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We review the spectral fow technoiques for computing the index of the over-
lap Dirac operator includlng results relevant for SUSY Yang-Mills theories. We
desctlbe propertles of the overlap Dirac operator, and methods to Implement
it numerically. We use the results from the apectral flow to illuminate the dif-
ficultles In numerleal calculations involving demaln wall and overlap fermions.

PACS. 11.15.Ha, 12.38.Ge. -
I. Overlap and domain wall Dirac operators

In these proceedings, we review some basic properties of the overlap Dirac operator
and how its index can be computed by spectral flow techniques. One of the side resulis is
that for fermions in the adjoint representation of SU/(N) we find evidence for fractional
topological charge. The presentation is pedagogical with the intent of illustrating the
origin of numerical difficulties in simulaling overlap and domain wall fermions. Recent
results from our work using overlap fermiona can be found in references (1, 2, 3, 4.

The massive averlap Dirac operator derived from the overlap formalism [5] is

Din ) = 1+ 1+ (1 = hrse(Hc o) m

where Hp(m) is a latiice hermitian Dirac-like operator describing e single fermion species
with a large negative mass. The mass m is a regulator parameter for the theory. In this
work, we use the hermitian Wilson-Dirac operator Hu(m} = s Dvwiwon{—m), although we
have tested other fermion actions. The mass paramcter —1 < g < 1 i3 related to the
fermion mass by (6]

my = Z'u(l+ O(a)). 2)
The propagator for external fermions is given by

D) = 0 —w o3t 1], @)



i.e. it has & contact term subtracted, which makes the massless propagator chiral:
{D_I(G}s 75} =0.

A massless vector gauge theory can also be obtained from domain wall fermions (7],
where an extra, fifth dimension, of infinite extent is introduced. In the version of ref. [],
one can show (9] that the physical {light) fermions contribute log det Doy to the effective
action with the 4-d action

Dow = % L+ g+ (1 = p)ys tanh (—%logi")} “@

where T is the transfer matrix in the extra dimension and L, its size. As long aslogT # 0
we obtain in the limit as L, — o

1
Dow = 2 {1+ 5+ (1 - plmee(-log T)} - (5)
This is just the massive overlap Dirac operator up to the replacement H,, — —logT". It is
eagy to see that in the limit a, — 0, where a, is the lattice spacing in the extra dimension
{set to 1 above), one obtains —log T = H,, (1 + OHa,}).

11. Some properties of the overlap Dirac operator

In many cases it is more convenient to use the hermitian version of the overlap Dirac
opetator (1):

Holp) = Danl = 5 1+ i+ (1~ whe(H). ®
The massless version satizfies, .
{FL(0), w} = 2H3(0). "

It follaws that [H2(0),7] = 0, i.e. the eigenvectors of H?(0) can be chosen as chiral.
Since
Hi(p) = (1 - YHH0) + (8

this holds also for the massive case.

The only eigenvalues of Ho{0) with chiral eigenvectors are 0 and 1. Each eigenvalue
0 < A% < 1 of H2(0} is then doubly degenerate with opposite chirality eigenvectors. In
this basis H,() and D, (g) are block diagonal with 2 x 2 blocks, e.g

' (-3 + (1 wAvT= 2 10
Dol (—(1~5Aﬁ%¥ {1—”;:),\°+,u ) T“:(0 —1)‘ ®)
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FIG. 1. Plots of the optimal rational function approtimation to e(z) for vavicus order polync-
tnials.

For a gauge field with topological charge @ # 0, there are, in addition, |} exact zero
modes with chirality sign(€}), paired with eigenvectors of apposite chirality and eigenvalue
1. These are also eigenvectors of (s} and Do ()

Dolideo e (B 2} o0 (5 1) (10)

depending, on the sign of Q.

We remark that from eigenvalues/vectors of H2(0) those of both Ho{g) and Dy, (1)
are easily obtained. There is no need for a non-hermitian eigenvalue/vector sclver! For
example, the Ritz algorithm [10] will do just fine.

IIL. Immplementations of the overlap Dirac operator

In practice, we only need the application of D{jz) on a vector, D{u)i, and therefore
only the sign function applied ta a vector, c{H ). Bince we need the aign function of an
operator {a iarge sparse matrix) this is still a formidable task.

Methods proposed for this computation are:

* A Chebyshev approximation of e{z) = _Zy over some interval [§, 1] [11]. For small
4 a large number of terms are necded.

« A fractional inverse method using Gegenbauer polynomials for by [12]. This hasa
poor convergence since these polynotnials are not optimal in the Krylov space.

3



FIG. 2. Results for a single 8 inatanton with radius g = 2.0 and Dirichlet boundary conditions.
Left: spectral fiow of Hr(m), center: profite of the zero modes, right: mass crossing
value as a fuhetlon of the instanton radius.

» Use a Lanczoe based method to compute 7’;, based on the sequence generated for
" the computation of 1 [13].

¢ Use a rational polynomial appraximation for €{z) which can then be rewritten as a
s over poles: i

P{z?
ez} — IQEI’; = :l:(oo + zk: ::’C*Tb;) {11

The application of y «— €{H.)®¥ can be done by the simultaneous solution of the
* shifted linear systems [14]

(Hy +bdde =4, x = Holoh + 3 ende)- (12)
k

One such approximation, based on the polar decomposition [15], was intraduced
in this context by Neuberger [16]. We use optimal rational polynomials [1]. The
accuracy of this approximation is shown in Fig. 1.

We note that in ali methods listed sbove, one can enforce the accuracy of the

approximation of «(z) for small z by projecting out the lowest few eigenvectors of H,, and
adding their correct contribution exactly.

e{H..,):im-}eu.-)(w+P5:"App|ew.,}wi“‘, Pi"}=1—i}|¢i}wk|- (13)
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FIG. 3. On the left g(0;m) of Hu(rs) for quenched Wilson § = 5.7, 5.85 and 6.0. On the right,
the approach of s{0;m) to the contluum limit in the quenched theory at fixed masses.

To invert, DD [or overlap fermions, we have, generically, an outer CG method (a 4-d
Krylov space search) and an independent inner search method for «{H, )% ~ maybe CG
again. For domain wali fermions, on the other hand, a 5-d Krylov space search method
js used. It may pay off to try to combine inner and outer CGs for overlap fermions by
reformulating them into a 5-d problem [17, 18].

i’V. Index deflned via the Overlap formalism

The massless overlap Dirac operator is

1

Dy = 3 1+ vse(He)li Hy = ysDy(-m) . {19

The index in given by @ = tr e(H.)/2. We sce @ simply counts the deficit of the number

of positive energy states of Hy. A simple methad of computing Q a4 some fixed m is via
the spectral flow method [1]. Consider the eigenvalue problem

d
Hu(mloutm) = Mlmidulm), o) gl (g s
An efficient way to compule Q is to compute the lowest eigenvalues of Hy(m} for m > 0.

We can prove the number of positive and negative eigenvalues of Hy{m} for m < 0 must
be the same, so we slowly vary the mass m from m — 0 while keeping track of the levels
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FIG. 4. Zero mode size distribution in lattice units for quenched 16* SU(2) Wilson gauge sction.
croesing, zero and direction of croseings up to some m. In this way, we get the topological
charge as a function of m.

‘We note the mass m must be greater than the usual critical mass of Hy(m}, otherwise
no topology change accurs and the overlap operator does not describe s massless chiral
fermnion. This criticel mass value shifta from its free field value 0 to some positive value for
non-zero gauge coupling. We should also choose a mase below 2 80 that in the continuum
limit there are no doubler contributions.

In Fig. 2, we show spectral flow resulte for & Emooth background field of a single
instanton [19]. There ia & reflection eymmetry about m = 4, namely the spectrum for
& — m is opposite that of m. We see a mode crosses down in eigenvalue, then crosses
up again hear 2. There is a degeneracy of 3 for the modes just beyond 2. Hence, as we
increase m we find a sequence of the index Q of 1, —3,3, —land 0 form = 1, 3, 5 and
8. The one-dimensional profile for the modes assaciated with the erossings are

() = S gl ey (16)
%
which we compare with the continuum solution in the eenter pane! of Fig, 2
1
2(t; C..O) = 201 +( T ),)s ) (7
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FIG. 5. Spectral flow and corzesponding profile for SU(2} configurstions with J, # 41y where
I, Is the number of crossings in the adjoint rep. and fy is the number of crossings Lo

the fund. rep. There is & degeneracy of 2 In all crossings in the adjoint rep.

Also shown is ke zero crossing point m as a function of p. We see that as the size of the
instanton decreases the crossing point (the mass) increases.

As we Lurn on gauge fields, the picture of the flows complicates and we can find
crossings throughout the mass region beyond the critical mass [21, 20}. Since we are
interested in the zero modes at the crossings, we compute the density of zero eigenvalues
p(0; m} of H,,(m} by fitting Linearly to the intcgrated demsity

_[o * o dX = p(0)) + %p;l’ +... (18

In Fig. 3 we show p(0;m) for quenched SU(3) lattices. We see that for m beyond the
critical mass region, the density p(0; m} rises sharply to a peak, then drops but is never
zern, hence the speciral gap is alwaye closed. A mimilar result is also found for two flavor
dynamical fermion backgrounds [21] (simulated with positive physical quark mass, e.g.
not simulated in the super-critical mass region). Fram a size distribution, we observe
the zere modes are on the order of one to two lattices spacings for m beyond the main
band of crossings, namely for m in the “fat” region of p(0; m). We find that a physical
quantity, like the topological susceptibilily, appears constant within errors in this “flat”
region, indicating that these small modes make e physical contribution.
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FIG. 6. Probability p(A) versus A for two gauge ensembles where & = [, — 4J;.

For topology to change in a gauge field evolution, we must create dislocations.
These produce the small modes observed above which force the spectral gap of He(m) to
be closed. In the right panel of Fig. 3 an empirical fit of the density to an exponential
of the inverse lattice spacing is shown. This result implies the density is only zeto in the
continuum timit. The density of zero eigenvalues of H.{m), p(0;m}, is non-zero in the
quenched case, but decreasen rapidly with decreasing coupling [20}. Very roughly, we find
#0;m)/o*? ~ &=, We note the gauge action can be modified to reduce 4(0; m), or
even eliminate it altogether at some fixed m [22].

In Fig. 4, we show the size distribution for quenched 16' SU(2) ensembles, The
profile from Eq. {16) iz used to define a size motivated by the t'Hooft zero mede in
Eq. (17}

_ 1%.2(1)
™

X (19)
We see there is a large number of modes about 1 to 2 latlice units in size. There is a
corresponding secondary peak around 5 lattice units and all the distributions are bounded
in size. This result indicates that the size distribution of zero modes does not show
evidence for & peak at a physical scale (as suggested by some models} even after we
remove the small modea which are most likely lattice artifacts [20]. Instead, the observed
scaling in lattice units ia suggestive of a finite volume effect.
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FIG. 7. Spectral flow of the hermilian domaln wall Dirac operator Hpw (m) and Wilson Hy,(m})
on a single instanton background. Shown are 5D extents of L, = 8, 16, 24 and 32. Foc
L, = 32, only sl a mass separation of 0.2 units from the crossing has the eigenvnlue
dropped to 102,

V. Evidence for fractional topological charge

In a continuuin background field with topological charge @, the index of the massless
Dirac operator in the adjeint representation is equal ta 2NQ [24, 23], Classical instanlons
carry integer tapological charge and can thus only cause condensation of an operator with
2N Majorana fermions. Witten argued that a bilinear gluino condensate exists in SUSY
YM. Self-dual twisted gauge field configurations, with fractional topological charge 1/N
exist (t’Hooft), and could explain o bilinear gluine condensate. What about non-classical
gauge field configurations?

The adjoint represcntelion is real = spectrum of Hy, is doubly degenerate: adjoint
index can only be cven. Are ail even values realized, or onlty multiples of 2N ? To this
end, we studied the flow in the adjoint representation on two SU(2) ensembles at the same
fixed physical volume [23]. We do find configurations with I, = 4f; (number of adjoint
and fundamental crossings), but we also find configurations with f, # 47;. An example
is shown in Fig. 5.

To check if this evidence for fractional topological charge is a lattice artifact, we
plot A = I, — 4I; in Fig. 6. Note that A takes on only even values. The probability of
finding a certain value of A, p(A), is plotted for two ensembles in Fig. 6. We find that
p(A} for |A] > 2 decreases a3 one goes toward the continuum limit at a fixed physical
volume. However, p(+2) does not decrease indicating that it might remain finite in the
continuum limit.
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FIG. 8. Hpectral flow of the overlap Dirac operator Ho(m) snd Wilson H,y(m) on s single
iastanton background. On the tight are the profiles of the oveslap zero modes compared
to the t"Hooft solution.

Vi, Main problem for Overlap and Domain Wall fermions

The existence of small eigenvalues illustrated in Fig. 3 hampers the appraximation
secuTacy and convergence properties of implementations of e(H, ). Eigenvector projection
both increases the accuracy of the spproximation and decreases the condition mumber,
e.g. of the inner CG, '

The existence of amall eigenvalues has implicstions slso for domain wall fermions.
One can show that the spectrum of —log T(m) of Eq. {4) around zero is the same as
the spectrum of H.{m} {5]. While the amall eigenvalues of —~log T{m) don’t appear to
vauge algorithmic problems for domein wall fermions, they can induce rather strong L,
dependence of physical quantities, and hence causing the need for large L,.

VI-i. Domain Wall and Overlep-Diras operator spectrat flow for smpooth SU{2)

As an illustration of the effects of low lying modes of H,,(m), we show in Fig. 7 the
spectrel flow of the hermitian domain wall operator Hpw{m) = Isluw(m) on a smooth
4% x 8% single instanton background with Dirichlet boundary conditions {BC). The Fy
includes a parity operator. Also shown is the corresponding hermitian Wilson H,{m)
spectral flow. The “zero” DWF eigenvalue seis in slowly in L,. We need L, ~ 1/
where Az 8 the owest eigenvatue of Ho(m) (which is sirnilar to the lowest cigenvalue

i

of og{T'(m))} lor e{~log T{m}) = lanh (-—%(log T(mj). In faet, Lhe {almost} chiral zoro
mode eigenvalue Apw{m} ~ const X {1 — tanh{Anm{m)L,/2)} for m bevond the crosing
indicating a sensitivity to the hermitian Wilson operator eigenvalue.

in Fig. 8, we show a similar plot of the hermitian overlap Dirac operator I,{m} on
a stwooth §* single instanton background with Dirichlet BC. ‘There are strict zero modes
afier the crossing, m = 0.6, 6.7, and .8, Also shown are the zer mede profiles for these
masses which are guite similar and nicely follow the t'Hoolt zero mode solution.

Vi, Conciusions

The evertap Dirac operator has the satne chird symmetries as continuum fermions.
it has exact zero modes in topologically non-trivial gauge fields. It is Lherefore well suited
for a study of the interplay of topology, with its associated exact 2ero modes, and chiral
symmctry breaking, determined by the density of small cigenvalues.

The creation of distocations necessary for change of topology causes mumerical diffi-
culties with overlap and domain wall simulations. These dislocations are purely a property
of the gauge actions used and ere net a fundamental limitation of the chiral fermion for-
malisms. In practice, the projeciion technique used in the overlap simuiations is vital
to precisely control the adverse infuence of the low lying zero modes of the hermitian
Wilsor oparetor. The same technigue can be used for domain wall simulations, but it is
more cumbersome. Further work is directed fowards lowering {and possibly climinating}
the density of low lying zere modes. A dynamical HMC algorithm for the overlap Dirac
aperator has also been develaped K.
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