MM
Cee#emonx 2l
A/ -
The Thomas Jefferson National Accelerator Facility
Theory Group Preprint Series

Additional copies are available from the authors.

. -~ he
Southeastern Universities Research Association (SURA) operates t
Eﬁma: Jefferson National Accelerator Pacility for the United States
Department of Energy under contract DE-AC05-84ER40150.

DISCLAIMER
i d t of work d by the United States govern-
mnﬁ:ﬂ'ﬁémus'&;mhumuwfuwd , nor any of
!heum\p:mn makes any warranty, expressed or implied, or sssumes any ley l.lal:;.l:t‘y
- o 1 1, an & -
oh:s. d o:yfurthe diaclosed, or 1 P o:hatihunew Minﬁingepannely
owned rights. R&uumhaﬁnbm&apedﬁcmﬂd&lpmdud,pw,ormﬁaby

name, mark, manufacturer, does not necessarily constitute or imply its
gm,ie n nmendat é'o:.v ing by the United States or any agency
thereof. The views and opinions of aul herein do not necessarily state or
reflect those of the Unitedzatu government or any agency thereof.

JLAB-THY-00-06

Transition from hadronic to partonic interactions for a composite spin-1/2 model of a
nucleon

J. A. Tjon
Institute of Theoretical Physics University of Utrecht, TA 3508 Utrecht, The Netherlands and KVI, University of Groningen,
9747 AA Groningen, The Netherlands

S. J. Wallace
Thomas Jefferson National Accelerator Facslity, 12000 Jeferson Ave., Newport News, VA 28606 and Departinent of Physics
and Center for Theoretical Physics, University of Maryland, College Park, MD 20742
(February 17, 2000)

A simple model of a composite nucleon is developed in which a fermion and a boson, representing
quark and diquark constituents of the nucleon, form a bound state owing to a contact interaction.
Photon and pion couplings to the quark provide vertex functions for the photon and pion interac-
tions with the composite nucleon. By a suitable choice of cutoff parameters of the model, realistic
clectromagnetic form factors are obtained. When a pseudoscalar pion-quark coupling is used, the
pion-nucleon coupling is predominantly pseudovector. A virtual photopion amplitude is considered
in which there are two types of contributions: hadronic contributions where the photon and pion
interactions have an intervening propagator of the nucleon or its excited states, and contact-like
contributions where the photon and pion interactions occur within a single vertex. At large Q,
the contact-like contributions are dominant. The model nucleon exhibits scaling behavior in deep-
inelastic scattering and the normalization of the parton distribution provides a rough normalization
of the contact-like contributions. Calculations for the virtual photopion amplitude are performed
using kinematics appropriate to its occurrence as a meson-exchange current in electron-deuteron
scattering. The results show that the contact-like terms can dominate the meson-exchange current
for Q > 1 GeV/c. There is a direct connection of the contact-like terms to the off-forward parton
distributions of the model nucleon.

I. INTRODUCTION

At low energies and momentum transfers, nuclei are described in term of nucleons [1,2]. Interactions between the
nucleons are modelled successfully by exchange of mesons [3-5], or more simply, by potentials. When nuclei are
probed at very high momentum transfer, e.g., in electron scattering, partons within the nucleons and mesons become
the dominant scatterers [6,7]. Interactions between the partons are described by QCD. Between the high and low
momentum transfer regimes, there is a transition region where a good description is lacking. The meson-exchange
dynamics does not account in a satisfactory way for the compositeness of the nucleons and mesons. Therefore, it is
of interest to study quark-based composite models of hadrons in order to get some insight on the limits of validity of
a hadronic description. Electron scattering data for momentum transfer Q =~ 1 GeV/c often meet dual descriptions:
models based on hadrons on one hand and models based on quark phenomenology on the other [8]. Moreover, the two
kinds of description generally are not reconciled to one another in the sense that there is no smooth transition from
one to the other as Q increases. Perturbative QCD descriptions are mainly qualitative and not properly normalized
at low energy [9]. In the mesonic description, the mechanism of hard scattering from quarks that predominates in the
perturbative QCD description is hidden or absent.

In this paper, we develop a simple model of a nucleon as a bound state of a fermion and a boson with the goal
of gaining some insight into the transition region where, as Q increases, onc passes from the dominance of hadronic
processes to the dominance of scattering from the constituents of a nucleon. One may think of this model as having a
quark and a spin-0 diquark bound together to make a nucleon and its excited states. The model is covariant and gauge
invariant, but it lacks confinement. Excited states of the nucleon are a continuum of quark and diquark scattering
states. Thus, it is mainly useful for processes where nucleon resonances do not play an important role. One such case
is mesonic-exchange currents in nuclei.

An essential feature arises from compositeness: there are contact-like terws in second-order interactions. These
are required by gauge invariance and they play a small but significant role at low energy, for example, in low-energy
theorems {10-12]. For very large momentum transfer, the contact-like terms become dominant. They contain the
leading-order mechanism for the external probe to scatter from the partons without any intervening hadronic state.



When a hadronic state exists between interactions, it produces form factors that fall rapidly with increasing Q, thus
quenching the scattering. This is the fate of hadron-like terms in the second-order interactions. i.c., the terms that
provide a hadronic interpretation at low momentum transfer.

In the limit that one of the interactions transfers a large momentum, the contact-like ters tend to the off-forward
parton distributions for the composite nucleon model [13,14). For the simple model that we consider, there is a clean
separation of the hadron-like and contact-like contributions to second-order interactions. Interactions of the model
nucleon with an electromagnetic probe have some realistic features. By introducing cutofl parameters, the nucleon’s
charge and magnetic form factors can be described reasonably. At low momentum transfers, interactions of the model
nucleon can be interpreted in terms of hadron dynamics. For asymptotically large momentum transfer Q, at tixed
T = Q’/(2Mu), scaling obtains. We calculate the resulting parton distribution f(x).

In Scc. 2 we formulate the model in terms of a lagrangian for a fermion and a bosou interacting via a cont:
interaction. The model is not renormalizable: it is regulated by introducing subtraction terms of the Pauli-Villars
type. {15] We consider only the simplest subset of contributions to the fermion-boson corretator. This produces a spin-
1/2 propagator with a single bound state pole (“the nucleon”) at mass M. Electromagnetic and pionic interactions
are introduced in Sec. 3 as couplings to the fermion constituent (“the quark”). For simplicity, couplings to the
boson (“the diquark”) are omitted. For pseudoscalar coupling of the pion to the quark, the model produces mostly
pseudovector coupling to the nucleon. It would be purely pseudovector if the mass of the quark were zero and there
were no regulators of fermion type.

In Sec. 4 we consider a virtual photopion amplitude involving second-order interactions with the composite nucleon.
Two types of interaction occur: first, interactions with intervening propagation of a nucleon or its excited states and
second, contact-like contributions where photon and pion interactions with the nucleon occur within the same vertex.
A standard analysis based upon elementary particles with form factors is compared with the composite nucleon
analysis. In Sec. 5 we consider deep inelastic scattering from the nucleon for finite Q and as Q = co. In Sec.
6 we present calculations of the virtual photo-pion production amplitude for a kinematical situation that arises in
meson-exchange contributions to electron-deuteron scattering. Calculations show that contact-like terms can become
dominant for Q = 1 GeV/c for some processes. Conclusions are presented in Sec. 7. A more complete description of
the details of the calculations is given in four appendices.

't

II. COMPOSITE NUCLEON MODEL

A fermion and a boson interacting via a contact interaction can generate a composite spin-1/2 particle. For this
purpose, the following lagrangian is used {11].

L=$(@)0 - m)p(a) + 3(0,8(2)9"9(z) ~ 126*(2)] + 0zp(x)62 2), M

where ¥(z) is the field for a fermion of mass m and ¢(z) is the field for a boson of mass . The fermion-boson contact
interaction with coupling constant g is not renormalizable; finite results are obtained by introducing a Pauli-Villars

regulator of mass A;.
A bound state appears as a pole in the fermion-boson correlator,

Gl =i / dze™ 7 (OT (¥()$(2)$(0)$(0)) [0). @

Figure 1 shows the sequence of elementary bubbie graphs that contribute to G(p) in a perturbative expansion. Because
this sequence is sufficient to exhibit a bound state, contributions beyond those shown in Fig. 1 are not considered.
Summing the bubble graphs of Fig. 1 produces

1

® = 17555 ®
Here, £(p) is the contribution of a single fermion-boson loop,
. d'k
Zo(pim, u, A1) = ig aﬂ—)‘s(l’—hm)D(’C;P,l\l)» 4)

where the propagator for the fermion is S(p;m) = 1/(p —m+in). With a Pauli-Villars regulator of mass A; included,
the propagator for the boson line is

1 1
k2= iy k2D At +iy’ &)
A generalization of the model that is suitable
additional regulator terms as follows,

Dk Ay) =
for describing a nucleon’s form factor js obtained by including

. 'k 7
Ep) = 1;1/ “(;n)" [6(]) ~kim) - aS(p - kimy) - (1-a)S(p - k;m;)]

x[D(k; i, Ay) + BD(k; Ay, A)]-

(6)
where
_Mma-m
Tomg =y’ ™
and
2 2
_H A
v (8)

The const.ams.a and 2 are sAelectved so Fhat high loop momentum is cut off as k=9, It is evident that the generalized
form for E(p) is equal to a lincar combination of the elementary bubble graph terms, %,, defined above.

)= Eo(pim,u, M) + BEy(pim, Ay, Ay)
~a[Zaimi i 80) + B4tpim, A, 40)
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When a bound state of mass M is present, the pole in the composite system propagator G(p) has the form
Z,
Glp) = —22__
n PRy varars + R(p), (10)

where Z, is a wave-function renormalization factor. A renormalized G i i i

f i ; A propagator G(p) is obtained by dividing G(p) b
Z, ‘such that therehns unit residue for the nucleon pole. The remainder R(p) is regular at p = My and it rgeprg()ené
excited state contributions. In the model considered, the excited state spectrum is a continuum of quark-diquark

scattering states. his is an unrealistic eature for a nucleon so e model should be used where the effects of
t T listic feat th del
d h

The most general form for ¥ that is allowed by Lorentz invariance is

I(p) = A(p*)p + B?). . (i
Presence of the bound state pole means that T(p) = 1 at # = M. This condition leads to

~[4o + 2M(A)M + By)), (12)
where Ao = A(M?), A} = dA(p?)/dp*[pa-pms, and similarly for BY.
For later use, we introduce covariant projection operators,

_ Wt pp
Lo(p) = =211, (13)

P

where p = + or —, W, = /p?, and L* (P) + L= (p) = 1. Projecti
\ A , B =1 Jjecting the propagator to the p = -
in which # takes the values +Wp, leads, for the renormalized propagator, to beg P =+ and - subspaces

Gp) = G*(p) + G~ () ' (14)
where
i L(p)
W = ZTTBn - WA 12

T('J summarize this secti_on, the composite model of a nucleon is formulated in a covariant way as a bound state of
a spin-1/2 quark and a spin-0 diquark. Details of the calculation of A(p?), B(p?) and Z, are given in Appendix A



11I. PHOTON AND PION INTERACTIONS

i i onpli ' in the lagrangian: £, = (x)
ic interacti are i ced via a fermion-photon coupling term in ! L

At "lttfﬂ‘?“lO"(Sl -:‘“ l)"?;‘i(:‘l; charge operator for the quark. Photon coupling to the boson is omitted

e where é = e T3) is i ! > the bost itie
" o S, 1 ode! 3imp|(‘ Consequently, the model proton is composed of a quark of charge ¢ l.m_d A nentr 1.I
di mdckr t%l:(wl) td"; o (t 0.1 is m'x-nposed of a neutral quark and diquark and thus has no clectromagnetic interations.
diquark. The wodel ncutron is c S A ne ark

(}nserting a photon into the propagator as indicated in Figure 2 produces the form

G(pr)éA,(ps. p)G (i), (16)

1 A, describes the photon-nucleon vertex. One extracts the photon-nucleon (dressed) interaction as the residue
where A,, s ¢
of the two poles at pi = M and §; = M, which leads to

(pg; M)EZaA,u(ps, po)ulp; M), (17)

¥ Zy factor and
i i i ta p; and p; are on the mass shell. The Z, ‘
;M) is the Dirac spinor for mass M and momen d
B:ﬁfsl}l)(il:;)r Z"actors arise from the parts of the initial- and final-state propagators that attach to the vertex A,‘.Al;, is
ient to absorb the Z; factor into A, to obtain a renormalized vertex A,,. For momenta p; am! ps 'that},lar;: ell‘]ClI‘
2‘:‘;’:;1 or off-shell, the renormalized vertex involves a fermion-boson loop with a photon insertion in the fermion
= i}

propagator as follows,

A ] 'k s — k;m)D(k; 1, A). (18)
Rutor.p) = is2s [ GS(or = kim) .S = kim)Dl(kip, A
iti i-Vi i f such terms, one for each term
. | with additional Pauli-Villars regulators, the vertex is a sum o ms, each
II: g:]e ?;;e;fzdhr;:dih:lfermion propagator S(p — k; m,,) for mass m,, is replz}t_:ed by S(ps — ki mn )y, S(pi — k;my).
Gaug;a im;aria.nce req1;ires that the vertex satisfy the following Ward-Takahashi identity (16,17},

(py — piY*Aulps,pi) = G ps) - G~ (py)
= E(pi) - Z(py)- (19)

This is satisfied when the photon couples to all fermion propagators in the same way, including those introduced as
i-Vi lators. .
Palunhg:/:ll;:.ls x;;geuvemrx function can be decomposed in terms of charge and n;agnetn:d form ;‘actors’!;, a:r:id,st.hI;‘oorr;};i
i i iti il form factors depend upon g; 7. >
- -shell case, there is an additional form factor F3. Moreover, a : .
:(f)f l:?;ssia?a.r form factors, it is necessary to project with the operators L* and to commute the p; and Py toward

y_ [ . .
the projectors so that they may be replaced by p;W; or pyWy, where W; = \/p? and W, = P} This analysis is
carried out in Appendix B. It produces

Aulprp)y = X L (o)AMY " (pr.p) L (i), (20)
pypi=t

where
g e
AL oy pi)= Y F P (b, pi) + 100G B2 (g upd) + 0 FYT 7 (py,po), (21)
W
and q = p; - p;. Each scalar form factor is a different function depending on the values of ps and pi,eg, F7 s
= pi - ps. : isa
i from F}*. We shall return to this point shortly. ' \ ‘
(’lf;ft;::}';e Z::rf;herll] situation, owing to time-reversal invariance, one only has F} *(q?) and F3%(q?), which are the us:xal
harge and magnetic form i'act.ors of the proton. With three fermion masses and three boson'masses as par;xllft(.rzs,
fl::rgeneralized model allows a reasonable fit to the proton's electromagnotlcvgon? factors. Flgure :;shnv\;‘s ,’cte(,?zi
and F§*(q?) in comparison with the dipole form Faipote = (1 4+ Q?/0.71 Gre\' ) _thalt Ohin :g u/s\e _t08c5 z:;:i erize
ex eri?'nental form factors. The parameter values used are: m= .38, m; = .56, my = Ol u=.79,A, =. ) 12
9(;) all in GeV. The bound state is at M = .93826 GeV. The anomalous magnetic moment of the composite nucleon
is & ! i i =1.79.
is K = 2M F;*(0) = 2.086, which may be compared with Kproton = . .
° : parallelzangl))'sis may be made for couplings of an elementary pion to the (|‘uarl‘( by d.ddlr}g a pseudoscalar . quT(;(k
interaction Ly =g.4(x)ys7¥(x) -7(x) to the lagrangian. Figure 2 shows one pion insertion into the propagator. This
=gx

produces

Glpr)gn7 - $As(py, pi)Gmi), (22)

where 7-¢ = 7, ¢ +7_¢, + 73¢9, with ¢+ and ¢g being isospin wave functions for 7+ and 7° mesons. A renormalized
pion-nucleon vertex function is caleulated from a formion-boson loop graph with a pseudoscalar insertion on the
fermion, as follows,

N . d'k
Aslpr,pi) = 'yZz/ (@) S{pr = kim)ysS(pi - k;m)D(k; pu, Ay). (23)

In the generalized maodel, the pion-nucleon vertex function is a sum of such terms, one for each term in Eq. (9). In
each Ly, the fermion propagator S(p — k;m,,) for mass my is replaced by S(pys - ki) vs Spi — k; my).

Again it is necessary to rearrange terms and to project in order to have scalar form factors. This produces (sce
Appendix B for details)

Astpp) = 3 L2 (pr)vs '™ (py, pi) L% (py). (24)

Pr.pi=

Figure 3 shows the resulting 7N form factor F#*(q?) for on-mass-shel] nucleon momenta. It is quite similar to the
magnetic form factor.

When one leg of the vertex function is off the mass shell, the form factors differ from the on-shell results. We wish
to relate the off-shell effects to those appropriate to a hadronic vertex that is sandwiched between elementary Dirac

propagators. For this purpose, it is necessary to incorporate off-shell effects from the propagators into the off-shell
vertex function and form factors.

In general, one encounters an off-shell vertex function sandwiched between propagators, as follows,

Go))Rps, p)G(p). (25)

The renormalized propagator of the composite system may be written as

Gy = ZHOLDG) | 20O
0 = Zw, ) * L(-W,~ M)’ (26)

where Z()(p) = (2w, - M)/[1 — A(p®) £ W, B(p?)] are scalar functions. In the limit that Wo = +M, 204 5 2,,
and in the limit that W, —» ~Af, 2(-) -, Z,. For a point particle the factors Z*)/Z, are unity, i.e., an elementary
Dirac propagator may be written in the same way with Z(*)/Zz factors replaced by unity. Thus, these factors carry
off-shell effects due to the propagator. A factor VZE)(p)/Z, from each propagator in Eq. (25) is redistributed to
the vertex function in order to obtain a vertex function that is suitable for use with the elementary Dirac propagator.
The remaining +/Z%(p)/Z; factor in the propagators should be distributed to vertex functions preceding or following
the ones indicated in Eq. (25).

Figure 4 shows the variation with off-shell momentum p? for the F{+(M?2, ?,p?) form factor, with p? being the
off-shell momentum. A factor VZ*)(p)/Z, is included for the off-shell leg. Similar results are obtained for the F+
and F}* form factors. Roughly, when p? varies from .8 M? to 1.2 M?, the form factor varies from 0.8 to 1.4 times the
on-shell form factor. The off-shell variation of form factors is stronger than has been found in the work of Tiemeijer
and Tjon (18] or that of Naus and Koch [19].

For couplings between + and — states, the form factors generally are off shell because the momentum p of the
negative state differs from Wy, = ~M, where W, = \/ﬁ Typically, + to - couplings are evaluated near W, = +M,
and thus they should include a factor VZ-Xp)/Z; from the negative-energy propagator in order to be compared
with elementary couplings.

Off-shell dependence of the F!~ F}~ and F}~ form factors is different in each case. It is shown in Figures 5, 6 and
7. In each case, the F*~ form factor is shown as the ratio to the on-shell F** form factor, and a factor VZUip)/z,
is included. The composite nucleon model gives nontrivial modifications of the form factors with off-shell momentum.

Although the pure pseudoscalar operator s appears for each ps and p; value in the pion-nucleon vertex function,
the form factors differ, i.c., F3~ # F{~, as mentioned above. It is instructive to compare with an elementary vertex
that contains a fraction A of pseudovector and 1 — ) of pseudoscalar couplings as follows,

Ay = s BB 1, (27)



Fxpanding by usc of the projection operators and specializing to on-mass-shell kinematies yields

A GLp) = S L (pg)s [A”’% +1- A] Lo (p,). (28)
prp=%
On mass shell, the ++ vertex is s independent of the mixing parameter A. The +— vertex is proportional to (1 - A)
and thus is suppressed for pseudovector coupling. A measure of the fraction of pseudovector coupling shows up in the
ratio of +— and ++ form factors. For the composite nucleon madel, we define an equivalent pseudovector fraction in
order to give a simple interpretation of the different ++ and +— couplings as follows,

Fr'.p (2
FEre.nV 2

)

(29)

A=1-

W, =W, =+M

Figure 8 shows this ratio for the model nucleon. In the low Q range, the composite model produces 75% pseudovector
coupling of the pion starting from a pseudoscalar coupling to the quark. (If the factor \/Z(-)(p)/Z, were omitted, it
would be 94% pseudovector.) At Q =~ 1 GeV/c, the vertex becomes closer to pseudoscalar.

To summarize this section, the model nucleon has realistic charge and magnetic form factors. The pion form factor
is similar to the magnetic one and the #N vertex is about 75% pseudovector and 25% pseudoscalar. Couplings between
+~ and ++ states differ, which is a general feature of off-shell vertices.

IV. SECOND-ORDER INTERACTIONS - THE VIRTUAL PHOTOPION AMPLITUDE

Using the couplings discussed in the previous section, we consider a virtual photopion production process. This
involves inserting a photon and a pion in all possible ways into the propagator and extracting the scattering amplitude
as the residue of the poles in G(p;) and G(p;) as before. We also consider a standard hadronic treatment of the same
process for comparison.

A. Composite nucleon analysis

For the process in which a nucleon with initial momentum p; absorbs a photon of momentum q, propagates with
momentum p; + q, and subsequently emits a pion of momentum r, ending up with momentum py, where p; + q =
ps + r, the resulting amplitude is shown in Fig. 9 and is given by (omitting isospin factors)

Voo (P, pita,pi) = ) 6(ps)9n 1 Fy # (g ps + )G (pu + Q)AL (pi + 4, pi)u(pi). (30)
4

For the crossed process in which the nucleon first emits a pion of momentum r and subsequently absorbs a photon of
momentum q, ending up with the same momentum py, the amplitude is (omitting isospin factors)

Vus(pgpi +7pi) = Zﬁ(P/)X,T"(p;»p/ = QG*(pi - T)ga s FE™ (pi — 7, pi)ulpi) (31)
I3

These contributions to the photopion amplitude will be referred to as “Born” terms.

In the analysis, two factors of Z; arise, one from the external wave functions and another from the pole term of
the propagator. These factors are absorbed into the two vertex functions so that all quantities appearing in Eq. (30)
and (31) are renormalized. Renormalized photon vertex function A%9* i defined in Eq. (21) in terms of form factors
F{7'% F§7'% and F§'***. Propagation has been split into separate factors for p = + and p = — states using covariant
projection operators. Note that G* contains the nucleon pole term and the excited states, which in this case are quark
and diquark scattering states. Similarly, G~ is the negative-energy propagation that occurs in Z-graphs. However,
the standard Z-graph is based on noncovariant projection of the propagator and this causes some differences when
nucleon momenta are not close to the mass shell. All of these elements arise also in a hadronic description.

The variation of V,, with momentum transfer is characterized roughly by F(q?) G*(p, +q) F(r?), where F(g?) is
a typical form factor and G* is the positive-energy propagator. At large ¢ and r?, these contributions become small
owing to the form factors involved. A similar estimate holds for V, 5. Excited states of the nucleon do little to alter

this behavior because they involve form factors that typically fall faster with incre

nucleon’s form factors. '

In larl‘dir,ion, there are contact-like terms as indicated in Fig. 9 that differ from those

description. They correspond to the two orders in which the photon and pion inte
within a single vertex. Omitting isospin factors, they are defined by,
f

AsSIng momentwn transfer than the

that arise in a hadronic
ract with a constituent fermion

. - . d'k
Conlbrop +4.p) = alpy) [1922 / WS(P/ —kim)gasS(py + ¢ — k)

YuS(pi = kim)D(k; e, Ay )} u(p;)

(32)
Cuslpr,pi—ripi) = ﬂ(w)[iyzz/ ;T’;,S(p/ = kim)n.S(pi —r — k;m)

9215 S(pi — k;m)D(k; o, Al)} u(p;). (33)

Initial and final states are on-shell positive-energy states, i.e., Pi=p} =M andp = ps = +. In the generalized
model with additional Pauli-Villars regulatprs, Cs,u and C, 5 terms become sums of terms of the form given in Eqs. (32)
af:d (33). In each X, of Eq. (9), the fermion propagator S(ps — k;m,) is replaced by S(ps — k;mn)gxvsS(pi +q —
k’g};ﬂ‘fﬁﬁi = kim,) to ;)_l:tzmti's.{n or Iby f(p/ _hk;mn)'hs(l’i = i™n)gx155(p; — kim,) to obtain C, 5.

) » there 1s an amplitude that results from the photon coupling to the ch: i is i d
pion-in-flight amplitude, and it takes the form P ¢ chacged pion. This is referred to as the

Aulps.pi) = gueT - Tsbu(py)As (py, piYu(p))Gu (r - q)J7, (349)
where €T} is the charge operator for the pion, and
Iy =2, —q,. (33)
The total amplitude for photopion production is the sum of Born and i i i i
contact-1 i
factors included, and the pion-in-flight term. ntact-like parts, with appropriate sospin
Au(pr 0.0) = 7 Vs u(py,pi + 0. p0) + 67§V, 5(psopi = 1 ;)
+7-0€Cs u(py.pi + 4, 1i) + 67 - $C, 5 (py,pi ~ 7, p:) + Al(ps,pi) (36)
Note that‘the order of isospin factors is important as they do not commute.
Gauge invariance implies conservation of the EM current, viz., ¢* A, = 0 when the pion is on mass shell, i.e
) Le.,

P ) P .
7% = my. When the pion is off mass shell, there is in general a nonzero result, proportional to G;'(r) = r? —m?2. The

required form is realized in the photo-pion amplitude A, because of the following Ward-Takahashi identities [16,17].

9*Vas = alps)geAs(ng, i + g)u(p:) (37)

@"Vau = ~lps)geAs(ps = r, p)ulps), (38)

“Cus = Mpy)grAsps, u(p) ~ @lpy)gu As (g, i + )ulp) (39)
" Cs.u = alpr)gnAs (pi = r,0:)u(pi) — 5(p7)gw Kooy, piYu(pe). (40)

These identities may be derived by use of E i
d qs. (19), (32) and (33). In the contact-like t e
clementary Ward-Takahashi identity for Dirac propagators @) He fers, one needs t0 use the



" S(p + g;m) 1, S(pim) = S(p;m) — S(p + q;m). (41)
The pion-in-flight term is rewritten in terms of a commutator involving the nucleon’s charge operator, ¢, using the
isospin identity e7 - Ty = —[¢,7- ¢]. Its contribution to the divergence of the amplitude then is
ALy ) = [6,7 $Jalpy)gnhspg, p)ulp)Ga(r DG -G - g (12)

Contributions to ¢* 4,, from the Born terms are cancelied exactly by the contributions from the contact-like terms
that have the samc isospin factors, and the remaining contributions from the contact terms are cancelled by the
second term from the pion-in-flight contribution. This leaves only a term proportional to G7H(r) that vanishes for
an on-shell pion. The full amplitude is gauge invariant and the presence of the contact-like terms is essential for this
result.

The distinguishing feature of the contact-like terms is that no propagator for the composite system occurs between
interactions. Thus, there is not a separate form factor for each interaction. However, the contact-like terms do depend
upon the momentum transfer. They differ from a form factor mainly by the presence of an extra fermion propagator
in the loop integrals of Eqs. (32) and (33). If the extra propagator lines were shrunk to a point, the contact-like terms
would be related to form factors at momentum transfer q-r. This suggests that the contact terms should behave like
F((q-r)?) s(q), where s(q) accounts for the extra propagator. Our calculations show that s(q) is given roughly by s(q)
= K?/(x2- g2 ), where « is a typical fermion mass. Comparing with V5, and V4.5, the contact-like terms fall more
slowly with increasing momentum transfer and ultimately they dominate the scattering.

B. Elementary particle with form factors analysis

A standard treatment of meson-exchange currents in nuclear physics is to construct graphs corresponding to ele-
mentary particles and then to insert form factors at the vertices [20,21). The form factors are obtained from on-shell
matrix elements, e.g., from phenomenological fits to electron scattering data for a free proton target.

Treating the composite nucleon in this way, there are Born contributions of the Vs, and V, 5 types, which are
evaluated using the F** form factors, and the pion-in-flight term. We consider both pseudoscalar and pseudovector
pion-nucleon coupling in the elementary particle amplitude, and there is an additional contact term C,‘E"""P” in the
pseudovector case that results from gauging the derivative of the pion field.

The elementary amplitude with pseudovector pion coupling is defined as,

AL = 7 BeVE™ (g, pi + 0,pi) + 67 - GVEMR(p, b~ ripi) + CRm PV b pi) + Al (ps, i), (43)
where
Elem, e . htd+ M 1
W ernc+ m) = e e (BEAEM) Lo
x [F1+'+(‘1)7u + ia,,,,,q”F;‘+(q)] u(p;). (44)

Similarly, the crossed contribution is

o, 1
VS (prpi - ropi) = ﬁ(PI)[F1+'+(Q)‘Yu +i0,.q Fz+'+(0)] PRy v

<o (ML) B yuto, (+9)
In Eq. (44), a pseudovector vertex factor (i + 4 — B7)/2M has been evaluated by use of @(p;)ysp; = —a(pslyvs M.
Similarly, in Eq. (45), a #i in the pseudovector factor ($i +7 - $:)/2M has been replaced by M by use of the Dirac
equation. When pseudoscalar pion coupling is used, these factors are omitted.

Note that the transition matrix elements to an intermediate negative-energy state in Egs. (44) and(45) are based
upon the same form factor as for the on-shell transition to an intermediate positive-energy state in the elementary
amplitudes. However, when the pion vertex is pseudovector there is reduced coupling to the negative-energy states.
In the corresponding Born amplitudes of Egs. (30) and (31), transitions are based upon off-shell vertex functions that
differ in general for the two transitions.

Hadronic contact terms are implied by the off-shell factors (Pi+ 4+ M)/(2M) in Egs. (44) and (M + ¢ - p,)/(2M)
in (45). For example the first factor may be rewritten as 1 + (p; + ¢ — M)/(2A1), where the numerator of the socond

part cancels the propagator. A correspondi i selen

{v(-‘m‘x- e b e il Cl ;igi) q IIO"dl"g marrangen@ut applies to ‘,.,p' . As a consequence, the pseudovector
ex ¢ > replaced by a pseudoscalar one plus hadronic contact terms in which the factor 1/(2M) replaces the

nucleon propagator between the photon absorption and pion emission. However, the form factors at the pion and

The resulting hadronic contact terms for pseudovector pion coupling have parts in which the F** form factor
appears at the clectromagnetic vertex. These contact terms exactly cancel with the CRomtPVY 4 ’ll‘his le 1
the parts of hadronic contact terms that involve the magnetic form factor F*. For ‘ps(‘udosral"\r ;ior| (:()l:';ql;,es OHh.V
sitn:u,io.n is .?'impl(-r because neither the contact terms from the off-shell vertices nor the onle fr(;n; g‘au l'in tilc (llcr':\l/;e’n: .
of Lll(‘! pion ficld are present, Consequently, there is a near equivalence of the pseudoscalar and pseudobvoft(;r element, oy
amplitudes. After the cancellations in the pseudovector elementary amplitude, the oniy surviving diffr;ronc("s fro; ‘:]ry
pseudoscalar elementary amplitude are the parts of hadronic contact terms involving Fjt+. S n e

Vertex functions in the elementary amplitude cannot be defined precisely because of a 2b.alsi(: conflict between the us
of on-shell form factors and the conservation of four-momentum. Except when q happens to be equal to the diﬁ’crenc:
of two on-shell momenta, one cannot have an on-shell vertex. In the elementary Born amplitudes of Eqgs. (44) and (45)
we h;nve u:cd on-shell form factors at vertices. This is consistent with having a vertex function that does not depend
on p; or py and therefore can be evaluated with on shell initial and final momenta whose difference is the momentum
transfer, ie., p; = (EQ,O,O, ~Q/2) and p; = (Eq,0, 0,Q/2), where Eq = /MZ+ Q?/4, even though these are not
the four-momenta that occur in the process. The assumption that the vertex depends only on Q?, not the off-shell
momenta, is often used when the off-shell dependence of the vertex function is unknown, but it does ,not have a sound
theoretical basis for a composite particle. '

A standard nonrelativistic analysis would be similar to the elementary analysis described above. Relativistic

To summarize this segtion! th‘e composite nucleon model has features which are similar to those of a hadronic theory,
whu;h also has, at least in principle, vertex functions that are off shell, and that are different functions for the different
p-spins. Bec§use the off-shell vertex functions are not known, the standard hadronic analysis uses the on-shell form
{ac;lors_ in thhexr place. Thfe main featl.(ure that distinguishes the composite particle analysis from an elementary particle
analysis is the presence of contact-like terms. They describe scatterin, from the parto; 3
parin i reser g partons and are related to off-forward

W ¢ .
Y I < & TN Y o2 g\ W,
4rM (g 9 ) '+( ¢ ¢ ) (,,v_q ¢ ) M;’ “8)

Structure functions W, and W2 depend on two scalar invariants: Q? = —q2 imi
t re fu : ==q",and v = p. q/M. In the limit Q? - s
with x = Q?/(2M v) held fixed, these functions become dependent only on x as follows [24{, Q ®

MW;(2,Q%) » Fix) = 1 1(2) (47)
and
WWi(2,Q%) 5 Fy(z) = 2/(z). (48)

This sraling.hoha\'ior is a consequence of scattering from point-like constituents of the nucleon, with f(x) being the
the pr.obnhlhty of scattering from a parton that carries a fraction x of the nucleon’s momentum.

A simple way to obtain the forward parton distribution f(x) is to calculate W=z, Either in the lah frame, where p
= (:\1. 0, 0, (),) and q = (v, 0, 0, /JQT+ v?), or in the c.m. frame of the final state, the x-components of q and p
vanish. For finite Q we have

zz

27’

MW (2,Q%) = (49)



and in the asymptotic limit

flz) = Qgim MW, (z,Q%). (50)

Batiz and Gross [25] have analyzed the scaling limit for a composite nucleon model that is essentially similar to the
one used in this paper. Their analysis is for one space and one time dimension. They show that scaling in a general
gauge involves a cancellation between a gauge-dependent part of the impulse approximation graph of Fig. 10 and a
gauge-dependent part of the final-state interaction. This is related to the Ward identities of Eqs. (38) and (40) which
imply that gauge invariance requires cutting both the Born and contact-like terms. Using the Landau prescription,
Batiz and Gross split the impulse amplitude into a gauge-invariant part and a remainder. The gauge-invariant part
of the impulse graph provides the scaling result. The gauge variant remainder cancels with part of the final-state
interaction such that the resultant contribution of these parts vanishes at least as fast as 1/Q*. In this section, we
follow Batiz and Gross by using the Landau prescription for three space dimensions and one time dimension. The
results differ because of integrals over the angles of final state particles and because the phase space in 3D differs from

that in 1D.
The hadronic tensor based on the impulse graph of Fig. 10 is calculated in the c.m. frame of the final state,

15~ I3l l/ 1
wv _ - - wt v
W= s | ST (51)

where W is the total energy of the final state that contains an on-shell quark of momentum p, = (E,, p;) and an
on-shell boson of momentum (W - E;, -p;). Amplitude T# describes the impulse approximation graph for scattering
from the fermion constituent. Using the Landau prescription as in Ref. [25] to obtain a gauge-invariant current, this
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o= (p—% i) (28 ~ 22 - 4+ ¢ utri ), (52)

where u; (p1;m) is a Dirac spinor for the quark of mass m and u(p;M) is a Dirac spinor for the nucleon of mass M.
The factor /igZ;[u(p;M) is the vertex function for the nucleon to fragment into a quark and a boson.
An equivalent form of the hadronic tensor, which we use, is

v 181l |92 1 uv
py — 53
WH = W dQ, i Vi g M-, (53)

where we define

Mb = %Tr{(hf,‘ - 2";,"’«;" - g +q“) # +M)

2 .
x (2PT - %q” -7 +q”) (A +'n)}» (54)
Specializing to M**, we find
M= = 2(4pip} + Q%) (p - pr + Mm) + 4AMv(q - py ~ 2pp}), (55)
where terms not involving x-components have arisen from use of ¥*4* = —1. Expressing the vectors in the c.m.

frame, where p; = (E;, |pi|sinfcos¢y, |p)|sinfising; , |pi|cosd, ), leads to the following expression

M** = 8p, [25in?6, cos* ¢, [poEl - p*lpt|cost + Mm — Mu]

+4Mu[q°E, - q‘lpllcosﬁn] +2Q° [p"En ~ p*|p1lcosty + Mm} (56)
Carrying out the elementary angle integrations produces,
W=z 1gZ||pil Co a+b
=t ), 5
o W \F R +Ciln 3 +C (57)

“=-Q" - 2",

-Q? 2r-1,
- 2_ 2
2 tag Tt (58)
b=2¢"|py|
L@ M1 ) 2y
2 2(1- 1) (59)

Co=4Muvq°E, + 2Q*(r°E, + Mm)
UMugip + 207 p )5

o Lrte s
z Mz +m)? - F,(z)) (60)

Ci=4lpi Py + Mm - Mu) 2 _ ojp,13pr ) 3%
PO b g =2y (1- 5F) - @bl + o

b2
—z-1
(61)
Cp = ~8ip, 2 1 a
2 ) IP1|1(P0E1 +Mm - MV),; - 12|P1|3p‘§
-
and we have defined -
Fu(z) =m?(1 —z)+p21—M2z(l - z). (63)
Furthermore, the phase-space factor approaches a congtant,
Ips) 1
e
W 2 (64)
In the expressions given above, the limiting form as Q? 5 o0 with x = 2/(2 M v) fixed is indicated following th
owing the

ar;;:t.e \3’; thf:& :iel;i) a nur';lber ?f kipematical relations that can be found in the paper of Batiz and G
pu e that | o /iian—(’t))":nses. in tlhtzstzr)ucture function. Because a+b — — Fa()/(1 - x) is inde:)f;lsc.:le t of Q
- - , there is a In term in W=, This i i-Vi ction 1o
:;:gz, li.re).,aillne:_ the parton distribution is calculated as the dis;i)rlliircxi?tc; l(l)?dtl:‘;h::b:.he o b ibteaction s
ek 255] oL éx::n(sgt;r)ls( ;i;)p::gs(;&on th; .;ub}tlra.;t.ion, which was not the case in the 1+1 dimensional analysis of
5 3 Y ;» we find the followi istributi i
of mass m, a boson of mass #, and a Pauli-Viilars subtr:clagnpz;t::;sils/:{buuon for che bubble graph with a fermion

. _ 192l - 2) .
Sl ) = T{‘m (5w - "‘(:"23)} (©5)
AT A

For the case in which additional sub
terms as in Eq.( 9), i.e.,

traction istributi
s are made, the parton distribution becomnes a linear combination of

J@ = folmimumA) + Bf(ziim, Ay, Ay)

—ﬂ[fb(r; mi,p,Ay) + ﬂfb(zﬂnhAlvA?)]

-(1 —0)[/!,(-’5;'"2,#,/\1)+ﬂfh(1;m2,/\|,l\u)] (66)
Figire 11 shows the inelastic structure function 2MxW, (x,Q?) and its limit as

(ha_t fxll()vv a reasonable description of the nucleon form fa
is finite. It must be greater than the total mass of the cox

Q- 00, xf(x), for the same

! ’ s parameters
c?or& For finite Q, .Lhe energy transfer v = Q2/(2Mz) also
nstituent quark and diquark for cach combination that enters
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Eq. (66) in order to avoid spurious threshold effects. This restricts x not to !Jc 100 (",l()S(‘,. to 1. For finite Q, we slm.w
Wi(z,Q) only for v greater than about 200 MeV above threshold. The solid line in .Flg.‘ll shows t,.h:- asymptotic
limit Q-3 o0, which is xf(x). Already by Q= 2 GeV/c, the inelastic structure function is close to its asymptotic
limit for our quark-diquark model of a nucleon. Our result for zf(x) is more peaked than that olrt,;un.r‘,(ll recently by
Minco, Bentz and Yazaki [26] from consideration of a three-quark model, and both results lack S\nmcn(tl)t. strength
near x = 0 in comparison with experimentally determined parton distributions. Reference [26) (:()nSl(h",rs 'wlm.t one
should expect for xf(x) at low Q. Using QCD evolution to relate high and low Q, the nucleon’s parton (hstrllnlt]on is
found to be more peaked at low Q, and not unlike the xf(x) that we find, with a peak near x = m/M, where m is t,h;:
lightest fermion mass. However, our results at Q? = 4 (GeV/c)? are more peaked than the‘ rcslﬁu)ts of Rol? [26] at Q
= 0.16 (GeV/c)?. For x > .6, xf(x) in Figure 11 is negative owing to the fact that the fcrnnqmc subtractions are not
hermitian. This is a deficiency of the model used. Qur results for the parton distribution are influenced by the choice
of subtractions that have been incorporated in order to obtain a good description of the nucleon’s form factors. We
have given preference to obtaining a realistic form factor in sele_cting parameters. ] ]
Owing to the normalization factor 1922, the parton distribution automatically is normalized according 1o

/ldz/(z) =1 (67)
0

See Ref. [25] and Appendix A in this regard. However, only the fermion constituent has charge and the momentum
sum rule is,

/l dr zf(z) = .304. (68)
o

Thus, 70% of the momentum is carried by the diquark in this model. ) ) ) ) )
To summarize this section, the model for a nucleon as a bound state of a quark and diquark is consistent with sca.h'ng
in deep inelastic scattering. The normalized parton distribution provides a rough normalization for the contact-like

terms in the large Q limit.

VL CALCULATIONS FOR MESON-EXCHANGE CURRENT AMPLITUDE

Virtual photopion production amplitude A# that has been defined in Eq. (36) arlld disc'usse_d in Sec. 4 contributes
to the electromagnetic current in electron-deuteron scattering. For this case, the emitted pion is absorbed on a §econd
nucleon and, in general, there is a loop integration involving the pion momentum and the deuteron wave fupcnons of
initial and final states. For electron-deuteron scattering, the loop integration receives important contributions from
the quasifree kinematics indicated in Figure 12. Each nucleon in the deuteron, only one of which is shown, has init_.ial
momentum p; = %P —%q. Figure 12 shows the nucleon which absorbs a photon of momentum q and emits a pion
of momentum r = %q, ending up with momentum p; = %P +%q. The secon(% nucleon, not shown, also has initial
momentum p; = 1P —14q. When the pion is absorbed on the second nucleon, its ﬁn‘al momentum also becomes p;.
This process begins and ends with the two nucleons at zero relative momentum. It is favored becaulse the 4deute.zron
wave function is largest at zero relative momentum. Pion-in-flight terms vanish for the selecth kmfamatu:s, since
2r, — qu = 0. They are omitted from our calculations. A calculation using deutt;ron wave functions is planned for
a future work. For now, we focus on the quasi-free photopion amplitude and simply vary the momentun of the
space-like virtual photon: q = (0, 0, 0, Q). ) ) ] ) )

Although there are sixteen helicity amplitudes A‘;,A_ , for the quasifree kinematics with collinear momenta that we
consider only three amplitudes are significant. An isospin-nonflip amplitude, a, occurs in the time-component of the
photopion amplitude as follows,

A =a{e 7 o)) oo, (69)

where the isospin factor involves an anticommutator. Two isospin flip amplitudes, b and ¢, occur in the space-vector
parts of the photopion amplitude as follows,

A%, = 0[6 78X} o, (70}
A =& @)X} g (T1)

12

where the isospin factors involve a commutator.

Although we calculate only the photopion amplitude, its role as a meson-exchange current in clectron-denteron
scattering is of interest. In that case, the isospin wave functions ¢ for the pion are replaced by the isospin operators 7
for the second nucleon. The isospin-nonflip amplitude, a, is the only one that contributes as a meson-exchange current
in elastic electron-deuteron scattering. However, for breakup of the deuteron, both isospin nonflip and isospin-flip
amplitudes contribute. '

A. Isospin nonflip amplitude: a

Figure 13 shows the absolute value of Born and contact-like contributions to amplitude a in comparison with
simple estimates of these contributions suggested in Sec. 4: Vg5 + Vo~ leFdipole(qz)G+((l)i + q)Fgipore((r?) and
Cos + Cs0 = C2Q F((qr)?) S(q), where C,; and C, are constants and s(q) = x?/(Q? + x?). We find that x2 =
.20 (GeV/c)? describes the Q dependence caused by the extra quark propagator in the contact-like terms. A factor
Q is included in the estimates because there is such a factor in the amplitude for kinematical reasons. The point

individual covariant amplitues that go into the helicity matrix element (see Appendix C for the definition of covariant
amplitudes).

In Fig. 14, we show [a] for the Born (long dash line) and full amplitudes (solid line) for the composite nucleon.
Also shown (dash line) is the elementary amplitude laf that is based upon pseudoscalar pion coupling. Finally, we
show (dotted line) a nonrelativistic amplitude that is based on pseudoscalar pion coupling and the standard positive-
energy propagator: A+(p)/(p° — \/M? + p?). Thus, the nonrelativistic amplitude differs from the elementary one
by omission of the Z-graph part. Form factors used in the elementary particle and nonrelativistic analyses are based
on the quark-diquark model except that on-shell ++ form factors are used. For small Q, the Born contributions
dominate for all cases because there is a pole in the intermediate nucleon propagator. In the vicinity of Q = 1.2
GeV/c, two amplitudes that involve an intermediate propagator for a nucleon, i.e., the the Born and nonrelativistic

amplitude, it has the opposite sign and is not a useful approximation to the full result.

Figure 15 shows the contact-like amplitude of the composite model, (solid line). The part of the Born amplitude
that comes from excited states and Z-graphs is shown by the long dash line. It has been calculated by evaluating
Eqgs. (31) and (30) with the positive-energy propagator, At} (° - VMT ¥ p?) and then subtracting that result
from the Born amplitude based on the full propagator of the composite model. Next we show by the dash dot line the
sum of parts of the composite nucleon amplitude that do not come from the Born terms with the positive propagator,
i.e., the sum of contact-like parts, excited-state parts and Z-graph parts. Thus, the dot-dash line shows the sum
of the amplitudes used in the solid and long-dash lines. The dash line shows the Z-graph part of the elementary
amplitude based on pseudoscalar pion coupling. The excited-states-plus-Z-graph part of the composite-nucleon Born
amplitude (long dash line in Fig. 15) is larger than the Z-graph part of the elementary Born amplitude (dashed line)
at low Q, but it decreases rapidly with Q. Because a less point-like structure for the composite nucleon would be
expected to provide even smaller contributions at large Q from excited states and Z-graphs, the smallness of the
Born contributions of the composite model at large Q is expected to hold more generally. The Q-dependence of the
pseudoscalar Z-graph contribution (dashed line) is notable for its similarity to that of the contact-like contribution of
the composite model (solid line).

Because the pion vertex of the composite model is about 75% pseudovector, we consider next the same set of
comparisons using an elementary amplitude in which the pion coupling is pseudovector. In this case, we also include
the contact term that is implied by gauging the derivative of the pion field, Cfl""(Pv). Figure 16 shows that the
elementary amplitude based on pseudovector pion coupling (dashed line) provides a poorer approximation to the
composite nucleon result (solid line). This is because it has a zero near 1 GeV/c and has the wrong sign at large
Q. Figure 17 shows the difference between the pseudovector elementary amplitude and the nonrelativistic amplitude
that uses psendoscalar pion coupling by the dashed line.

We find that the use of pseudoscalar pion coupling in the clementary amplitude provides a better approximation
to the amplitude of the composite model. This is because it has a large Z-graph contribution that approximates the
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contact-like contribution of the composite model. As mentioned, the pseudoscalar and pseudovector pion couplings
produce different results only because of the magnetic couplings of the photon. If the photon were to couple only via
the charge current, v*Fy(Q), the pseudoscalar and pseudovector elementary amplitudes that we consider would be
cqual, However, the magnetic part of the charge current, 0#¥q, F2(Q}, changes this. For pscudoscalar coupling, the
Z-graph amplitude shown by the dashed line in Figure 15 is proportional to F (Q)'+ F5(Q) = Ga{Q), whereas for
pseudovector coupling, the dashed line in Figure 17 is proportional to Fy — F>(Q)Q?/(4M?) = G(Q). The effect of
the magnetic parts explains the different results in these graphs.

Low-energy theorems that apply to the photopion amplitude at low Q arise from chiral invariance. Because the
composite nucleon model has essentially pseudovector pion coupling, which is consistent with chiral invariance, one
might expect the pseudovector elementary amplitude to provide a better approximation to the composite nucleon
results. This expectation fails at large Q because of the important contributions of contact-like terms.

B. Isospin-flip amplitudes: b and ¢

Isospin-flip amplitudes [b| and |c| are shown in Figures (18) and (19). These amplitudes do not exhibit a pole
at @ = 0 like the one in the isospin-nonflip amplitude, a. Each vertex in the b and ¢ amplitudes has a factor Q,
thus cancelling the 1/Q? from the propagator. Consequently, the isospin fip amplitudes are much smaller than a
at small Q, but they can be comparable at large Q. Elementary amplitudes based upon pseudoscalar pion coupling
and pseudovector pion coupling are equivalent for the b and ¢ amplitudes, and thus we show only the pseudoscalar
elementary amplitude. This equivalence results because the hadronic contact terms involving the F; electromagnetic
form factor give a vanishing contribution for the kinematics that we consider.

Figure (18) shows that Born and nonrelativistic results for |b| are very close to one another at small Q. However, the
Born amplitude is significantly smaller at larger Q. The full composite model result is close to that of the elementary
amplitude over the entire range of Q. Born and nonrelativistic results both omit Z-graphs, whereas the full and
elementary results both include Z-graphs. It is apparent that the Z-graphs make a significant contribution at Q = 0,
lowering the full and elementary results in comparsion with the Born and nonrelativistic ones.

Contact-like terms of the composite nucleon cause the difference between full and long-dash lines: these are signif-
icant but not dominant in the way they are for the isospin-nonflip amplitude, a.

Figure (19) shows that the full composite model provides a much larger result for |¢| than is obtained from the Born,
elementary or nonrelativistic amplitudes. Thus, jc| and |a] amplitudes show dominance of contact-like contributions
at large Q, but |b| does not.

It is clear that one would like to have better control of the normalization of contact-like terms in order to determine
the transition point where they may become dominant contributions to electron scattering from nuclei. However,
the present model suggests that this could be near 1 GeV/c for the isoscalar MEC appropriate to elastic electron-
deuteron scattering, based upon the strong dominance of contact-like contributions to |a|. For the isospin-flip MEC
contributions, which are relevant to electrodisintegration of the deuteron, each of the amplitudes a, b and ¢ contributes.
A more complete calculation is required to see if the contact-like terms may dominate the MEC at large Q.

Use of pseudoscalar pion coupling improves the agreement with results of the composite model significantly for |a},
and is equivalent to pseudovector pion coupling for |b] and |c¢|. The fact that pseudoscalar pion coupling seems to
work fairly well is not because it provides a description of the underlying physics, which requires consideration of
scattering from the quarks at large Q.

VII. CONCLUSION

A simple model of a composite nucleon is developed in which a fermion and a boson, representing quark and diquark
constituents of the nucleon, form a bound state owing to a contact interaction. Photon and pion couplings to the
quark provide vertex functions for the photon and pion interactions with the composite nucieon. By introducing
and exploiting cutoff parameters of the Pauli-Villars type, realistic electromagnetic form factors are obtained for the
proton. When a pseudoscalar pion-quark coupling is used, the pion-nucleon coupling is 75% pseudovector. The small
quark mass produces a vertex behavior close to that expected from chiral invariance.

A virtual photopion amplitude is considered in which there are two types of contributions: hadronic contributions
where the photon and pion interactions have an intervening propagator of the nucleon, or its excited states, and
contact-like contributions where the photon and pion interactions occur within a single vertex. Relative normalization
of the two types of contribution is controlled by Ward-Takahashi identities at low momentum transfer. At high
momentum transfer, scaling behavior is obtained for the composite nucleon already by Q & 2 GeV/c. This provides a

rough normalization of the contact-like parts because the parton distribution is normalized (sce Eq. (67)). However,
our model of a composite nucleon as a bound state of a quark and diquark yields a parton distribution that is peaked
near x = m/M, the ratio of quark to nucleon mass, whereas the data suggest much less peaking and more strength at
low x values than the model gives.

Calculations for the virtual photopion amplitude are performed using kinematics appropriate to its occurrence as
a meson-exchange current in electron-deuteron scattering. The results show that the contact-like terms dominate the
eson-exchange current for Q > 1 GeV/c for the case of elastic clectron-deuteron scattering. As Q increases, the
dominance of the contact-like terms over the Born terms of the composite nucleon can become very large, suggesting
that hadronic processes become unimportant when this occurs. Our results indicate that contact-like terms still have
substantial Q dependence when they become dominant.

For the inelastic electron deuteron scattering, both isospin-nonflip and isospin-flip parts of the photopion amplitude
can contribute. Two of the three contributing amplitudes are dominated at large Q by contact-like terms and the
other is not. A more complete calculation using deuteron wave functions is needed in order to understand the role of
contact-like contributions in deuteron breakup.

Oft-shell eflects in the hadronic vertex functions are found to be significant in the composite model. They cause
a significant suppression of Born contributions to the virtual photopion amplitude for Q > 1 GeV/c. This result is
model-dependent, but it suggests that use of on-shell form factors could be a poor approximation for momenta that
are significantly off the mass shell.

An elementary amplitude based upon pseudovector pion coupling fails to provide a useful approximation to the full
result of the composite model for the isospin-nonflip amplitude. This can be improved somewhat by using pseudoscalar
pion coupling in the elementary amplitude. The increased Z-graph contribution gives a better approximation to the
contact-like terms of the composite nucleon, but not to the underlying physics.

Compositeness requires contact-like terms in second-order interactions. They have a direct connection to off-forward
parton distributions and can dominate the scattering at large Q as they contain the leading partonic scattering process.
Hadronic form factors and off-shell effects tend to quench the Born scattering processes that involve intermediate
hadronic states.

For the considered nucleon model, we find that scattering from the quark constituent can be significant at modest
Q values such as Q > 1 to 2 GeV/c. Cnce partonic scattering becomes dominant, it is expected to remain dominant
for higher Q. Where the transition to dominance of the partonic interactions actually takes place is a matter of great
interest. The model calculation of this paper suggests that this is determined by the size of contact-like contributions,
or equivalently, by the size of the off-forward parton distributions. It may occur in some processes at momentum
transfer as low as 1 GeV/c and seems to be likely by 2 GeV/c for the considered isoscalar meson-exchange current.
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APPENDIX A: SELF-ENERGY AND LOOP INTEGRALS

Details that have gone into calculations but are omitted from the text are collected in this appendix.

The fermion-boson self energy graph, defined in Eq. (4), vertex functions defined in Eqs. (18) and (23) and the
contact-like terms defined in Eqs. (33) and (32) require evaluations of Feynman integrals and subsequent reductions
of the Dirac matrices to standard forms. Integrations over loop momentum k are performed by standard methods:
n propagator factors are combined by means of integrals over Feynman parameters ay,az, -+, an-1, into a single
denominator function of the form {(k - £)2 — F + in]", where the shift vector £* and the function F depend upon the
external momenta and Feynman parameters. Numerator functions involve one power of the loop momentum, k&* for
each fermion propagator.

Two divergent k-integrations arise and these are evaluated by using subtractions. The required formulas are,

. d'k
’g/ )t ([(k - m: -EP _t):— FA.P) {1} = (ffT") fres, (0

d'k 1 1 upv
2o [ o5 ([(k—m-ma B [(k—eV—FA,]a)’“ K=
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g FuN{_ 1. 2 (L _ 1w
16171“(1'“‘,“)( 29 +l01r7 F, " T &g, (A2)

In all other cases, the k-integrations can be performed before subtractions by using the formulas ( for n > 3),

{ 1>, <k >, kR >, < kMg kS >} =

dik 1
] -1 ot o LA KR kR EVRT ) =
ig(n = 1t x / @O (k-7 - F+ u]]"{ }
(n -3 1 e o g eee e -
(=) 01627 | Fo-2' Fr= Fi=2 ~ J(n - 3)Fn-3" Fnot " 35 - 3)Facs
where
nive = g e +gv7en 4 g”‘f". (A4)

Considering the self energy of an elementary fermion-boson bubble graph, we have

k- +m 1 1
; =1 —_ —_ 1} A5
Eb(pim, s A1) ’9/ R -k —mE+in (H - +in F-Al1iq (49)
Using the Feynman parameterization
1 ! 1
ab /.; d"[aa+ (1=’
to combine denominators, we have in this case the shift vector £ = ap, and denominator functions F, and Fy,, where
the general form is

(A6)

Fp = aA? + (1 - a)m? - a(1 - a)p?. (A7)

Integrating over loop momentum produces the two scalar parts defined in Eq. (11), as follows,

' F,
(46807} = gz [[aain () foum. o

Using these formulas and the condition MA(M?)+ B(M?) =1, one may determine the coupling constant g such that
there is a bound state of mass M, where M < m + #- The corresponding formulas for A’(p?) and B’ (p?) are obtained
by differentiating with respect to p?,
@B @) = -2 [ daal - a) L L) (a,m} (49)
W B6) =~ [(daatt-a) (7 - o) (am).
Wave-function renormalization constant Z; has contributions from the elementary bubble graph that may be
expressed, using Eqs. (12) and (A9), as follows,

1
-1_ 9 - i — L - .ﬂ
Zyt = Ew—’,/o da{?M(Ma+m)a(l a) (Fu Fm) aln (F:h (A10)
and for Z;, p* = M? in F, and Fy,. Using the identity,
! 1 1 F,
_ 2 _ a2y L - e { =2 = 1
/oda{(l a)(m Ma)(F“ FA,)+(20 I)H(FA,)} 0, (Al1)
an equivalent expression for Zy !is,
1
e 9 [ et - TERRNG
Zy'= 161r"’/0 da(l a){(Ma+m) (Fu FA|) l"(FA, (A12)

The integral here is the same as for the contribution of the elementary hubble graph to the normalization of the
parton distribution, showing that the factor Z, guarantees the normalization as in Eq. (67). Equation (A11) can be
verified by integrating by parts the term involving 2a - 1.
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APPENDIX B: THREE-POINT FUNCTIONS

Three-point functions required for photon and pi i
¢ S rec  for pion vertices are defined by Egs. (18) and (23). Th
numerically from formulas involving integrations over two Feynman parameters, a; an(i as. ’I('he)den(;fnyi:.:focraglf:::its(n]

Fa that results from combinin the propagators i i i i
F g Propagators in the three-point function, assuming a generic mass A for the boson,

Fa = aA? + ay(m? - +(1-q - a)(m? —pl) + 2, (B1)

and the shift vector is

C=api+(1-a - aq)py. (B2)

Moments of loop momentum need to be expanded in terms of

the independent exter: i z
to be p; and py. For this expansion, we define, ’ et momenta, which we choose

<1>=C, (B3)
<k'>=Cnpt + Cuzpy, (B4)
< KK >= Cpyptipt + Coplpy + Cus(vl'py + PiP}) + Cag™. (B5)

where the coefficients are calculated from
{Co,C'n,Cm,Cn,Cu.Cza} = l/ldan /l_m day (—l~ -
1622 J, o Fu By,
{La-a),0-a-ap),01 =) (1-ay ~ @), (1~ ay)(1 = g - as)} (B6)

1 l-a
C. 9 ! F,
= L
M 307 A dal/o dazln (l“,‘, ) (B7)

Finally, the Dirac matrices from numerators of two fermi i
1ally, }c m €rmion propagators are simplified to standard forms with the
assistance of projection operators L? (pi) and Les (ps). Once a factor Pi is commuted, if necessary, to act on L (p;)

it becomes p;W;, where Wi = /p?. Similarl commutin, i
final expressions for form factors ax'-e: Y 8 #y = flecessaty to act on Lev (p1) results in #sWs: The

and the final coefficient is

B2 (pg,pi) = (o1Wy + m)(pW; + m)Co + (o, Wy + m)pW,Cy,
+orWeloiWi + m)Cyy + 2:Wios Wi Cor ~ (pi — py)2(Cyy - C23) - 20y (B8)

BP0 (pg,pi) = ~(psWy + m)Cys + (oW, + m)Ciz -
(p:W: + m)Cyy - pW,C,, + (=0sWy + pW)Cyy

(B9)
B g, pi) = (o, Wy +m)Ciz2 + (W, + m) x (Cyg — Cu) - piW;Cy,
+20pr Wy ~ BiWi)(Caz ~ Coy) + (PsWyr + pW;)Cs (B10)
B py,p) = (PtWy + m)(p W, + m)Co + (o, Wy + m)p;W;Cy,
~(PrWr +m)(p, W, + pWICr — piWi(piW; + m)Cy,
. oWy + W) (Wi + m)Cyy - WiCy ~ (w? - W2)Cys
=2 = prY(C2 ~ Co3) - 4C54 (B11)

Dependences of the form factors on p;, ;s and off-shell momenta are made explicit in these formulas
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APPENDIX C: EXPANSION IN TERMS OF COVARIANTS AND MATRIX ELEMENTS OF BORN
TERMS

It is convenient to expand amplitudes V#* and V5* in terms of kinematical covariants and associated scalar ampli-
tudes. For the kinematical covariants, we use helicity matrix elements of a set of eight Dirac operators, as follows,

kY =, (pr) vy ua (mi) (C1)
k3 = plaa, (pr)rshus, (ni) (C2)
Ky = plax, (ps)vssur(pi) (C3)
ki = g*iis, (ps)rsfua, (pi) (C4)
B = plis, (pr)rsun (pi) (C5)
kg = ppus, (pr)rsua(pi) (C6)
k7 = g i, (pr)ysua, (pi) €7)
B = 50,0y 17l 00 (9

where A; and A, denote the helicities of initial and final states.
The direct Born graph of Eq. (31) is expanded as follows,

8
Vi =2 Voakl (C9)
where the scalar coefficients are
1
VBt =3 F’5 [(W e = PMVFDY + pFPH (pi + ) —p?)] (C10)
P
1
Vet = z,: 55 (=20F5) (€11
Ve =0 (C12)
VEd = ZF; ’ ,bﬂ(l’g"'+ - Fph) (C13)
1
VES = Y R g leeFt] (C14)
'
Vs =0 (C15)
1
= Y B 5 WosoES™ + pMFS™ + pFf) (C16)
-

ot _ +.p 1 ) .
Vhs = ;Fs * ol Woord FE* = pF{ = pMFP ) (C17)

In the Vi, expressions, D? = 2W,, ;. Z,[1 - ((pi + - 2
%) = Wi Al(ps +
Similarly, the cross Born graph of Eq. (30) is e):panded as follot:s (b + a7

Ves =" Z Vinkn (c18)

P n=}
where the scalar coefficients are
+.
Vet = Z [ Wy, —q = pM)F +pF (0] ~ (py - 0)2)] %F.p * (C19)
+o _
V=0 (C20)
z 2F; "B F" + (c21)
- +, 2L e,
= Zp:p(p, ° + F3+ ’)B;F{ + (C22)
+0
Vig=0 (C23)
Ve = z2pF+"’—F"' (C24)
+.p _ "
VI = 2 [~ R + Wy + oM B] o ppt (C25)
rd
+0 _ . 1
VA = [ oR ~ Wy o+ oM o e (c26)
P

In the Vi, expressions, D?(p) = 2Wy, 4221 - B((ps - ¢)2) - Wy, Al(py - 9)%)).

APPENDIX D: CONTACT-LIKE TERMS

Contact-like terms involve three fermion propagators and Dirac matrices v, and ;. For Cs u» we have
5y _ - . 'k
C* = u(ﬁ/)[ty/ WS(P/ —km)Y°S(pi + g~ k;m)y*S(p; - k;m)

D(k;u,/\x)} u(p;). (D1)

We denote the numerator of this expression as
N(k) = a(py) [(ﬁ/ “E+m)Y i d - Em)y (b - F+ m)Ju(p.)- (D2)
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The Feynman parameterization used is
1

[ —— T ) . D3
Eddd, = /[ R mrar—— ady + agdy]t (D3)
where
1 1-ay l-ay-0;
/[da] E/ day duz/ day, (b4)
o ] 0
and
a=1-a-a;—a;. (D5)
This leads to a shift vector
€= aups + a3(pi + q) + aop;, (D6)

and a denominator function, for boson mass A,
Fr = aq[m?® — p}] + a3[m® - (p; + 0% + aa[m® - p?) + q A? + 2. (D7)

The required integration is

. &k
0% = ot [l | Tz ("’(I(k S i e 1‘) @9

From the general rules stated above, one sees that a k* in the numerator in general is replaced by ¢ after integration
over k, but there are additional contributions from combinations of k#k* that involve 9*¥. Therefore we write
k# = ¢ ¢ (k—¢)*, and expand in powers of k — ¢. Terms that are odd in & ~ ¢ do not contribute because of symmetry.
The parts that do contribute are

No(k) = N5 (¢) + AN (K - ¢), (D9)
where
AN (k) = ii(py) [(ﬁ/ A IYEE A B B~ 4+ Y E + B — £+ 'H)J u(p;). (D10)
Integration over k produces
_ "9 4t _ L _ 1 4 L - _l_
Cou = ]67/[4,,]{1\;5 © (Fz FA,‘) 3N x (o o )} (D11)

where
(AN®) = a(py) [(ﬁ/ LA MYV 905 + 79 X (B + §~ £+ m)yErPgas
1YY gas(pi — £ + M)} u(pi). (D12)

The resulting expressions are reduced and expanded in terms of scalar amplitudes times kinematical covariants
defined in Appendix C as follows.

8
= ZCan#, (D13)
where

20

Cpy = /[da][ ~As - MAG - MAg(ag + 0y + )]
Cp2 = /[da) (a2 +as)(45 + ag47)]
Cpa = /[da][— (45 + ag4y)]
Cos = /[da][ - as(ds + a3 )]
Cou = [1dal[A, + (a1 + as)(da + A + 49+ At (a2 + as)(as— a3 - ay)M s
Cps = /[da][a.(A2 =4 + As) + ay(ay - @y - ag) x MA-,J
Cor = [del[ Ay +as(ds + s) 4 ay(ag - a2~ as) x M4,

Cps = /[da][— Ay - a;AGJ

and where

= [M 4 my2 ﬂ](l,._f/%) (%—FL)
G ~ (M +m)? - 2M(M + )] ( F’l’) (_ = )
M A Il Ay

= [ + )26~ 20y~ (a4 - met] (Fi - FL,)
a Ay
E

—[3M+2m]( - %)
o)

= [2(0 4 m) - 2M(az +ay)] (_ - Fiz)

Aez[mi_ilﬂ_[?_‘.z[‘pml (L_L)*_;;(i_L)

B F. ~ Fi,
11

A= - -

=[] (F: )
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(D16)

(D17)

(D18)

(D19)

(D20)

(D21)

(D22)

(D23)

(D24)

(D25)

(D26)

(D27)

(D28)



Ag = [2M* a2 + ag + aq) — 2pi - (pi + @) (02 + as) + 2pp - (i + g
1 1 )
+2p,<qas] (r_f T},

e ¢ ed as iate for C™.
Here pine = pi + q is the intermediate momentum, and ¢, F, and' Fj, are Lxlgrcsstd as appropriate {c
A vcllr"‘y similar analysis is carried out for the crossed contact-like term, C**.

d'k . . s
cHe = a(p,)[ig/a”—);s(p/ - kim)yS(py —q - kjm)y
S(pi - k;m)D(k;u,An)J u(p)-
We denote the numerator of this expression as
NS = (py) [(ﬁ/ —E+m (B — -+ m)Y x (i -+ m)] u(p;).

Proceeding as before leads to a shift vector
¢ = aups +aslps — q) + aopi,
and a denominator function, for boson mass A,
2,42
Fp = ay[m? - pf] + as[m® — (py — 9)*} + cam® - pl] + an A% + 2.
Numerator factors that produce nonzero results are expressed in a similar way as above,
N#S (k) = N*8(8) + AN (k - 0),

where

AN*3(k) = @(py) [(15/ — L+ MY BB+ By — -+ mYF
+Er By (B —;+m)] u(ps).

Integration over k produces

o=t fii{ (g -7) -3 - 5

where
5.0
(AN*®) = a(py) [(75/ =+ MYV gap + 74 X (By — - £+ m)Y* Y gag
1YY gap(Bi — £+ m)] u(pi).
The resulting expressions are expanded in terms of scalar amplitudes times the kinematical covariants,
8
CH =3 Cxnkh,
n=1
where
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(D29)

(D30)

(D31)

(D32)

(D33)

(D34)

(D35)

(D36)

(D37)

(D38)

+as +ay )J Cx1=-Cpy, (D39)

Cxz = /[da][ - @24y + agdr)] (D40)

Cxa = /[da][ = (a3 + a4)(ds + a37)] (D41)

Cxs = ~Cpy (D42)

Cxs = /[da] [ag(Az ~ Ag + Ag) + an(ag — ay — m)MA,] (D43)

Cxs = /[da] [4+ (@3 + i) (42 + 46 + dg) + 4, + (83 + ag)(az ~ a3 — a ) M 4y (D44)
Cxr = / [da][ ~ A1~ a3( A2 + As) - as(ag - ag - a.)MA,] (D45)

Cxs =Cps (D46)

and where the functions A, to 4; take the same form as before, except that Pine = py — q, and the appropriate ¢, F,
and Fy, for C*5 must be used. Also, equalities such as Cx1 = —Cp; mean that Cx) takes the same form as -Cp,

but of course must be evaluated with the appropriate ¢, and so on. Function Ag takes a different form from Ag, as
follows,

As = [2M*(az + a5 + 04 + 20, (5 - g)ag - 29, - (Pr - a)as + )

1 1
~2py ~q03] (F—f - FT,) .
(D47)

Calculations have been performed in two ways. One uges the expressions given above and the other uses expressions
that have been developed by use of the symbolic manipulation program SCHOONSCHIP in order to reduce the Dirac
matrices to the desired forms and FORMF to calculate the moments of the one-loop graphs (27]. Two independent

computer codes were written and checked against one another to verify that the algebra and the numerics was done
correctly.
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FIG. 2. Photon-quark and pion-quark insertions in the composite particle propagator. 0

Q (GeV/c)

FIG. 3. Electromagnetic and pion form factors for composite particle.
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F1++(Q2,M2,p2)
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FIG. 4. Dependence of form factor F} *, including propagator factor as discussed in text, on oﬂ"-mass-shell variable p?, where
p?/M? = 1.2 (dot line), 1.1 (dashed line), 1.0 (solid line), 0.9 (dot-dash line and 0.8 (long-dash line).
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FIG. 5. Dependence of the ratio Fit ~(Q?, M?,p")/F**(Q?) on off-mass-shell variable p?, where p2/M? = 1.2 (dot line), 1.1
(dashed line), 1.0 (solid line), 0.9 (dot-dash line and 0.8 (long-dash line). Propagator factor is included as discussed in text.
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FIG. 6. Dependence of ratio F; ~(Q?, M?,p?)/F;*(Q?) on off-mass-shell variable p?, where p?/M? = .1.2 (dot ‘liue), 1.1
(dashe.d l;ne) 1.0 (solid line), 0.9 (dot-dash line and 0.8 (long-dash line). Propagator factor is included as discussed in text.
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FIG. 7. Dependence of form factor Fgt~(Q?, M2, p*)/FHH(Q?) on off-

mass-shell variable p?, where p’/M? = 1.2 (dot line),
1.1 (dashed line), 1.0 (solid line), 0.9 {dot-dash line and 0.8 (long-

dash line). Propagator factor is included as discussed in text.
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FIG. 8. Pseudovector fraction of pion-nucleon coupling.
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FIG. 10. Impulse approximation for deep inelastic scattering.
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FIG. 11. Structure function for inelastic scattering. Q = 1.5 GeV/c (dot line), Q= 2.5 GeV/c (dash line), Q = oc (solid
line).
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. ) . FIG. 13. Born amplitude (solid line) is compared wit
pion (dashed line) is absorbed by a tact-like contribution (long dash line) is compared with
K2/(Q% + K?), with k = 0.2 GeV?, (dotted line).

f h product of dipole form factors and
FIG. 12. Quasifree kinematics for photopion amplitude in meson-exchange current. The
second nucleon, not shown, such that the each nucleon absorbs half the photon momentum.

estimate based on product of dipole

propagator (dotted line). Con-
form factor and factor 5(Q) =
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FIG. 15. Contact-like contribution of composite model (solid line), excited states and Z-graph part of Born amplitude for
FIG. 14. Isospin-nonflip a amplitude: full amplitude (solid line), elementary amplitude based on pscudoscalar pion coupling com;ioslte motliel (long dash l‘me), sum of contact-like, excited states and Z-graph parts (dot dash line) and Z-graph part of

i i i al itud ine).
(dash line}, nonrelativistic amplitude (dot line) and Born amplitude of composite model {long dash line). P ar y amj e (dash line}
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FIG. 16. Isospin-nonflip a amplitude: full amplitude (solid line), elementary amplitude based on
(dash line), nonrelativistic amplitude (dot line} and Born amplitude of composite model (long dask

pseudovector pion coupling
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FIG. 18. Isospin-flip b amplitude: full amplitude (solid line), elementary amplitude based on pseudoscalar pion coupling
(dash line), nonrelativistic amplitude (dot line) and Born amplitude of composite model (long dash line).
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