.s. of the Eq. (265). At
small δη all the contributions coming from [x⊥ +∞nη, x⊥ −∞nη] contain δη
(see Eq. (219)), hence they are small. The only non-vanishing contribution
comes from Āi(x⊥ +∞nη) which coincide with Λi(x⊥, η) in the background-
Feynman gauge (266).

6 Conclusions and outlook

First I would like to discuss the relation of this method to other approaches to
the high-energy QCD discussed in the literature.

By far, the most popular approach to high-energy pQCD is the direct
summation of Feynman diagrams (and related methods based on unitarity
relations in s and t channels). Although the majority of the results in pQCD,
including the NLO BFKL kernel, were obtained by this method, I think that
even in pQCD, the Wilson-line language, combined with the calculation of
the propagators in the shock-wave background, is technically more powerful.
(Perhaps the comparison of the diagrammatic calculation of the three-pomeron
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vertex in Ref. 45 to the computation of the gluon propagator in the shock-wave
background in Sec. 7.3 demonstrates this most clearly).

The dipole picture57 has an advantage of visual interpretation of the high-
energy scattering, especially in the case of DIS at small x.24,25 The dipole
language is a light-cone version of the Wilson-line approach combined with
large-Nc approximation for the wave functions at small x. However, it is hard
to think about the effective action in terms of the dipoles, since in order to
study the energy evolution of the effective action we must take into account
not only the creation of the new dipoles, but their multiple creation and re-
combination, which is difficult to define in the framework of the dipole model.

The most close in spirit to our semiclassical method is the renormalization-
group approach to the high-energy scattering from the large nuclei advocated
in the papers of L. McLerran and collaborators (see e.g. Refs. 4, 52, 58).
In this approach, the small-x evolution of one strong shock wave (created
by a source ρ(x⊥)) is studied in the light-like gauge. With such a choice of
gauge, the second shock wave can be treated perturbatively at the very end of
the evolution process. In our terms, this amounts to the solution of classical
Eqs. (208) using the trial configuration Ai = Uiθ(x∗) (instead of starting point
Ai = Uiθ(x∗) + Viθ(x•) + ∆i taken in this paper). Unfortunately, due to
different gauges adopted in our paper and Refs. 52, 58, the treatment of the
boundary terms in the functional integral is different, leading to the different
sources for the shock waves and making hard to compare the intermediate
formulas. However, since the first-order (BFKL) results coincide I think these
effective actions are essentially the same.

In conclusion I would like to outline possible uses of this approach. The
ultimate goal is to obtain the explicit expression for the effective action in all
orders in ln s

m2 . One possible prospect is that due to the conformal invariance
of QCD at the tree level our future result for the effective action can be formal-
ized in terms of conformal two-dimensional theory in external two-dimensional
“gauge fields” Vi and Ui. So far, I was not able to use the conformal invariance
because it is not obvious how to implement it in terms of Wilson-line opera-
tors. We can, however, expand Wilson lines back to gluons. The conformal
properties of (reggeized) gluon amplitudes are now well studied. In the coordi-
nate space the BFKL kernel is invariant under Mobius group and therefore the
eigenfunctions of BFKL kernel are simply powers of coordinates. It is not clear
which part of the conformal symmetry survives for the full effective action, yet
there is every reason to believe that it will simplify the structure of the answer
even after reassembling of Wilson lines.

The semiclassical approach developed above for the small-x processes in
perturbative QCD can be applied for studying the heavy-ion collisions. As
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advocated in Ref. 4, the coupling constant for the heavy-ion collisions may
be relatively small due to high density. An estimation of the corresponding
“parton saturation scale” Qs gives ∼ 1 GeV for RHIC and ∼ 2 − 3 GeV for
LHC,7 so g(Qs) is a valid perturbative parameter. On the other hand, the
fields produced by colliding ions are large, so that the product gA is not small,
showing that the Wilson-line gauge factors V and U are of order of 1. Thus,
we have a perfect situation to try sQCD methods.

It should however be mentioned that in this paper we considered the special
case of the collision of the two shock waves, namely without any particles in
the final state. It follows from the usual boundary conditions for Feynman
amplitude (81) which we calculate: no outgoing waves at t → ∞ and no
incoming fields at t → −∞ (the latter condition is satisfied automatically by
the A|t→−∞ = 0 choice of gauge). However, people are usually interested
in the process of particle production during the collision (see e.g. Ref. 59)
since it gives the experimental probe of quark-gluon plasma. In this case,
our approach must be modified for the new boundary conditions — we must
solve the classical equations (208) with Feynman boundary conditions only at
t → −∞. The boundary condition at t → ∞ depends on the problem under
investigation: in the case if we are interested in the the total cross section (cut
diagrams) we must calculate the double functional integral corresponding to
the integration over the “+” fields to the right and the “–” fields to the left
of the cut (see Ref. 43). (This is actually a functional-integral formalization
of Cutkosky rules). In this case we may use the usual (Feynman and c.c.
Feynman) propagators for each type of the fields. The boundary condition
requires that two types of the field — the left-side “–” fields and the right-side
“+” ones — coincide at t → ∞. (This boundary condition is responsible for
the δ(p2)θ(p0) propagators on the cut). Finally, to find the total cross section
of the shock-wave collision in the semiclassical approximation, we must solve
the double set of classical equations for “+” and “–” fields with the boundary
condition that these fields coincide at infinity (cf. Ref. 60). The study is in
progress.
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7 Appendix

7.1 Wilson lines from Feynman diagrams

Let us demonstrate that the relevant operators are Wilson lines (3). The typical
contribution to the Green function of the fast-moving quark (with αk � σ)
is shown in Fig. 37 where the gluons have α � σ. Consider the loop integral

p~

p~p+

k

p-p’

k-p k-p’

p

~p-p’+p

Figure 37: Typical diagram for the propagator of fast-moving quark.

over p. Since we can neglect αp as compared to αk, the quark propagator with
the momentum k − p reduces to

6p2
6k− 6p

(k − p)2 + iε
6p2→

6p2

βk − βp −
(~k−~p)2

⊥
αks

+ iεαk

. (267)

Here we have used the fact that gµν in the numerator of the gluon propagator
connecting the lines with very different rapidities (≡ α’s) can be replaced by
2
s
p1µp2ν.

I will prove now that if I replace the propagator (267) by

6p2

−βp + iεαk
, (268)

the value of the loop integral over p remains unchanged. Indeed, the integral
over p is the sum of the residue in the pole corresponding to the fast-quark
propagator (267) and/or the residues in the slow-gluon propagators. Let us
consider both residues in turn and verify that the replacement (268) does not
affect the residues.

First, if I take the residue in the pole

βp = βk −
(~k − ~p)2

⊥
αks

(269)
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corresponding tho the quark propagator, the typical slow-gluon denominator
takes the form

(αp + α̃p)(βp + β̃p)s− (p+ p̃)2
⊥ (270)

= (αp + α̃p)βps− (p+ p̃)2
⊥ + (αp + α̃p)βks−

αp + α̃p
αk

(~k − ~p)2
⊥.

The first two terms are or order of m2 while the second two ones are ∼ αp
αk
m2

and hence they can be neglected, which corresponds to taking the residue at
the pole βp = 0 in the propagator (268). (Here we have used the fact that
βk ∼ m2

αks
, see below).

Second possibility corresponds to the residue taken at

βp = −β̃p +
(p + p̃)2

⊥
(αp + α̃p)s

(271)

in one of the slow-gluon propagators. The quark propagator (267) then takes
the form

6p2

β̃p + (p+p̃)2
⊥

(αp+α̃p)s + βk −
(~k−~p)2

⊥
αks

+ iεαk

. (272)

Again, the first two terms in the denominator are ∼ m2

αps
, while the second two

ones are ∼ m2

αps
� m2

αks
and can be neglected which is exactly equivalent to

replacing the Eq. (267) by Eq. (268).
Hence, we have proved that the propagator of the fast quark can be re-

duced to (268) which is nothing but the eikonal gauge-factor in the momentum
representation.

7.2 Quark propagator in a shock-wave background.

Let us now find the quark propagator in the shock-wave background. We start
the path-integral representation of a quark Green function in the external field
BΩ,((

x
∣∣∣ 1
6 P

∣∣∣y)) = −i
∫ ∞

0

dτ
((
x
∣∣∣PeiτP2

∣∣∣y))
= −i

∫ ∞
0

dτN−1

∫ x(τ)=x

x(0)=y

Dx(t){1
2
6 ẋ+ 6BΩ(x(τ))}e−i

∫ τ
0
dt ẋ

2
4

× P exp{ig
∫ τ

0

dt(BΩ
µ (x(t))ẋµ(t) +

1
2
σµνGΩ

µν(x(t))}, (273)
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where σµν ≡ i
2 (γµγν − γνγµ). First, it is easy to see that since in our external

field (90) the only nonzero components of the field tensor is GΩ◦i only the first
two first term of the expansion of the exponent exp{

∫
dt i2 (σGΩ)} in powers of

(σG) survive. Indeed, σµνGΩ
µν = 4i

s0
6p0

2γ
iGΩ
◦i

and therefore (σGΩ)2 ∼ (6p2γ
i)2 =

0 since 6p2 commutes with γi⊥. Consequently, the phase factor for the motion
of the particle in the external field (90) has the form

Pe
ig
∫ τ

0
dtBΩ

µ (x(t))ẋµ(t) (274)

+
2γi 6p2

s

∫ τ

0

dt′Pe
ig
∫
τ

t′
dtBΩ

µ (x(t))ẋµ(t)
gGΩ
◦i(x(t′))Peig

∫
t′

0
dtBΩ

µ (x(t))ẋµ(t)
.

Let us consider the case x∗ > 0, y∗ < 0 as shown in Fig. 13. Similarly to the
case of scalar propagator, we can replace the gauge factor along the actual path
xµ(t) by the gauge factor along the straight-line path shown in Fig. 14 which
intersects the plane x∗ = 0 at the same point (z◦, z⊥) at which the original
path does. The gauge factor (275) reduces to

UΩ(z⊥) +
γi6p2

ẋ∗(τ ′)
i∂iU

Ω(z⊥) (275)

where the last term was obtained using the identity

∂

∂xi
U(x⊥) = −2i

s0

∫
dx∗[∞p(0)

1 ,
2
s0
x∗p

(0)
1 ]xG◦i(

2
s0
x∗p

(0)
1 + x⊥)

× [
2
s0
x∗p

(0)
1 ,−∞p(0)

1 ]x, (276)

and the factor ẋ∗(τ ′) in Eq. (274) comes from changing of variable of integration
from t to x∗(t). Similarly, the phase factor for the term in the right-hand side
of Eq. (273) which contains 6BΩ(x(τ)) = 2

s0
6p2B

Ω
◦ (x(τ)) in front of the gauge

factor Eq. (273) can be reduced to

− 6p2

∂

∂x∗
[

2
s0
x∗p

(0)
1 + x⊥,−∞+ x⊥] = −6p2δ(x∗)[U(x⊥) − 1]. (277)

(The factor ∼ (σG) is absent since it contains extra 6p2 and 6p2
2 = 0). If we now

insert the expression for the phase factors (274), (277) into the path integral
(273), we obtain (cf. Eq. (97))

− 6p2δ(x∗)[U
Ω(x⊥)− 1]

∫ ∞
0

dτN−1

∫ x(τ)=x

x(0)=y

Dx(t)e−i
∫ 0

τ
dt ẋ

2
4 (278)
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− i

2

∫ ∞
0

dτ

∫ τ

0

dτ ′
∫
dzδ(z∗)N−1

∫ x(τ)=x

x(τ′)=z

Dx(t) 6 ẋ(τ)e−i
∫
τ

τ′
dt ẋ

2
4

× {UΩ(z⊥) +
i

ẋ∗(τ ′)
6 ∂UΩ(z⊥)6p2}N−1

∫ x(τ′)=z

x(0)=y

Dx(t)ẋ∗(τ ′)e
−i
∫
τ

τ′
dt ẋ

2
4 .

Make a shift of time variable τ ′ and using Eqs. (95) and (99) to perform path
integrals in the right-hand side of Eq. (278), it is easy to reduce the path-
integral expression for the quark propagator in the shock-wave field (91) to((

x
∣∣∣ 1
6 P

∣∣∣y)) =
6p2

4π2(x− y)2
δ(x∗)[UΩ − 1](x⊥) (279)

+
∫
dzδ(z∗)

(6x− 6z)6p2

2π2(x− z)4
{UΩ(z⊥)

−2iy∗
2π2(z − y)4

− i 6 ∂⊥UΩ(z⊥)
6p2

4π2(z − y)2
}

= i

∫
dzδ(z∗)

(6x− 6z)6p2

2π2(x− z)4
UΩ(z⊥)

6z − 6y
2π2(z − y)4

(in the region x∗ > 0, y∗ < 0). The propagator in the region x∗ < 0, y∗ >
0 differs from Eq. (279) by the replacement UΩ ↔ UΩ†. In addition, the
propagator outside the shock-wave wall (at x∗, y∗ < 0 or x∗, y∗ > 0) coincides
with bare propagator, so the final answer for the quark Green function in the
BΩ background can be written down as:((

x
∣∣∣ 1
6 P

∣∣∣y)) = − 6x− 6y
2π2(x− y)4

+ i

∫
dzδ(z∗)

(6x− 6z)6p2

2π2(x− z)4
{[UΩ − 1](z⊥)θ(x∗)θ(−y∗)

− [UΩ† − 1](z⊥)θ(y∗)θ(−x∗)}
6z − 6y

2π2(z − y)4
, (280)

where we have used the formula

i

∫
dzδ(z∗)

6x− 6z
2π2(x− z)4

6p2

6z − 6y
2π2(z − y)4

= − 6x− 6y
2π2(x− y)4

(θ(x∗)− θ(y∗)) (281)

to separate the bare propagator.
Now, one easily obtains the quark propagator (105) in the original field Bµ

Eq. (88) by making back the gauge rotation of the answer (280) with matrix
Ω−1.
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7.3 One-loop evolution: Wilson lines in a shock-wave background.

The convenient way to get the kernel of the evolution equation is to calculate
the derivative of the two-Wilson-line operator with respect to the slope of the
supporting line. Formally one obtains:

ζ
∂

∂ζ
Tr{Û(x⊥)Û†(y⊥)} (282)

= igζ

∫
udu

(
Tr{[∞, u]xF∗•(upζ + x⊥)[u,−∞]xÛ†(y⊥)}

− Tr{Û(x⊥)igζ
∫
udu[−∞, u]yF∗•(upζ + y⊥)[u,∞]y}

)
.

The kernel is the result of the calculation of the right-hand side of Eq. (282)
in the shock-wave background.

Consider the operators Ûζ and Û†ζ in the external field formed by slow
gluons with α�

√
m2

sζ . Making the rescaling (88) we obtain:

〈[∞pA,−∞pA]x[−∞pA,∞pA]y〉A
= 〈[∞p(0)

A ,−∞p(0)
A ]x[−∞p(0)

A ,∞p(0)
A ]y〉B , (283)

where the shock-wave field is given by Eqs. (88) – (90). Equation (282) reduces
to

ζ
∂

∂ζ
〈Û(x⊥)Û†(y⊥)〉A (284)

= ig
p2
A

s0

∫
udu〈[∞p(0)

A , up
(0)
A ]xF̂∗•(up

(0)
A + x⊥)[up(0)

A ,−∞p(0)
A ]xÛd(y⊥)〉B

− ig
p2
A

s0

∫
udu〈Û(x⊥)[−∞p(0)

A , up
(0)
A ]yF̂∗•(up

(0)
A + y⊥)[up(0)

A ,∞p(0)
A ]y〉B .

Since the (F∗◦) component of the field strength tensor (90) vanishes for the
shock-wave field, the only nonzero contribution comes from the diagrams with
quantum gluons. In the lowest nontrivial order in αs there are three diagrams
shown in Fig. 38.

Consider at first the diagram shown in Fig. 38a (which corresponds to the
case x∗ > 0, y∗ < 0). The relevant contribution to the right-hand side of
Eq. (284) is:

− g2

∫
du[∞p(0)

A , up
(0)
A ]xta[up(0)

A ,−∞p(0)
A ]x ⊗

∫
dv[−∞p(0)

A , vp
(0)
A ]ytb
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a b c

x*x

Figure 38: Path integrals describing one-loop diagrams for Wilson-line operators in the
shock-wave field background.

× [vp(0)
A ,∞p(0)

A ]y
((
up

(0)
A + x⊥

∣∣∣up∗{(p(0)
Aξ − P◦

p2ξ

p · p2
)

× [
1

P2gξη + 2iGξη
− 1
P2gξλ + 2iGξλ

(DαGαλ
p2ρ

p · p2
+

p2λ

p · p2
DαGαρ

− p2λ

p · p2
PβDαGαβ

p2ρ

p · p2
)

1
P2gρη + 2iFρη

+ . . .]

× (p(0)
Aη −

p2η

p · p2
P◦)} − v {. . .}p∗

∣∣∣vp(0)
A + y⊥

))
ab
. (285)

As we discussed in Sec. 4, terms in parentheses proportional to P◦ vanish after
integration by parts (see. Eq. (123)). Further, it is easy to check that since the
only nonzero component of field strength tensor for the shock wave is G◦⊥ the
expression in braces in Eq. (285) can be reduced to O◦◦ where the operator Oµν
is given by Eq. (308). Starting from this point, it is convenient to perform the
calculation in the background of the rotated fieldBΩ (91) which is 0 everywhere
except the shock-wave wall. (We shall make the rotation back to field B in
the final answer). The gauge factors [∞, u]ta[u,−∞] and [∞, v]tb[v,−∞] in
Eq. (285) reduce to ta[∞,−∞]⊗ tb[−∞,∞] (at x∗ > 0, y∗ < 0) and we obtain:

− g2taUΩ ⊗ tbU†Ω
∫
du

∫
dv(u− v)

((
up

(0)
A + x⊥

∣∣∣p∗OΩ
◦◦

∣∣∣vp(0)
A + y⊥

))
ab

(286)

where we have used the fact that the operator p∗ commutes with OΩ. Let
us now derive the formula for the (◦◦) component of the gluon propagator((
x
∣∣∣OΩ

∣∣∣y)) in the shock-wave background. The path-integral representation
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of
((
x
∣∣∣OΩ
◦◦

∣∣∣y)) has the form((
x
∣∣∣4 1
P2

GξΩ◦
1
P2

GΩ
ξ◦

1
P2
− 1
P2

(DαGΩ
α◦

s0

2p∗
(287)

+
s0

2p∗
DαGΩ

αν −
s0

2p∗
PβDαGΩ

αβ

s0

2p∗
)

1
P2

∣∣∣y))
= i

∫ ∞
0

dτ

∫ τ

0

dτ ′
((
x
∣∣∣ei(τ−τ′)P2

{
GαΩ
◦

∫ τ′

0

dτ ′′ei(τ
′−τ′′)P2

×GΩ
α◦e

iτ′′P2
− is0

2p∗
DαGΩ

α◦e
iτ′′P2

}∣∣∣y))
= i

∫ ∞
0

dτN−1

∫ x(τ)=x

x(0)=y

Dx(t)e−i
∫
τ

0
dt ẋ

2
4 {4

∫ τ

0

dτ ′
∫ τ′

0

dτ ′′

×Peig
∫
τ

τ′
dtBΩ

µ (x(t))ẋµ(t)
gGΩ
◦i(x(τ ′))Peig

∫
τ′

τ′′
dtBΩ

µ (x(t))ẋµ(t)
∫ τ′

0

dτ ′′

×Peig
∫ τ′
τ′′
dtBΩ

µ (x(t))ẋµ(t)
gGΩ
◦i(x(τ ′′))Peig

∫ τ′′
0

dtBΩ
µ (x(t))ẋµ(t)

+ i

∫ τ

0

dτ ′Pe
ig
∫
τ

τ′
dtBΩ

µ (x(t))ẋµ(t) s0

ẋ∗(τ ′)
gDαGΩ

α◦(x(τ ′))Peig
∫
τ′

0
dtBΩ

µ (x(t))ẋµ(t)}.

As we discussed above, the transition through the shock wave occurs in a short
time ∼ 1

λ
so the gluon has no time to deviate in the transverse directions and

therefore the gauge factors in Eq. (287) can be approximated by segments of
Wilson lines. One obtains then (cf. Eq. (273)):((

x
∣∣∣OΩ
◦◦

∣∣∣y)) (288)

=
i

2
s2

0

∫ ∞
0

dτ

∫ τ

0

dτ ′
∫
dzδ(z∗)N−1

∫ x(τ)=x

x(τ′)=z

Dx(t)e−i
∫ τ
τ′
dt ẋ

2
4

× 1
ẋ∗(τ ′)

{2[GG]Ω(z⊥) − i[DG]Ω(z⊥)}N−1

∫ x(τ′)=z

x(0)=y

Dx(t)e−i
∫ τ
τ′
dt ẋ

2
4 ,

where [GG]Ω and [DG]Ω are the notations for the gauge factors (128) calculated
for the background field BΩ

µ ,

[DG]Ω(x⊥) =
∫
du[∞p1, up1]xDαGΩ

α◦(up1 + x⊥)[up1,−∞p1]x,

[GG]Ω(x⊥) =
∫
du

∫
dvΘ(u− v)[∞p1, up1]xGξΩ◦ (up1 + x⊥)

× [up1, vp1]xGΩ
ξ◦(vp1 + x⊥)[vp1,−∞p1]x. (289)
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As we noted in Sec. 4, the gauge factor−i[DG]+2[GG] in braces in Eq. (287) is
in fact the total derivative of U with respect to translations in the perpendicular
directions so we get((

x
∣∣∣OΩ
◦◦

∣∣∣y)) =
i

2
s2

0

∫ ∞
0

dτ

∫ τ

0

dτ ′
∫
dzδ(z∗) (290)

× N−1

∫ x(τ)=x

x(τ′)=z

Dx(t)e−i
∫ τ
τ′
dt ẋ

2
4

1
ẋ∗(τ ′)

~∂2
⊥U

Ω(x⊥)

× N−1

∫ x(τ′)=z

x(0)=y

Dx(t)e−i
∫ τ
τ′
dt ẋ

2
4 .

Using now the path-integral representation for bare propagator (95) and the
following formula∫ ∞

0

dτN−1

∫ x(τ)=x

x(0)=y

Dx(t)
1

ẋ∗(0)
e
−i
∫ τ

0
dt ẋ

2
4 = i

ln(x − y)2

16π2(x− y)∗
(291)

we finally obtain the (◦◦) component of the gluon propagator in the shock-wave
background in the form:((

x
∣∣∣OΩ
◦◦

∣∣∣y)) =
s2

0

2

∫
dzδ(z∗)

ln(x− z)2

16π2x∗
(292)

× [~∂2
⊥U

Ω(z⊥)Θ(x∗)Θ(−y∗) − ~∂2
⊥U
†Ω(z⊥)Θ(−x∗)Θ(y∗)]

1
4π2(z − y)2

,

where we have added the similar term corresponding to the case x∗ < 0, y∗ > 0.
We need also the ∂

∂x◦
derivative of this propagator (see Eq. (286)) which is((

x
∣∣∣p∗OΩ

◦◦

∣∣∣y)) =
is2

0

64π4

∫
dz

δ(z∗)
(x− y)2

(293)

× [~∂2
⊥U

Ω(z⊥)Θ(x∗)Θ(−y∗) − ~∂2
⊥U
†Ω(z⊥)Θ(−x∗)Θ(y∗)]

1
(z − y)2

.

Substituting now the Eq. (293) into Eq. (286) one obtains

g2

4π

((
x⊥

∣∣∣ 1
~p2
⊥
~∂2
⊥U

Ω 1
~p2
⊥

∣∣∣y⊥))
ab
taUΩ(x⊥)⊗ tbU†Ω(y⊥)

+
g2

4π

((
x⊥

∣∣∣ 1
~p2
⊥
~∂2
⊥U
†Ω 1
~p2
⊥

∣∣∣y⊥))
ab
UΩ(x⊥)ta ⊗ U†Ω(y⊥)tb. (294)

which agrees with Eq. (132).
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Let us consider now the diagram shown in Fig. 38c. The calculation is
very similar to the case of Fig. 38a diagram considered above so we shall only
briefly outline the calculation. One starts with the corresponding contribution
to the right-hand side of Eq. (284) which has the form (cf. (285):

− g2ζ

∫
du

∫
dvΘ(u − v)[∞p(0)

A + x⊥, up
(0)
A + x⊥]ta[up(0)

A + x⊥, vp
(0)
A + x⊥]

× tb[vp(0)
A + x⊥,−∞p(0)

A + x⊥]⊗ U†(y⊥)

×
((
up

(0)
A + x⊥

∣∣∣up∗{(p(0)
Aξ − P◦

p2ξ

p · p2
)[

1
P2gξη + 2iGξη

− 1
P2gξλ + 2iGΩ

ξλ

×
[
DαGΩ

αλ

p2ρ

p · p2
+

p2λ

p · p2
DαGΩ

αρ −
p2λ

p · p2
PβDαGαβ

p2ρ

p · p2

]
× 1
P2gρη + 2iGρη

+ . . .](p(0)
Aη −

p2η

p · p2
P◦)} − v {. . .} p∗

∣∣∣vp(0)
A + x⊥

))
ab
. (295)

As we demonstrated in Sec. 4, the terms in parentheses proportional to P◦ van-
ish and after that the operator in braces reduce to O◦◦. Again, it is convenient
to make a gauge transformation to the rotated field (91) which is 0 every-
where except the shock wave. Then the gauge factor [∞, u]ta[u, v]tb[v,−∞] in
Eq. (295) simplifies to ta[∞,−∞]tb (at x∗ > 0, y∗ < 0) and we obtain

− g2taUΩtb⊗U†Ω
∫
du

∫
dv(u− v)

((
up

(0)
A + x⊥

∣∣∣p∗OΩ
◦◦

∣∣∣vp(0)
A + x⊥

))
ab
. (296)

Using the expression (293) for the gluon propagator in the shock-wave back-
ground we can reduce Eq. (296) to

− g2

4π
taUΩ(x⊥)tb ⊗ U†Ω(y⊥)

((
x⊥

∣∣∣ 1
~p2
⊥

(~∂2
⊥U

Ω)
1
~p2
⊥

∣∣∣x⊥))
ab
. (297)

The contribution of the diagram in Fig. 38b differs from Eq. (297) only in
change U ↔ U†, x↔ y. Combining these expressions, one obtains the answer
in the rotated field (91) in the form

g2

16π3

∫
dz⊥

{[
{U†Ω(z⊥)UΩ(x⊥)}kj{UΩ(z⊥)U†Ω(y⊥)}il (298)

+ {UΩ(x⊥)U†Ω(z⊥)}il{U†ω(y⊥)UΩ(z⊥)}kj

− δkj {UΩ(x⊥)U†Ω(y⊥)}il − δil{U†Ω(y⊥)UΩ(x⊥)}kj
] (~x− ~z, ~y − ~z)⊥

(~x − ~z)2
⊥(~y − ~z)2

⊥

−
[
{UΩ(z⊥)}ijTr{UΩ(x⊥)U†Ω(z⊥)} −Nc{UΩ(x⊥)}ij)U†Ω(y⊥)kl

1
(~x− ~z)2

⊥
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−{UΩ(x⊥)}ij [U†Ω(z⊥)kl Tr{UΩ(z⊥)U†Ω(y⊥)} −Nc{U†Ω(y⊥)}kl )
] 1

(~y − ~z)2
⊥

}
.

Now we must perform the gauge rotation back to the “original” field Bµ. The
answer is especially simple if we consider the evolution of the gauge-invariant
operator such as Tr{U(x⊥)[x⊥, y⊥]−U†(y⊥)[y⊥, x⊥]+} where the Wilson lines
are connected by gauge segments at the infinity. We have then

ζ
∂

∂ζ
〈Tr{Ûζ(x⊥)[x⊥, y⊥]−Û†ζ(y⊥)[y⊥, x⊥]+}〉A =

= − αs
4π2

∫
dz⊥

(~x− ~y)2
⊥

(~x− ~z)2
⊥(~z − ~y)2

⊥

×
(

Tr{U(x⊥)[x⊥, z⊥]−U†(z⊥)[z⊥, x⊥]+}

× Tr{U(z⊥)[z⊥, y⊥]−U†(y⊥)[y⊥, z⊥]+}

− NcTr{U(x⊥)[x⊥, y⊥]−U†(y⊥)[y⊥, x⊥]+}
)
, (299)

where we have replaced the end gauge factors like Ω(∞p1 + x⊥)Ω†(∞p1 + y⊥)
and Ω(−∞p1 + x⊥)Ω†(−∞p1 + y⊥) by segments of gauge line [x⊥, y⊥]+ and
[x⊥, y⊥]−, respectively. Since the background field Bµ is a pure gauge outside
the shock wave the specific form of the contour in Eq. (299) does not matter
as long as it has the same initial and final points. Finally, note that the gauge
factors in the right-hand side of Eq. (299) preserve their form after rescaling
back to the field Aµ so we reproduce the Eq. (137).

In the general case, the evolution of the 2n-line operators such as
Tr{UU†}Tr{UU†}...Tr{UU†} come from either self-interaction diagrams or
from the pair-interactions ones (see Fig. 39). These pair-wise kernels have the
form (Ux ≡ U(x⊥), etc.)

ζ
∂

∂ζ
{Ux}ij{U†y}kl =

g2

16π3

∫
dz⊥

(~x− ~z, ~y− ~z)⊥
(~x− ~z)2

⊥(~y − ~z)2
⊥

(300)

×
(
{U†zUx}kj{UzU†y}il + {UxU†z}il{U†yUz}kj − δkj {UxU†y}il − δil{U†yUx}kj

)
,

ζ
∂

∂ζ
{Ux}ij{Uy}kl = − g2

16π3

∫
dz⊥

(~x− ~z, ~y − ~z)⊥
(~x− ~z)2

⊥(~y − ~z)2
⊥

×
(
{Uz}il{UyU†zUx}kj + {UxU†zUy}il{Uz}kj − {Ux}il{Uy}kj − {Uy}il{Ux}kj

)
,
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A

B

Figure 39: Typical diagrams for the one-loop evolution of the n-line operator.

ζ
∂

∂ζ
{U†x}ij{U†y}kl = − g2

16π3

∫
dz⊥

(~x − ~z, ~y − ~z)⊥
(~x− ~z)2

⊥(~y − ~z)2
⊥

×
(
{U†z}il{U†yUzU†x}kj + {U†xUzU†y}il{U†z}kj − {U†x}il{U†y}kj − {U†y}il{U†x}kj

)

for the pair-interaction diagrams in Fig. 39a and

ζ
∂

∂ζ
{Ux}ij = − g2

16π3

∫
dz⊥[UzTr{UxU†z} −NcUx]

1
(~x− ~z)2

⊥
,

ζ
∂

∂ζ
{U†x}ij = − g2

16π3

∫
dz⊥[U†zTr{UzU†x} −NcU†x]

1
(~x− ~z)2

⊥
, (301)

for the self-interaction diagrams of Fig. 39b type.

7.4 Gluon propagator in the axial gauge.

Our aim here is to derive the expression for the gluon propagator in the external
field in the axial gauge. The propagator of the “quantum” gauge field Aq in the
external “classical” field Acl in the axial gauge eµAµ = 0 can be represented
as the following functional integral:

Gabµν(x, y) = lim
w→0

N−1

∫
DAAqaµ (x)Aqbν (y) (302)

× ei
∫
dzTr{Aqα(z)(D2gαβ−DαDβ−2iFαβ

cl
− 1
w e

αeβ)Aq
β

(z)},
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where Dµ = ∂µ−igAclµ . Hereafter we shall omit the label “cl” from the external
field. This propagator can be formally written down as

iGabµν(x, y) =
((
x
∣∣∣ 1
2
µν −PµPν + 1

w e
µeν

∣∣∣y))ab, (303)

where 2µν = P2gµν+2iF µν. It is easy to check that the operator in right-hand
side of Eq. (303) satisfies the recursion formula

1
2
µν −PµPν + eµeν

w

= (δξµ − Pµ
eξ

Pe )
1
2
ξη

(δην −
eη

PePν) +Pµ
w

(Pe)2
Pν

− 1
2
µα − PµPα + eµeα

w

(DλF λα
eξ

Pe − P
α 1
P2

DλF
λξ)

× 1
2
ξη

(δην −
eη

PePν) (304)

which gives the propagator as an expansion in powers of the operator DλF aλα =
−gψ̄taγαψ. We shall see below that in the leading logarithmic approximation
we need the terms not higher than the first nontrivial order in this operator.
With this accuracy

1
2
µν −PµPν + 1

we
µeν

= (δξµ − Pµ
eξ

Pe )
1
2
ξη

(δην −
eη

PePν) +Pµ
w

(Pe)2
Pν

− (δξµ − Pµ
eξ

Pe )
1
2
ξη

(
DλF

λη e
ρ

Pe +
eη

PeDλF
λρ

− eη

PeP
βDαF

αβ e
ρ

Pe

) 1
2
ρσ

(δσν −
eσ

PePν). (305)

We take now w → 0, obtaining the propagator in external field in axial gauge
in the form

iGabµν(x, y) = (δξµ − Pµ
eξ

Pe )
1
2
ξη

(δην −
eη

PePν) − (δξµ − Pµ
eξ

Pe )
1
2
ξη

×
(
DλF

λη e
ρ

Pe +
eη

PeDλF
λρ− eη

PeP
βDαF

αβ e
ρ

Pe
)

× 1
2
ρσ

(δσν −
eσ

PePν) + . . . (306)

where the dots stand for the terms of second (and higher) order in DλFλρ. It
can be demonstrated that for our purposes a first few terms of the expansion
of operators 1

2
in powers of Fξη are enough, namely

iGabµν(x, y) = (δξµ−Pµ
eξ

Pe)
[
δξη
P2
− 2i

1
P2

Fξη
1
P2

+Oξη
]

(δην−
eη

PePν)+. . . (307)
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where the operator O stands for

Oµν = 4
1
P2

F ξ µ
1
P2

Fξν
1
P2

(308)

− 1
P2

(DαFαµ
p2ν

p · p2
+

p2µ

p · p2
DαFαν −

p2µ

2p · p2
PβDαFαβ

p2ν

2p · p2
)

1
P2

.

7.5 First-order effective action.

As we discussed in Sec. 5, in order to calculate the effective action semi-
classically we can start with the trial configuration (210). Making the shift
A→ A+ Ā(0) in the functional integral (202), we obtain

eiSeff =
∫
DA exp i

{∫
dx⊥V

a
i (x⊥)Uai(x⊥) + 2

∫
dx⊥∆a

i (x⊥)Aai(0, x⊥)

+ 2Tr
∫
dx⊥

[
− 1

2
[U i,∆i]W1 +

(
L1 +

1
2

[U i,∆i]
)
W2

− 1
2

[V i,∆i]Y1 +
(
− L1 +

1
2

[V i,∆i]
)
Y2

]
+

1
2

∫
d4xAaµ

(
D̄2gµν − 2igF̄µν + g2Gµν

)ab
Abµ + O(A3)

}
(309)

where

Y1(x⊥) = [x⊥ +∞p1, x⊥](1), Y2(x⊥) = [x⊥, x⊥ −∞p1](1),

W1(x⊥) = [x⊥ +∞p2, x⊥](1), W2(x⊥) = [x⊥, x⊥ −∞p2](1), (310)

and the operator Gµν is the second variational derivative of the source term
with respect to Aµ, Aν . The non-zero components of Gµν are

G•• = δ(
2
s
x∗)
(
∂i − i[Vi, )U i

s/2
i∂∗

, G∗∗ = δ(
2
s
x•)
(
∂i − i[Ui, )V i

s/2
i∂•

, (311)

while all other components vanish. In the first order in our cluster expansion
we obtain

S
(1)
eff = −2

((
0,∆a

i

∣∣∣ ( 1
D̄2gik − 2igF̄ik

)ab
|0,∆k) (312)

+
2g2

s2

{((
0, L1

∣∣∣ pµ2
α+ iε

+
((

0, [Ui,∆i]
∣∣∣pµ2
α
−
((

0, L1

∣∣∣ pµ1
β + iε

+
((

0, [Vi,∆i]
∣∣∣pµ1
β

}a
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×
(

1
D̄2gµν − 2igF̄µν + g2Gµν

)ab
×
{

pν2
α− iε

∣∣∣0, L1

))
+
pν2
α

∣∣∣0, [U i,∆i]
))
− pν1
β − iε

∣∣∣0, L1

))
+
pν1
β

∣∣∣0, [V i,∆i]
))}

where 1
α ≡

1
2 ( 1
α−iε+

1
α+iε ) ( similarly for 1

β ) and
∣∣∣0,∆i

))
≡
∫
dz⊥

∣∣∣0, z⊥))∆i(z⊥)

etc. We will now demonstrate that with O[U, V ]2 accuracy one can reduce
1

D̄2gµν−2igF̄µν+g2Gµν
in right-hand side of Eq. (312) to gµν

D̄2 . Indeed,

1
D̄2gµν − 2igF̄µν + g2Gµν

(313)

=
gµν
D̄2

+ 2ig
1
D̄2

F̄µν
1
D̄2
− 4g2 1

D̄2
F̄µξ

1
D̄2

F̄ξν
1
D̄2
− g2 1

D̄2
Gµν

1
D̄2

+ . . . .

It is easy to note that the term ∼ 1
D̄2 F̄µν

1
D̄2 does not contribute to right-

hand side of Eq. (312) because the relevant components of F̄µν vanish: F̄ik =
F̄∗• = 0. Let us prove that the last term in the right-hand side of Eq. (313)
leads to the contributions ∼ [U, V ]3. Consider the first term in the right-hand
side of Eq. (311). The corresponding contribution is 1

D̄2 F̄i•
1
D̄2 F̄∗k

1
D̄2 + (• ↔

∗). Because F̄∗i = Ui + O(∆i), F̄i• = Vi + O(∆i) this term is actually
proportional to ∆i

1
D̄2 Vi

1
D̄2Uk

1
D̄2 ∆k ∼ [U, V ]3. Let us now turn our attention to

the second term in the right-hand side of Eq. (312). The relevant contributions
have the structure L1

(
4
D̄2 F̄•i

1
D̄2 F̄•i

1
D̄2 − 1

D̄2G••
)
L1

1
D̄2 , L1

1
D̄2 F̄•i

1
D̄2 F̄∗i

1
D̄2L1,

[Vi,∆i]
(

1
D̄2 F̄•i

1
D̄2 F̄•i

1
D̄2 + 1

D̄2G•• 1
D̄2

)
[Vi,∆i], [Vi,∆i] 1

D̄2 F̄•i
1
D̄2 F̄∗i

1
D̄2 [Ui,∆i],

and similar expressions with U ↔ V , ∗ ↔ •. All of them are clearly ∼ [U, V ]3

except the first term which is

g2
((

0, L1

∣∣∣ 1
β + iε

(
4
D̄2

F̄•i
1
D̄2

F̄•i
1
D̄2
− 1
D̄2
G••

1
D̄2

)
1

β − iε

∣∣∣0, L1

))
. (314)

If we neglect the [U, V ]3 terms in cluster expansion, the Green function in
braces in right-hand side of Eq. (314) should be taken in the Uiθ(x∗) back-
ground. This Green function has the form((

x
∣∣∣− 4

1
D̄2

F̄•i
1
D̄2

F̄•i
1
D̄2

+
1
D̄2
G••

1
D̄2

∣∣∣y)) =
((
x
∣∣∣O••∣∣∣y)) (315)

= −iθ(x∗)θ(−y∗)U†(x⊥)
∫
dzδ(z∗)

((
x
∣∣∣ 1
p2α

∣∣∣z))~∂2
⊥U(z⊥)

((
z
∣∣∣ 1
p2

∣∣∣y)),
plus the similar term ∼ θ(−x∗)θ(y∗). It is easy to see that the terms ∼
θ(x∗)θ(−y∗) or ∼ θ(−x∗)θ(y∗) do not contribute to Eq. (314) — recall that

105



this term comes from the contraction of L1W2(x) and L1Y2(y) where both
x∗, y∗ < 0.

Thus, the [U, V ]2 term in cluster expansion of Eq. (312) reduces to

S
(1)
eff =

((
0,∆i

∣∣∣−2
D̄2

∣∣∣0,∆i

))
(316)

− g2

s

((
0, L1

∣∣∣[ 1
α+ iε

1
D̄2

1
β − iε +

1
β + iε

1
D̄2

1
α− iε

]∣∣∣0, L1

))
− g2

s

((
0, L1

∣∣∣ 1
β + iε

1
D̄2

1
α

∣∣∣0, [U i,∆i]
))

+
g2

s

((
0, L1

∣∣∣ 1
α+ iε

1
D̄2

1
β

∣∣∣0, [V i,∆i]
))

− g2

s

((
0, [U i,∆i]

∣∣∣ 1
α

1
D̄2

1
β − iε

∣∣∣0, L1

))
+
g2

s

((
0, [Vi,∆i]

∣∣∣ 1
β

1
D̄2

1
α− iε

∣∣∣0, L1

))
.

It is easy to see that the remaining Green function connect points belonging to
the different boundaries of the same sector in Fig. 40. It may be demonstrated

i
iA = - +di

i
iA = - +diV V U Ug g

i
iA = - Λ+di Λg

x x
*

A = 0i

Figure 40: Trial field configuration.

that up to [U, V ] accuracy the only effect of the background field on the Green
function with the arguments belonging to the same sector is the corresponding
gauge factor:

((
x
∣∣∣ 1
D2

∣∣∣y)) = Ω†(x⊥)
((
x
∣∣∣−1
p2

∣∣∣y))Ω†(y⊥), where Ω is U, V , or Λ.
We obtain((

0, x⊥
∣∣∣ 1
α+ iε

1
D2

1
β − iε

∣∣∣0, y⊥)) =
((

0, x⊥
∣∣∣ 1
α+ iε

−1
p2 + iε

1
β − iε

∣∣∣0, y⊥)), (317)((
0, x⊥

∣∣∣ 1
α+ iε

1
D2

1
β + iε

∣∣∣0, y⊥)) = U†x

((
0, x⊥

∣∣∣ 1
α+ iε

−1
p2 + iε

1
β + iε

∣∣∣0, y⊥))Uy ,
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((
0, x⊥

∣∣∣ 1
α− iε

1
D2

1
β − iε

∣∣∣0, y⊥)) = V †x

((
0, x⊥

∣∣∣ 1
α− iε

−1
p2 + iε

1
β − iε

∣∣∣0, y⊥))Vy.
In the leading log approximation z((

0, x⊥
∣∣∣ −1
p2 + iε

∣∣∣0, y⊥)) =
i

4π
ln
σ

σ′
δ2(x⊥ − y⊥), (319)

and((
0, x⊥

∣∣∣ 1
α± iε

−2/s
p2 + iε

1
β − iε

∣∣∣0, y⊥)) =
((

0, x⊥
∣∣∣ 1
α± iε

−2/s
p2 + iε

1
β + iε

∣∣∣0, y⊥))
=

i

2π
ln
σ

σ′

((
x⊥

∣∣∣ 1
~p2
⊥

∣∣∣y⊥)), (320)

so we get

S
(1)
eff =

−i
2π

ln
σ

σ′

(∫
dx⊥∆ai(x⊥)∆a

i (x⊥) + g2

∫
dx⊥dy⊥

×
{
La1(x⊥)

((
x⊥

∣∣∣ 1
~p2
⊥

∣∣∣y⊥))La1(y⊥)

− La1(x⊥)
((
x⊥

∣∣∣1
2

(U†
1
~p2
⊥
U +

1
~p2
⊥

)
∣∣∣y⊥))ab[Vi,∆i]b(y⊥)

+ La1(x⊥)
((
x⊥

∣∣∣1
2

(V †
1
~p2
⊥
V +

1
~p2
⊥

)
∣∣∣y⊥))ab[Ui,∆i]b(y⊥)

})
. (321)

Finally, the effective actuion in the [U, V ]2 order in the cluster expansion has
the form

S
(1)
eff = − ig2

2π
ln
σ

σ′
2Tr

{∫
dx⊥

1
g2

∆i(x⊥)∆i(x⊥) +
∫
dx⊥dy⊥

{
L1(x⊥)

×
((
x⊥

∣∣∣ 1
~p2
⊥

∣∣∣y⊥))L1(y⊥) + 2L1(x⊥)
((
x⊥

∣∣∣ 1
~p2
⊥

∣∣∣y⊥))[Ui − Vi,∆i](y⊥)
}}

(322)

zThis formula may obviously seem confusing since

((
0, x⊥

∣∣∣ 1
p2+iε

∣∣∣0, y⊥)) = −i
4π2(~x−~y)2⊥

,

which does not have any ln σ
σ′ . However, careful analysis with the slope of the Y operators

n = σp1 + σ̃p2 instead of p1 and the slope of W operators n′ = σ′p1 + σ̃′p2 instead of p2,
yields logarithmic contribution of the form((

0, x⊥

∣∣∣ αβ

(α+ σ
σ̃
β − iε)(β + σ̃′

σ′α+ iε)

1

p2 + iε

∣∣∣0, y⊥)) = − i

4π
ln
σ

σ′
δ2(x⊥ − y⊥). (318)
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which coincides with Eq. (223).
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