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Abstract

The form factor for the anomalous process yx+ — x+x®, which is presently being
measurcd at CEBAF, i calculated in the Schwinger-Dyson approach in conjunction
with an impulse approximation. The form factors obtained by us are compared with
the ones predicted by the simple constituent quark loop model, vector meson domi-
nance and chiral perturbation theory, as well as the scarce already available data.
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1. The Schwinger-Dyson (SD) approach to the physics of quarks and hadrons (see [1,2] for re-
views) provides one with a modern constituent quark mode) possessing many remarkable features.
Its presently interesting feature is its relation with the Abelian axial anomaly. Other bound state
approaches generally have problems with describing anomalous processes such as the % — vy
decay. (See (3] for a comparative discussion thereof.) It was therefore a significant advance in
the theory of bound states, when Roberts [4] and Bando et al. [5] showed that the SD approach
reproduces exactly (in the chiral and soft limit of pions of vanishing pion mass m,) the famous
anomalous 7° — vy “triangle”-amplitude T2"(m, = 0) = ?N,/(12x2f,), and when Alkofer
and Roberts (AR) [6] reproduced the anomalous “box”-amplitude for the ¥ —» #*x%x~ process,
in the same approach and limits. They obtained the form factor F3*(py, pa, ps) at the soft point,
where the momenta of all three pions {py, p3, p3} = {pu+,Pas, Ps-} vanish
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as predicted on fundamental grounds by Adler et al, Terent’ev, and Aviv and Zee [7) (the number
of quark colors is N, = 3, while e denotes the. proton charge, and £, the pion decay constant).
Just as the triangle amplitude 7777(0), the anomalous box amplitude (1) is in the SD approach
evaluated analyticaily and without any fine tuning of the bound-state description of the pions [6].



This happens because the SD approach incorporates the dynamical chiral symmetry breaking
(DxSB) into the bound states consistently, so that the pion, although constructed as a quark—
antiquark composite described by its Bethe-Salpeter (BS) bound-state vertex Iy (p, k,), also ap-
pears as a Goldstone boson in the chiral limit (k, denotes the relative momentum of the quark and
antiquark constituents of the pion bound state). Any dependence on what precisely the solutions
for the dynamically dressed quark propagator

1 = s 2 2

S(k) = FAF) Tm+ B = ikoy (k') + os(k?) 2
and the BS vertex T'x(p, k) are, drops out in the course of the analytical derivation of Eq. (1) in
the chiral and soft limit. This is as it should be, because the amplitudes predicted by the anomaty
(again in the chiral limit m = 0 = m, and the soft limit, i.e., at zero four-momentum) are
independent of the bound-state structure, so that the SD approach is the bound-state approach that
correctly incorporates the Abelian axial anomaly.

The Abelian axial anomaly amplitudes in Eq. (1) are reproduced if the electromagnetic in-
teractions are embedded in the context of the SD approach through the framework used, for ex-
ample, by {5,4,6,3,8-10], and often called generalized impulse approximation (GIA) - e.g., by
(6,3,9,10]. There; the quark-photon-quark (gqy) vertex [, (k, k') is dressed so that it satisfies the
vector Ward-Takahashi identity (WTT) (k' — k), I*(k’, k) = S~}(k') — S~'(k) together with the
quark propagators (2), which are in tum dressed consistently with the solutions for the pion bound
state BS vertices I',. The box graph for v — 3x in Fig. 1 is a GIA graph if all its propagators
and vertices are dressed like this. Table 1 of Ref. {8] illustrates quantitatively the consequences of
using the bare vertex -¥* (which is WTI-violating in the context of the SD approach, instead of a
WTI-preserving dressed ggy vertex) on the example of x° — .

In practice, one usually uses {4,6,3,8-10] realistic WTI-preserving Ansdize for I'*(k', k). Fol-
lowing AR {6], we employ the Euclidean form of the widely used Ball-Chiu [11] vertex, which
is fully given in terms of the quark propagator functions of Eq. (2):
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The amplitude T?7 obtained in the chiral and soft limit is an excellent approximation for the
realistic #° — 7y decay. On the other hand, the already published [12] and presently planned
Primakoff experiments at CERN [13], as well as the current CEBAF measurement of the yx+ —
#*#® process {14] involve values of energy an momentum transfer sufficiently large to give a lot
of motivation for theoretical predictions of the extension of the anomalous 4 — 3x amplitude
away from the soft point. In the present paper we follow essentially the approach of AR [6], the
difference being precisely the way in which the ¥ — 3x form factor is extended beyond the soft
point. We perform this extension guided by the insights from our Ref. [15].

2. Considering just one graph, for example Fig. 1, enabled Ref. [6] to reproduce analytically
the anomalous amplitude (1) for p, = p; = p; = 0. However, computing the form factor F,f'
beyond the soft limit requires careful inclusion of all six contributing graphs, obtained from Fig.
1 by the permutations of the vertices of the three different pions x* = x+, 2% x~. Otherwise, F3*
would not be properly symmetrical under p, < p; < p;. In Fig. 1, as well as in the other five
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associated graphs, the relative momenta of the constituents of the pion bound states, as well as the
momenta flowing through the four sections of the quark loop, are conveniently given by various
combinations of the symbols a, f,y = +,0, — in kagy = k + (ap) + Bps + vps)/2.

If we denote the contribution of the first diagram in Fig. 1, by —ic* €uvpo DYDIDS f.‘," (p1, P2, 13),
where £* is the photon polarization vector, the ¥ —+ 37 amplitude Af:', viz., the total scalar form
factor F2%(py, pa, ps) associated with it, is written as

'A:' = -tk Cuvpo p‘l’ﬁpg F:‘(Phpﬁrh)
= —ie" Cupo PLPAES 2 (91,2, o) + [l permutations of x* (p1), 1), 7)) - (4)

In Ref. {15] we computed (4), i.e., the form factor F:”. in the “free” quark loop (QL) model
(and hence also the lowest order o-model and chiral quark models) with the constant constituent
mass M. In the SD approach, one instead has the momentum-dependent (Euclidean) quark mass
function M(p?) = B(p®)/A(p?). The functions A(p®) and B(p?), i.c., the dressed quark propa-
gators (2), are in principle the solutions of the appropriate SD equation. The quark-pion vertices
L+ (p, k) are the bound-state vertices obtained as the pion solutions of the BS equation consistent-
ly coupied with the SD equation for the quark propagator through the usage of its solution S(p)
and the same interaction (see [16] and references thereia for an example thereof, and [1-3] for re-
views and applications). This approach is thérefore also often called the coupled SD-BS approach
(e.g., by [3,9,10]).

However, in the variant of the SD approach used by Roberts and Alkofer {4,6], they avoid-
ed solving the SD equation for the dressed quark propagator S by using a phenomenologically
realistic Ansatz for the dressed quark propagator (2). In principle, one could invert such a propa-
gator Ansatz and find out which interaction would give rise to it through the SD equation. Then,
owing to working in the chiral and soft limit they also automatically obtained the solution of the
BS equation. In this limit when the chiral symmetry is not broken explicitly by m # 0 but on-
ly dynamically and when pions must consequently appear as Goldstone bosons, the solution for
the pion bound-state vertex I'y, corresponding to the Goldstone pion, is - to the order o@°) -
given by the dressed quark propagator S(k) (2). For the pion bound-state vertex [y, Ref. [4,6]
concretely used the solution, given in Eq. (5) immediately below, that is of zeroth order in the
pion momentum p. This is appropriate close to the soft limit p* — 0. soft limit T, fully saturates
the Adler-Bell-Jackiw axial anomaly [5,4). In the chiral limit, the pion decay constant f, is found
(17] to be equal to the normalization constant of T',, whereas its O(p®) piece is proportional to the
chiral-limit solution for B(k?) from Eq. (2):
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The propagator function By(k?) = B(k?),n— is the one obtained in the chiral limit of the vanishing
current quark mass m, where the quark constituent mass arises purely from DxSB. Eq. (5) is
analogous to the quark-level Goldberger-Treiman relation g = M/ f, for “free” constituent quarks
with the constant mass M. The constant quark-pion coupling strength g corresponds to By(k?)/ fx
in the SD approach.

Since the pion is in a good approximation an (almost) massless Goldstone boson, we follow
AR [4,6] in approximating the BS-vertex of the realistically massive pion by Eq. (5):
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F,(p’ = -—mz = ;"z; k) [ F'(k) . (6)
The contribution of the single diagram Fig. 1, ~i€,wpr PYP505 3% (P1, P2, p3), is then

- / Zg%,)% Tr { 1€QTy(kypy, ko) S(k.._) V27, Tu(k )
xS(k--+) 7sTa(ke) S(k_ys) VET-Talbors) Sk ), @

where the Pauli SU(2) matrices 3 and 74, = (1, +:im;)/2 correspond, respectively, to x° and emit-
ted 7 ¥ (absorbed n£). The quark charge matrix in the SU(2)-isospin space is Q = diag|[Q., Qd =
diag(2/3, —1/3]. For this particular diagram the isospin trace is Tr (Qry71a7.) = (-1)Q, =
—2/3. The color trace yields the factor N,. The Dirac trace leads to the form

Tr{...} = Ti€upo PiFAPS + Tsk"eavpo k"PYPEPS
+Ta6uvpe kP3PS + Tatupo D K705 + TiCpwpe DPEKT ®)

where T;'s are functions of scalar products p; - p; and & - p; only (i, j = 1,2, 3). They are integrals
over the loop momentum k, given by lengthy integrands, so we do not present them explicitly.
Obviously, evaluating F,?' in the SD approach, is-a harder task than in the context of our earlier
Ref. {15] where the quark-pion coupling is constant instead of the present BS-vertex (5), and the
quark propagator has a constant constituent mass, as opposed to Eq. (2). Nevertheless, it is possible
to formulate an expansion in the pion momenta similar to that in Ref. {15]. The integrands of the
T:-functions (i = 1, ..., 5) are expanded around the soft limit p; = 0, i

S(k,pi) = f(k,0) +;p€‘ [a—“a%:."—")“ﬁd+ %%pﬁ';ﬁ [%]'ﬂﬂ"’ e

whereby the problem is reduced to evaluating integrals over the loop momentum k which contain
in their integrands oiily functions of k? times powers of scalar products k - Pj. The integrals with
an odd number of k, factors vanish, while the integrals with an even number of k,’s are turned
into integrals over pure functions of k? through symmetric integration, i.c., by utilizing

[ R 1) e = % GG (10)

[ erren ) ate = £ 9+ 9";{’ + 99" GG (i
Conveniently defining

S (P paps) = —{;f’—;sﬂ (Qrymr-) J(p1, 22y 1), (12

and analogously for the other diagrams, the y3x form factor written as the sum over the six dia-
grams is

Z:riv;a (g {J(px,PmPs) +J(P1.PJ:P2) + J(Pz-PhPa)}

F:"(Phpz,PS) =
-%{J(m,m,m)+-’(pa,pz,m)+J(pz.ps.pl)}) . (13)
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Owing to our expansion method, J (p1, P2, p3) and its companions with the permuted arguments
P1, P2, Pa, are given in terms of expansions in the scalar products of the external momenta D1, D2, D3,
and the coefficients are given by integrals of functions (coming from the propagators and vertices)
of the squared loop momenta k? == ¢. We evaluate these integrals in Euclidean space. For example,
consider the lowest, zeroth order contribution to the expansion, J(0,0,0), which determines the

"3 amplitude at the soft point. It is given by the loop integral

J0.0,0 = [ att Bt ov(6 [ A as( ov (0
+300500/0 A0 - Jov(0 B@ - SeAo0 0] o

The two equivalent pairs of functions in the Euclidean quark propagator (2) are connected with
each other through the relations

= ov(p’) _ as{p?)
A(”z)‘m' B("z"p’aa(p:)»f ™ (3)

in our present convention, m is separated out of B(p?) which is thus purely dynamically generated
in contrast to the convention we used previously [3] where the quark mass m which breaks chiral
symmetry explicitly was-lumped into B(p?). In the chiral limit,"where not only By(£2)® but all
propagator functions (2) appearing in Eq. (14) correspond to the m = 0 case, AR [6] evaluated_
J(0,0,0) analytically: its value in the chiral limit, Jo = Jo(0,0, 0), is always J, = 1/6 irrespec-
tively of what the functions defining the quark propagator (2) and the pion BS vertex (5) concretely
arc. This enabled AR to prove that, remarkably, the SD approach exactly reproduces the soft-point
amplitude (1) independently of details of bound state structure. Thus, this bound-state approach
consistently incorporates not only the “triangle”, but also the “box™ axial anomaly.

Since J(0,0,0) is equal in every diagram, and in the chiral limit it is always J, = 1/6, our
sum over diagrams (13) also reproduces the chiral-limit result (1) for F(0,0,0).

Same as in Ref. [15], we found having the sum of diagrams essential for obtaining the correct
737 amplitude beyond the soft point, where different diagrams contribute different combinations
of powers of the scalar products p; - p;. To get F3"(p1, P2, ) symmetric under the interchange of
the three external momenta, one needs to consider the sum of at least three graphs corresponding
to one of the combinations enclosed in the curly brackets in Eq. (13). As in the simpler case of the
“free” constituent quark loop calculation, these curly brackets are equal to each other,

3. Unlike Jy, the expansion coefficients of terms beyond soft and chiral limits are not independent
on the internal structure of the pion. To evaluate the integrals giving them, we must specify the
propagator functions in Eqgs. (2) and (5). We adopt the AR quark propagator Ansdrze supposedly
suitable for modeling confined quarks [6], namely
1—e ¥eth) bz g b 1-e*

- - —2z _

Gs(z) = Cpe™ + 2m 1) + ha bs (bn +b pre ) ,  (16)
2(z + Mm?) — 1 4 e A+

(z +m2)?

22

Gy(z) = —HCpe™, _ an

where the dimensionless functions &5(z) and 6y(x) are related to the scalar and vector propagator
functions through the characteristic mass scale A = v/2D:
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3s(z) = V2D os(k?),  &v(z) = 2D ov(k?), 18)

along with the quark momentum and mass, k? = ¢ = 2D z and % = m/v/2D.
The above quark propagator Ansdtze, together with the chiral-limit pseudoscalar BS vertex (5),
define the model of the quark substructure of the light pseudoscalar meson — the pion. By fitting

a considerable number of pion observables (see Table 1 in Ref, [6]), the parameters were fixed to
the values

Ca = 0121 m=20  in the chiral limit

Can=0 m = 0.00897 ¢« for massive quarks 19
by = 0.131 b = 290 e=10"1

b = 0.603 by = 0.185 D =0.16GeV?.

We present our expansion acound the soft point by re-writing the (dimensionfut) expansion coef-
ficients in terms of dimensionless numbers divided by the appropriate power of a characteristic
mass scale A. In the free constituent quark loop calculation [15), this scale was of the order of
the constituent quark mass M. In the present model, it is obviously A = v2D = 565.69MeV.
After introducing the form factor normalized to the anomaly amplitude (1), F3*(py, pa,ps) =
F3*(py, 2, p3)/ F27(0,0,0), our expansion for general, possibly off-shell impulses p;, to the order
O(p*) becomes

Fr(pu,pnpa) = 096274 = "2 3 1 a1 pe) = S22 4 4
SO (-2 + 12 + (oo
S (P + A+ ried) + T8 (5 4 g4 +.pf)
+ I'OAﬂ(}n ‘PaP1 P3P PaPy-Ps+ P PsPaPy)

0.97567
+ = Ermtsin ptdn 4 sin e p - Bin )

0.83507
R (pr"p’+P;Pl'PS+P§PI‘Pz)+O(p°). 20)

Since this was obtained with the propagators in the presence of a small (m = 0.00897) explicit
chiral symmetry breaking, the zeroth-order term [67(0,0,0) = 0.96274) slightly differs from 1.
Note the difference with respect to the simpler “free” quark loop case {15], where the zeroth-order
term 61(0, 0, 0) = 1 always. For the chiral quark propagators,

=~ 0.92228 0.83476
B (pupnpslo=1-—5=(1-pr+pi-py+p2-pa) - TP+ P+ )
0.54703 .
+ = (0122 + (1 - p2)* + (2 po)?)
0.70561 0.40287
+ = (pl6d +pind + 3s) + —— (pi + pt + 5
0.88247
+ = (1 P2P1 P+ P Pap2 Py + i P32 o)

0.86649 , , ) . ) ) .
A (Pml P2+ PiPLPs+ PPy P2+ PaP2 - Ps + P3py - p3 + Pape 'Pa)
0.74448

—xr (P2 pa+ B ma + B ). @

In the both cases, note the total symmetry in the interchange of the momenta py, p,, ps. To elucidate
the cffect of this symmetry on the momentum dependence of the 43 form factor, we re-express
the scalar products p; - p; through the Mandeistam variables. We use the definitions of Ref. {6],
which is the Euclidean version of the definitions in Ref. [14): 5 = —(p, + p3)? = m23, ¢ =
~(p21+p3)* = mi?, u = ~(p; +ps)* = m2a, while t = —p2 = m2{ serves as the measure of
the virtuality of the third pion which is off shell in the CEBAF experiment [14].

On the other hand, in all three pertinent experiments {12,14,13], the first two pions are on shell,
We can thus specialize to p} = pj = —m2 and obtain more compact expressions for the O(p*)
amplitudes in terms of Mandelstam variables. For massive quarks ¢q. (20) then becomes

-~ 2 4
(s, t,u) = (0.9627 4 0:21554m] + 0.11534m,)

A? At
(0.4/’;476 _ 0.17(15\8‘2 m,’,) (s+¢+u)+ 0.1:;789 (s, st 4 u’)
+%fm(st’ + 'y + su) — 0'0:?41 (s+t +u)
_ (0.1A0;777 _ 0.07!1)\6‘7 mf,) 4 0.0;':376 24 0.01(/)\0‘0 m,’, (mz 5. @

Similarly, in the chiral limit of vanishing m.,, where p} = p3 = 0, the amplitude (21) becomes

Fr(s,t u)o=1+ 0'4314(3 +t+u)+ O'szm(sa +82 4 42)
42T ot 4t ou) - 200y e
0.08752_  0.03052 , 0.00811,
AT YT - AL s 2y

In both cases, we isolated in the last term the violation of the s & ¢ & 4 symmetry, which occurs
when the third pion is off shell, ¢ 7 m3 (or ¢ # 0 in the chiral case).

We indicated only the s, ¢, u dependence of the amplitudes, since ¢ is of course not independent
because of the constraint s+t'+u = —p} — p} — p — ¢?, where g = py +py +p3 is the photon mo-
mentum. One can take the photon to be on shell in all three pertinent y31 experiments [12,14,13).

We thus set ¢* = 0 in addition to p} = p? = —m2, whercby the above kinematical constraint
becomes

s+¢+u=2m2+t. L (29

In any case, this constraint (24) dictates that the O(p?)-terms, since they appear in the appropriate
symmetric combination, contribute only to the part independent of s, ¢’ and u. This contribution is
in fact constant (of the order of m,’,) up to ¢, the virtuality of the third pion. Therefore, the main
contribution to the term linear in s,¢ and u (dominating the s, ¢, u-dependence arround the soft
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limit), comes from O(p*) and not O(p?). The coefficients of the lincar and quadratic terms will
thus be comparably small, giving the parabolic shape to the curves displaying our form factors,
instead of the steep linear appearance (6] due to spurious, relatively large linear terms (suppressed
only as 1/A?) which come from O(p?) when there is no symmetry under the interchange of the
pion momenta [so that the constraint (24) cannot do its job).

4. The experiment which provided the only presently existing data point {12] and the one planned
at CERN [13], belong to the Primakoff type, where also the third pion is on its mass shell, fixing
t = mii = m}. We then get, in terms of the Mandelstam variables expressed in terms of pion
mass squared,

F3%(s,t') = 1.0319 — 0.00065( + #) + 0.00022(5" + 5 + &), 25)
while in the chiral limit, where on shell means = 0,
F3%(s,) = 1+ 0.000190(3 + 57 + ). (26)

For the second variable fixed to # = —1, Egs. (25) and (26) are depicted, respectively, by solid
and short-dashed curves in Fig. 2. ) )

In the CEBAF measurement (14], the third pion has spacelike virtuality of the order ¢ & —m2,
so we also give F(s,t') obtained by fixing £ = —1:

F(s, ') = 0.98524 — 0.000155 — 0.00022F + 0.00022(2° + 37 + &), @n
and again with £ = —1, but in the chiral limit,
F3(s,')o = 0.97799 + 0.000223 + 0.00019% -+ 0.000190(2 + 3¢ -+ #%) . (28)

CEBAF aims [14] to measure the s-dependence of the ¥3x form factor in the interval s €
{4m?, 16m2), with such kinematics that # = ~1 is a good choice for fixing the remaining variable
(as we explained in Ref. [15]). We thus depict Eqgs. (27) and (28) for ' = —m?2 by respective solid
and short-dashed curves in Fig. 3. .

In Figs. 2 and 3 we also compare our results with some other theoretical predictions for t = m?
and t = —m2, respectively. The dash-dotted lines represent the chiral perturbation theory (xPT)
form factor [18] (with Holstein's [19] choice of renormalization ~ i.e., we take his [19] Eq. (10)

- for the xPT prediction). The dotted curves are the vector meson dominance (VMD) form factors
[20] [i.e., Holstein’s [19} Eq. (9) for ¢ = +m?].

All depicted theoretical form factors indicate that the existing data point [12] is probably an
overestimate. In the considered s-interval, the prediction of the present mode! is lower than those
of VMD and xPT. The current CEBAF measurement [14] should be accurate enough to discrimi-
nate between at least some of these results.

The most instructive comparison of theoretical predictions is the one with the form factors
calculated from the box graph with the ordinary (“frec”) constituent quarks looping inside [15].
In both Fig. 2 and Fig. 3, they are given by the long-dashed curve, the line of empty squares and
the line of crosses, for the constant constituent masses M of 330 MeV (= Mpuneon/3), 400 MeV
(= v/D) and 580 MeV (~ v2D), respectively. Besides the graphs, onc should also compare the
expressions (22), (23) for the expansions in the powers of scalar momenta p; - p; in the present case

8

with their analogy in our previous paper [15). One can conclude that for the presently experimen-
tally interesting momenta, the present model and the simple “free” constituent quark loop model
agree quite well as long as the mass scale of these models is similar, V2D ~ M. The present
SD model, with its dressed propagators and vertices, does have faster changing F3*(s) than the
simple constituent quark loop model (for the approximately same mass scale, i.e. V2D ~ M), but
this is at the presently considered momenta compensated by the larger constant term in the latter

- model. While we can conclude that in the case of this particular form factor, the present SD model

does not bring in the present application novel features with respect to the simple constituent quark
loop model as far as the magnitude of the form factor is concerned, we can say that considering
these two models led to a fairly complete understanding of the quark box graph calculation of the
anomalous v3x form factor. On the other hand, because of that understanding, the experiment can
bring an important new input to the SD modeling. If the experimental form factor is measured at
CEBAF with sufficient precision to judge the present SD model results too low, it will be an un-

ambiguous signal that the SD modeling should be reformulated and refitted so that it is governed
by a smaller mass scale.
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FIGURE CAPTIONS

Fig. 1: One of the six box diagrams for the process y — #+x%r~. Within the scheme of generalized
impulse approximation, the propagators and vertices are dressed. The position of the u and
d quark flavors on the internal lines, as well as Q, or Qu quark charges in the quark-photon
vertex, varies from graph to graph, depending on the position of the quark-pion vertices.

Fig. 2: Various predictions for the s-dependence of the normalized y3r form factor. We compare
the form factor obtained by us with AR Ansitze [6] for both my = 138.5 MeV (solid
curve) and the chiral limit (m, = 0, dashed curve), with the predictions of the vector meson
dominance [20] (dotted curve), chiral perturbation theory [18,19] (dash-dotted curve), and
quark loop model [15] for M = 330MeV (long-dashed curve), M = 400MeV (boxes), and

M= 580Me¥ (crosses), and with the experimental data point {12}, for all the pions on-shell
and t' = —m?2.

Fig. 3: The comparison of the y3x form factor obtained by us with AR Ansitze (6] for both
m, = 138.5 MeV (solid curve) and the chiral limit (m, = 0, dashed curve), with the
predictions of the vector meson dominance [20] (dotted curve), chiral perturbation theory
[18,19] (dash-dotted curve), and quark loop model [15] for M = 330MeV (long-dashed
curve), M = 400MeV (boxes), and M = 580MeV (crosses), for two of the pions on-shell
and the third off-shell so that t = —m32. (The Serpukhov data point {12] is also shown

al(houghzit corresponds to all three pions on-shell.) The remaining variable is again fixed to
t'=-—ml,
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