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Abstract

We demonstrate that the free neutron structure function can be extracted

in deep-inelastic scattering from A = 3 mirror nuclei, with nuclear effects

canceling to within 2% for x <∼ 0.85.
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I. INTRODUCTION

One of the most fundamental properties of the nucleon is the structure of its valence quark

distributions. Unlike the sea, which is generated via both perturbative and non-perturbative

mechanisms, the valence quark structure reflects entirely large distance dynamics in the

nucleon, which cannot be described within perturbative quantum chromodynamics.

Experimentally, most of the recent studies of nucleon structure have emphasized the

small-x region populated mainly by sea quarks (x being the fraction of momentum of the

nucleon carried by the quark), while the valence quark structure has for some time now been

thought to be understood. This is to some extent true, albeit with one major exception

— the so-called deep valence region, at very large x, x >∼ 0.7. Recently it has become

more widely appreciated that knowledge of quark distributions at large x is essential for

a number of reasons. Not least of these is the necessity of understanding backgrounds in

collider experiments, such as in searches for new physics beyond the standard model [1].

Furthermore, the behavior of the d/u quark distribution ratio in the limit x→ 1 is a critical

test of the mechanism of spin-flavor symmetry breaking in the nucleon, and of the onset of

perturbative behavior in large-x structure functions.

The most widely used source of information about the valence quark distributions in the

nucleon has been the proton structure function, F p
2 , which at large x measures a charge-

squared weighted combination of the valence u and d distributions. Because the u quark

is weighted by a factor 4:1 compared with the d, the F p
2 structure function most directly

constrains the u quark distribution.

To determine the individual isospin distributions separately requires a second linear

combination of u and d, which traditionally is obtained from the neutron structure function,

F n
2 , and which could in principle constrain the d quark distribution as well as the u. However,

the absence of free neutron targets means that usually the deuteron is used as an effective

neutron, with the neutron structure function approximated by F n
2 ≈ F d

2 − F
p
2 . While this

approximation is valid at moderate x, it breaks down dramatically for x >∼ 0.4 due to Fermi
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motion and nuclear binding effects in the deuteron [2–5].

The problem of extracting neutron structure functions from nuclear data is rather old

[2], although recently the discussion has been revived with the realization [5] that F n
2 ,

extracted from F d
2 by taking into account Fermi motion and binding (off-shell) effects, could

be significantly larger than that extracted in earlier analyses in which only Fermi motion

corrections were applied. In particular, omitting nuclear binding corrections can introduce

errors of up to 50% [5,6] in F n
2 /F

p
2 already at x ∼ 0.75. Such a difference is of the same order

of magnitude as the variation of the behavior of the F n
2 /F

p
2 ratio predicted in the x → 1

limit, which ranges from 1/4 in non-perturbative models where the d quark is suppressed

relative to u [7], to 3/7 in perturbative QCD-inspired models which emphasize helicity

aligned configurations of the quark and nucleon [8].

Although one can make a strong argument that a proper treatment of nuclear corrections

in the deuteron should account for both Fermi motion as well as binding effects, the question

can ultimately be settled only by experiment. In this paper we suggest how this can be

achieved by using a novel method which maximally exploits the mirror symmetry of A = 3

nuclei. Regardless of the absolute value of the nuclear EMC effects in 3He or 3H, the

differences between these will be small — on the scale of charge symmetry breaking in

the nucleus — which allows a relatively clean determination of F n
2 over a large range of x

essentially free of nuclear contamination.

The argument is actually rather simple. In the absence of the Coulomb interaction and

in an isospin symmetric world the properties of a proton (neutron) bound in a 3He nucleus

would be identical to that of a neutron (proton) bound in 3H. If, in addition, the proton

and neutron distributions in 3He (and in 3H) were identical, the neutron structure function

could be extracted with no nuclear corrections, regardless of the size of the EMC effect in

3He or 3H separately.

In practice, 3He and 3H are of course not perfect mirror nuclei — their binding energies

for instance differ by some 10% — and the p and n distributions are not quite identical.

However, the A = 3 system has been studied for many years, and modern realistic A = 3
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wave functions are known to rather good accuracy. In a self-consistent framework one can

use the same NN interaction which describes the two-nucleon system (e.g. NN scattering,

deuteron form factors, quasi-elastic ed scattering) to provide the basic input interaction into

the three-nucleon calculation. Therefore the wave functions can be tested against a large

array of observables which put rather strong constraints on the models.

Defining the EMC-type ratios for the F2 structure functions of 3He and 3H (weighted by

corresponding isospin factors) by:

R(3He) =
F

3He
2

2F p
2 + F n

2

, (1a)

R(3H) =
F

3H
2

F p
2 + 2F n

2

, (1b)

one can write the ratio of these as:

R =
R(3He)

R(3H)
. (2)

Inverting this expression directly yields the ratio of the free neutron to proton structure

functions:

F n
2

F p
2

=
2R− F 3He

2 /F
3H
2

2F
3He
2 /F

3H
2 −R

. (3)

We stress that F n
2 /F

p
2 extracted via Eq.(3) does not depend on the size of the EMC effect

in 3He or 3H, but rather on the ratio of the EMC effects in 3He and 3H. If the neutron and

proton distributions in the A = 3 nuclei are not dramatically different, one might expect

R ≈ 1. To test whether this is indeed the case requires an explicit calculation of the EMC

effect in the A = 3 system.

The conventional approach employed in calculating nuclear structure functions in the

valence quark region, x >∼ 0.3, is the impulse approximation, in which the virtual photon

scatters incoherently from individual nucleons in the nucleus [9]. The nuclear cross section

is determined by factorizing the γ∗–nucleus interaction into γ∗–nucleon and nucleon–nucleus

amplitudes. In the absence of relativistic and nucleon off-shell corrections [10,11], the struc-

ture function of a nucleus, FA
2 , can then be calculated by folding the nucleon structure

function, FN
2 , with a nucleon momentum distribution in the nucleus, fN/A:
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FA
2 (x) =

∫
dy f(y) FN

2 (x/y) ≡ f(x) ⊗ FN
2 (x) , (4)

where y is the fraction of the ‘plus’-component of the nuclear momentum carried by the

interacting nucleon, and the Q2 dependence in the structure functions is implicit. The

convolution expression in Eq.(4) is correct in the limit of large Q2; at finite Q2 there are

additional contributions to FA
2 from the nucleon FN

1 structure function, although these are

suppressed by powers of M2/Q2, where M is the nucleon mass. Corrections to the impulse

approximation appear in the guise of final state interactions, multiple rescattering (nuclear

shadowing), NN correlations and 6-quark clusters, however, these are generally confined to

either the small-x [12], or very large-x (x >∼ 0.9) [13] regions.

The distribution f(y) of nucleons in the nucleus is related to the nucleon spectral function

S(p) by [9]:

f(y) =
∫
d3~p

(
1 +

pz
p0

)
δ
(
y − p0 + pz

M

)
S(p) , (5)

where p is the momentum of the bound nucleon, and is normalized such that
∫
dy f(y) =

A. For an A = 3 nucleus the spectral function is evaluated from the three-body nuclear

wave function, calculated by solving the homogeneous Faddeev equation with a given two-

body interaction. Details of the computation of the wave functions can be found in Ref.

[14]. To examine the model dependence of the distribution function we use several different

potentials, namely the “EST” (Ernst-Shakin-Thaler) separable approximation to the Paris

potential [15] (referred to as “PEST”), the unitary pole approximation [16] to the Reid Soft

Core (RSC) potential, and the Yamaguchi potential [17] with 7% mixing between 3S1 and

3D1 waves.

In terms of the proton and neutron momentum distributions, the F2 structure function

for 3He is given by:

F
3He
2 = 2 fp/3He ⊗ F p

2 + fn/3He ⊗ F n
2 . (6a)

Similarly for 3H, the structure function is evaluated from the proton and neutron momentum

distributions in 3H:
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F
3H
2 = fp/3H ⊗ F p

2 + 2 fn/3H ⊗ F n
2 . (6b)

Because isospin symmetry breaking effects in nuclei are quite small, one can to a good

approximation relate the proton and neutron distributions in 3He to those in 3H:

fn/3H ≈ fp/3He , (7a)

fp/3H ≈ fn/3He , (7b)

although in practice we consider both the isospin symmetric and isospin symmetry breaking

cases explicitly. Note that even in the isospin symmetric case the proton and neutron

distributions in 3He will be different because while the neutron in 3He is accompanied by

a spectator pp, the spectator system of the proton is either an uncorrelated pn pair or a

recoiling deuteron.

The ratio R of EMC ratios for 3He and 3H is shown in Fig. 1 for the various nuclear

model wave functions (PEST, RSC and Yamaguchi), using the CTEQ parameterization [18]

of parton distributions at Q2 = 10 GeV2 for FN
2 . The EMC effects are seen to largely cancel

over a large range of x, out to x ∼ 0.85 − 0.9, with the deviation from a ‘central value’

R ≈ 1.01 within ±1%. Furthermore, the dependence on the nuclear wave function is very

weak. In practice, the exact shape of R will not be important for the purposes of extracting

F n
2 /F

p
2 from the F

3He
2 /F

3H
2 ratio; rather, it is essential that, as we find, the model dependent

deviation of R from the central value should be small.

The dependence of R on the input nucleon structure function parameterization is il-

lustrated in Fig. 2, where several representative curves at Q2 = 10 GeV2 are given: apart

from the standard CTEQ fit (solid), the results for the GRV [19] (dot-dashed), Donnachie-

Landshoff (DL) [20] (dashed), and BBS [21] (dotted) parameterizations are also shown (the

latter at Q2 = 4 GeV2). For x <∼ 0.6 there is little dependence (<∼ 0.5%) in the ratio on

the structure function input. For 0.6 <∼ x <∼ 0.85 the dependence is greater, but still with

<∼ ±1% deviation away from the central value R ≈ 1.01. The spread in this region is due

mainly to the poor knowledge of the neutron structure function at large x. Beyond x ≈ 0.85
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there are few data in the deep-inelastic region on either the neutron or proton structure

functions, so here both the d and u quark distributions are poorly determined.

A standard assumption in most global fits of parton distributions is that d/u → 0 as

x→ 1. This assumption has recently been questioned on theoretical and phenomenological

grounds [5,22,23]. The BBS parameterization [21], on the other hand, incorporates con-

straints from perturbative QCD, and forces d/u → 0.2 as x → 1 [8]. The effect of the

different large-x behavior of the d quark is apparent only for x >∼ 0.85, where it gives a dif-

ference of ∼ 1–2% in R compared with the fits in which d/u→ 0. One can also modify the

standard CTEQ fit, for example, by applying a correction factor [22] to enforce d/u → 0.2,

however, this also produces differences in R which are <∼ 2% for x < 0.9.

Despite the seemingly strong dependence on the nucleon structure function input at

very large x, this dependence is actually artificial. In practice, once the ratio F
3He
2 /F

3H
2 is

measured, one can employ an iterative procedure to eliminate this dependence altogether.

Namely, after extracting F n
2 /F

p
2 from the data using some calculated R, the extracted F n

2

can then be used to compute a new R, which is then used to extract a new and better value

of F n
2 /F

p
2 . This procedure is iterated until convergence is achieved and a self-consistent

solution for the extracted F n
2 /F

p
2 and R is obtained.

All of the structure functions discussed thus far have been calculated assuming leading

twist dominance at Q2 = 10 GeV2. To test the sensitivity of the ratio to possible effects

beyond leading twist, we have calculated R using the fit to the total F2 structure function

from Donnachie and Landshoff [20], which has an explicit higher twist (∝ 1/Q2) component

in addition to the leading twist. The result is indicated by the upper dot-dashed curve

DL(HT) in Fig. 2. The difference between the leading twist only and leading + higher twist

curves is negligible for x <∼ 0.8, increasing to ∼ 1.5% at x ∼ 0.85, where higher twist effects

are known to be more important. The size of the higher twist corrections can be determined

by taking measurements at several values of Q2 and observing any 1/Q2 dependence of the

structure function. In particular, since the Q2 dependence of F p
2 has been measured in a

number of earlier experiments [24], the Q2 dependence of the extracted F n
2 /F

p
2 can be used
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to separate the leading twist from the non-leading twist components of F n
2 .

We conclude therefore that the effect on R from the present lack of knowledge of the

nucleon structure function is <∼ 2% for x <∼ 0.85. However, this uncertainty can in principle

be eliminated altogether via an iteration procedure, so that the only model dependence of

R will be from the nuclear interaction in the A = 3 nucleus.

The ratios in Fig. 1 were calculated using three-nucleon wave functions neglecting the

Coulomb interaction and working in an isospin basis (we also omit possible three-body

forces since these are expected to have a negligible effect on R). To estimate the effect of

neglecting the Coulomb interaction in 3He and at the same time correct the long range part

of the three-body wave function due to the change in the binding energy, we have modified

the 1S0 potential in 3He and 3H to reproduce their respective experimental energies. In this

way the 3S1 −3 D1 interaction responsible for the formation of the deuteron is unchanged.

This approximation spreads the effect of the Coulomb interaction over both the pp and np

interaction in the 1S0 channel. To that extent, it shifts some of the Coulomb effects in the

neutron distribution in 3He to the proton distribution. However, this simple modification to

the 1S0 interaction will allow us to study explicitly the possible effects associated with the

differences in the binding energies of 3He and 3H.

The ratioR calculated with the PEST wave function modified according to this prescrip-

tion is shown in Fig. 3, labeled PEST(E) (dashed curve). (The CTEQ parameterization of

the nucleon structure function at Q2 = 10 GeV2 is used.) The result of this modification

is a shift of approximately 0.5–1% shift in R, with the net effect still being a ratio which

deviates by < 2% from unity.

Also shown in Fig. 3 is the prediction of the nuclear density model, extrapolated from

heavy nuclei to A = 3 [25]. The nuclear density model, which has proven successful for

studying the A-dependence of the EMC effect for heavy nuclei, stems from the empirical

observation that for heavy nuclei the deviation from unity in the EMC ratio is assumed to

scale with nuclear density:
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R(A1)− 1

R(A2)− 1
=
ρ(A1)

ρ(A2)
, (8)

where ρ(A) is the mean nuclear density. From the empirical A = 3 charge radii one finds

that ρ(3H)/ρ(3He) ≈ 140%, so that the EMC effect in 3H is predicted to be ∼ 40% bigger

than in 3He. However, assuming that R(3He) can be extrapolated from the measured EMC

ratios for heavy nuclei such as 56Fe, one still finds that ratio |R − 1| < 2% for all x <∼ 0.85.

Although there are questions about the meaning of nuclear density for a few-body system

[26], it is reassuring to see that practically the entire range of models of the nuclear EMC

effect predict that R is within 1–2% of unity for all x <∼ 0.85.

The ideal place to carry out a high-x deep-inelastic scattering (DIS) experiment on 3He

and 3H [27,28] is Jefferson Lab (JLab) with its proposed energy upgrade to 12 GeV. Since the

ratio of longitudinal to transverse photoabsorption cross sections R = σL/σT is the same for

3He and 3H, measurements of the 3He and 3H DIS cross sections under identical conditions

can provide a direct measurement of the ratio of the F2 structure functions of the two nuclei:

σ(3H)/σ(3He) = F
3H
2 /F

3He
2 . The key issue for the experiment will be the availability of a

high density 3H tritium target similar to those used in the past to measure the elastic form

factors of 3H at Saclay [29] and MIT-Bates [30]. The high intensity of the JLab beam and

the large acceptance of existing or proposed JLab spectrometers will facilitate high statistics

DIS cross section measurements (≤ ±0.25%) over a large x range (0.10 ≤ x ≤ 0.83) and

valuable systematics checks in a data taking period of just a few weeks.

The measured F
3H
2 /F

3He
2 ratio is expected to be dominated by experimental uncertainties

that do not cancel in the DIS cross section ratio of 3H to 3He, and the theoretical uncertainty

in the calculation of R. Assuming that the target densities can be known to the ' 0.5% level

and that the relative difference in the 3H and 3He radiative corrections would be ' 0.5%,

the total experimental error in the DIS cross section ratio of 3H to 3He should be ≤ 1.0%

(similar to the error of past DIS measurements of the proton to deuteron cross section ratio

[31]). Such an error is comparable to the present theoretical uncertainty in the calculation

of the ratio R.
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Figure 4 shows the presently available data on F n
2 /F

p
2 , adjusted for the JLab 12 GeV

kinematics, as extracted from the SLAC deep-inelastic σ(p) and σ(d) cross sections using a

Fermi-smearing model with the Paris nucleon–nucleon potential [6]. To indicate the quality

of the proposed F n
2 /F

p
2 ratio determination from the σ(3H)/σ(3He) measurement, we plot in

Fig. 4 the ± one standard deviation projected error band for the x range accessible with a 12

GeV upgraded JLab beam. The band includes both projected experimental and theoretical

uncertainties. The central values of the band represent F n
2 /F

p
2 determined using the density

model [25] for the nuclear EMC effect and data on EMC ratios for heavy nuclei from the

SLAC experiment E139 [32]. It is evident, therefore, that the proposed measurement will

be able to unambiguously distinguish between the two different methods of extracting the

F n
2 /F

p
2 ratio from proton and deuterium DIS measurements, and determine its value for

large x with an excellent precision in an (almost) independent model way.

As well as offering a relatively clean way to extract F n
2 /F

p
2 , DIS from the 3He/3H system

can also determine the absolute size of the EMC effect in A ≤ 3 nuclei. With F n
2 determined

from the combined F
3He
2 /F

3H
2 and F p

2 structure functions, the size of the EMC effect in the

deuteron (namely, F d
2 /(F

p
2 + F n

2 )) can be deduced from the measured F d
2 /F

p
2 ratio. This

would settle a question which has remained controversial since the early 1970s. Furthermore,

data on the absolute values of F
3He
2 and F

3H
2 will also allow the absolute value of the EMC

effect in A = 3 nuclei to be determined. To date the only data on F
3He
2 in existence are

those from the HERMES experiment [33], which measured the ratio σ(3He)/(σ(d) + σ(p)),

although the focus there was the region of small x and Q2.

In summary, we have demonstrated the effectiveness of using A = 3 mirror nuclei to

extract the ratio of the neutron to proton structure functions, F n
2 /F

p
2 , free of nuclear effects

to < 2% for all x <∼ 0.85. A successful program of DIS measurements of A = 3 cross sections

at an energy-upgraded Jefferson Lab would not only settle a “text-book” issue which has

eluded a definitive resolution for nearly 30 years, but would also allow the completion of

the empirical study of nuclear effects in deep-inelastic scattering over the full range of mass

numbers.
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FIG. 1. Ratio of nuclear EMC ratios for 3He and 3H for various nuclear models: PEST (solid),

Reid Soft Core (dashed), Yamaguchi (dot-dashed).
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FIG. 2. Ratio of nuclear EMC ratios for 3He and 3H with the PEST wave functions, using

various nucleon structure function parameterizations: CTEQ (solid), GRV (dot-dashed), BBS

(dotted), and Donnachie-Landshoff (DL) with leading twist only, and with higher twist (HT)

correction (dot-dashed).
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FIG. 3. Ratio of nuclear EMC ratios for 3He and 3H for the PEST wave function (solid), modi-

fied PEST to reproduce the experimental binding energies (dashed), and the density extrapolation

model (dot-dashed).
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FIG. 4. Fn2 /F
p
2 ratio extracted from previous deep-inelastic p and d cross sections using a

Fermi-smearing model [6] (solid circles). The shaded band represents a ± one standard deviation

error for the proposed 3H and 3He DIS JLab experiment, with the central values of the band

corresponding to Fn2 /F
p
2 extracted assuming an EMC effect in deuterium (see text).
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